

Intrusion Detection Systems Using Adaptive Regression Splines
Srinivas Mukkamala1, Andrew H. Sung1,2 and Ajith Abraham3

1Department of Computer Science,2Institute for Complex Additive Systems Analysis, New
Mexico Tech, Socorro, New Mexico 87801, Srinivas|sung@cs.nmt.edu

3Department of Computer Science, Oklahoma State University, 700 N Greenwood Avenue,
Tulsa, OK 74106, ajith.abraham@ieee.org

Abstract. Past few years have witnessed a growing recognition of soft computing technologies
for the construction of intelligent and reliable intrusion detection systems. Due to increasing
incidents of cyber attacks, building effective intrusion detection systems (IDSs) are essential for
protecting information systems security, and yet it remains an elusive goal and a great challenge.
In this paper, we report a performance analysis between Multivariate Adaptive Regression
Splines (MARS), neural networks and support vector machines. The MARS procedure builds
flexible regression models by fitting separate splines to distinct intervals of the predictor
variables. A brief comparison of different neural network learning algorithms is also given.

Key words: Intrusion detection, regression splines, neural networks, support vector machines and
Internet security.

1. INTRODUCTION
Intrusion detection is a problem of great significance to protecting information systems security,
especially in view of the worldwide increasing incidents of cyber attacks. Since the ability of an
IDS to classify a large variety of intrusions in real time with accurate results is important, we will
consider performance measures in three critical aspects: training and testing times; scalability;
and classification accuracy.

Since most of the intrusions can be located by examining patterns of user activities and audit
records [1], many IDSs have been built by utilizing the recognized attack and misuse patterns.
IDSs are classified, based on their functionality, as misuse detectors and anomaly detectors.
Misuse detection systems use well-known attack patterns as the basis for detection [1,2].
Anomaly detection systems use user profiles as the basis for detection; any deviation from the
normal user behavior is considered an intrusion [1,2,3,4].

One of the main problems with IDSs is the overhead, which can become unacceptably high. To
analyze system logs, the operating system must keep information regarding all the actions
performed, which invariably results in huge amounts of data, requiring disk space and CPU
resource. Next, the logs must be processed to convert into a manageable format and then
compared with the set of recognized misuse and attack patterns to identify possible security
violations. Further, the stored patterns need be continually updated, which would normally
involve human expertise. An intelligent, adaptable and cost-effective tool that is capable of
(mostly) real-time intrusion detection is the goal of the researchers in IDSs.

Various artificial intelligence techniques have been utilized to automate the intrusion detection
process to reduce human intervention; several such techniques include neural networks
[3,4,5,6,7], and machine learning [8]. Several data mining techniques have been introduced to
identify key features or parameters that define intrusions [9,10,11,12].

In this paper, we explore Multivariate Adaptive Regression Splines (MARS), SVMs and neural
networks, to perform intrusion detection based on recognized attack patterns. The data we used

in our experiments originated from MIT’s Lincoln Lab. It was developed for intrusion detection
system evaluations by DARPA and is considered a benchmark for IDS evaluations [13].

We perform experiments to classify the network traffic patterns according to a 5-class taxonomy.
The five classes of patterns in the DARPA data are (normal, probe, denial of service, user to
super-user, and remote to local). It is shown that using SVMs for classification gives high
accuracy and requires less training time and testing time than the artificial intelligent techniques
like neural networks. The experimental results of MARS and of different neural network training
functions that play a key role in classification are also presented.

In the rest of the paper, a brief introduction to the data we use is given in section 2. Section 3
briefly introduces to MARS. In section 4 a brief introduction to the connectionist paradigms
(ANNs and SVMs) is given. In section 5 the experimental results of using MARS, ANNs and
SVMs are given. The summary and conclusions of our work are given in section 6.

FIGURE1 Data Distribution

2. INTRUSION DETECTION DATA
In the 1998 DARPA intrusion detection evaluation program, an environment was set up to
acquire raw TCP/IP dump data for a network by simulating a typical U.S. Air Force LAN. The
LAN was operated like a real environment, but being blasted with multiple attacks [14,15]. For
each TCP/IP connection, 41 various quantitative and qualitative features were extracted [11,16].
Of this database a subset of 494021 data were used, of which 20% represent normal patterns.

Attack types fall into four main categories:
1. Probing: surveillance and other probing
2. DoS: denial of service
3. U2Su: unauthorized access to local super user (root) privileges
4. R2L: unauthorized access from a remote machine

2.1 Probing
Probing is a class of attacks where an attacker scans a network to gather information or find
known vulnerabilities. An attacker with a map of machines and services that are available on a
network can use the information to look for exploits. There are different types of probes: some of
them abuse the computer’s legitimate features; some of them use social engineering techniques.
This class of attacks is the most commonly heard and requires very little technical expertise.

TABLE1 Probe Attacks
Attack Type Service Mechanism Effect of the attack

Ipsweep Icmp Abuse of feature Identifies active machines

Mscan Many Abuse of feature Looks for known vulnerabilities

Nmap Many Abuse of feature Identifies active ports on a machine

Saint Many Abuse of feature Looks for known vulnerabilities

Satan Many Abuse of feature Looks for known Vulnerabilities

2.2 Denial of Service Attacks
Denial of Service (DoS) is a class of attacks where an attacker makes some computing or
memory resource too busy or too full to handle legitimate requests, thus denying legitimate users
access to a machine. There are different ways to launch DoS attacks: by abusing the computers
legitimate features; by targeting the implementations bugs; or by exploiting the system’s
misconfigurations. DoS attacks are classified based on the services that an attacker renders
unavailable to legitimate users.

TABLE 2 Denial of Service Attacks
Attack Type Service Mechanism Effect of the attack

Apache2 http Abuse Crashes httpd
Back http Abuse/Bug Slows down server response
Land http Bug Freezes the machine

Mail bomb N/A Abuse Annoyance
SYN Flood TCP Abuse Denies service on one or more ports

Ping of Death Icmp Bug None
Process table TCP Abuse Denies new processes

Smurf Icmp Abuse Slows down the network
Syslogd Syslog Bug Kills the Syslogd
Teardrop N/A Bug Reboots the machine

Udpstrom Echo/
Chargen Abuse Slows down the network

2.3 User to Root Attacks
User to root exploits are a class of attacks where an attacker starts out with access to a normal
user account on the system and is able to exploit vulnerability to gain root access to the system.

Most common exploits in this class of attacks are regular buffer overflows, which are caused by
regular programming mistakes and environment assumptions.

TABLE 3 User to Super-user Attacks

Attack Type Service Mechanism Effect of the
attack

Eject User session Buffer overflow Gains root shell
Ffbconfig User session Buffer overflow Gains root shell
Fdformat User session Buffer overflow Gains root shell

Loadmodule User session Poor environment
sanitation Gains root shell

Perl User session Poor environment
sanitation Gains root shell

Ps User session Poor Temp file
management Gains root shell

Xterm User session Buffer overflow Gains root shell

2.4 Remote to User Attacks
A remote to user (R2L) attack is a class of attacks where an attacker sends packets to a machine
over a network, then exploits machine’s vulnerability to illegally gain local access as a user.
There are different types of R2U attacks; the most common attack in this class is done using
social engineering.

TABLE 4 Remote to User Attacks
Attack Type Service Mechanism Effect of the attack

Dictionary telnet, rlogin,
pop, ftp, imap Abuse feature Gains user access

Ftp-write ftp Misconfig. Gains user access
Guest telnet, rlogin Misconfig. Gains user access
Imap imap Bug Gains root access

Named dns Bug Gains root access

Phf http Bug Executes commands
as http user

Sendmail smtp Bug Executes commands
as root

Xlock smtp Misconfig. Spoof user to obtain
password

Xnsoop smtp Misconfig. Monitor key stokes
remotely

3. MULTIVARIATE ADAPTIVE REGRESSION SPLINES (MARS)
Splines can be considered as an innovative mathematical process for complicated curve drawings
and function approximation. To develop a spline the X-axis is broken into a convenient number
of regions. The boundary between regions is also known as a knot. With a sufficiently large
number of knots virtually any shape can be well approximated. While it is easy to draw a spline
in 2-dimensions by keying on knot locations (approximating using linear, quadratic or cubic
polynomial etc.), manipulating the mathematics in higher dimensions is best accomplished using
basis functions. The MARS model is a regression model using basis functions as predictors in
place of the original data. The basis function transform makes it possible to selectively blank out
certain regions of a variable by making them zero, and allows MARS to focus on specific sub-
regions of the data. It excels at finding optimal variable transformations and interactions, and the
complex data structure that often hides in high-dimensional data [17].

Given the number of records in most data sets, it is infeasible to approximate the function y=f(x)
by summarizing y in each distinct region of x. For some variables, two regions may not be
enough to track the specifics of the function. If the relationship of y to some x's is different in 3
or 4 regions, for example, the number of regions requiring examination is even larger than 34
billion with only 35 variables. Given that the number of regions cannot be specified a priori,
specifying too few regions in advance can have serious implications for the final model. A
solution is needed that accomplishes the following two criteria:

Figure 2. MARS data estimation using spines and knots (actual data on the right)

• judicious selection of which regions to look at and their boundaries
• judicious determination of how many intervals are needed for each variable

Given these two criteria, a successful method will essentially need to be adaptive to the
characteristics of the data. Such a solution will probably ignore quite a few variables (affecting
variable selection) and will take into account only a few variables at a time (also reducing the
number of regions). Even if the method selects 30 variables for the model, it will not look at all
30 simultaneously. Such simplification is accomplished by a decision tree at a single node, only
ancestor splits are being considered; thus, at a depth of six levels in the tree, only six variables
are being used to define the node.

MARS Smoothing, Splines, Knots Selection and Basis Functions
To estimate the most common form, the cubic spline, a uniform grid is placed on the predictors
and a reasonable number of knots are selected. A cubic regression is then fit within each region.
This approach, popular with physicists and engineers who want continuous second derivatives,
requires many coefficients (four per region) to be estimated. Normally, two constraints, which
dramatically reduce the number of free parameters, can be placed on cubic splines:

• curve segments must join,
• continuous first and second derivatives at knots (higher degree of smoothness)

Figure 2 depicts a MARS spline with three knots. A key concept underlying the spline is the
knot. A knot marks the end of one region of data and the beginning of another. Thus, the knot is
where the behavior of the function changes. Between knots, the model could be global (e.g.,
linear regression). In a classical spline, the knots are predetermined and evenly spaced, whereas
in MARS, the knots are determined by a search procedure. Only as many knots as needed are
included in a MARS model. If a straight line is a good fit, there will be no interior knots. In
MARS, however, there is always at least one "pseudo" knot that corresponds to the smallest
observed value of the predictor [18].

Finding the one best knot in a simple regression is a straightforward search problem: simply
examine a large number of potential knots and choose the one with the best R2. However, finding
the best pair of knots requires far more computation, and finding the best set of knots when the
actual number needed is unknown is an even more challenging task. MARS finds the location
and number of needed knots in a forward/backward stepwise fashion. A model which is clearly
overfit with too many knots is generated first; then, those knots that contribute least to the overall
fit are removed. Thus, the forward knot selection will include many incorrect knot locations, but
these erroneous knots will eventually (although this is not guaranteed), be deleted from the
model in the backwards pruning step [19].

4. CONNECTIONIST PARADIGMS
The artificial neural network (ANN) methodology enables us to design useful nonlinear systems
accepting large numbers of inputs, with the design based solely on instances of input-output
relationships.

4.1 Resilient Back propagation (RP)
The purpose of the resilient back propagation training algorithm is to eliminate the harmful
effects of the magnitudes of the partial derivatives. Only the sign of the derivative is used to
determine the direction of the weight update; the magnitude of the derivative has no effect on the
weight update. The size of the weight change is determined by a separate update value. The
update value for each weight and bias is increased by a factor whenever the derivative of the
performance function with respect to that weight has the same sign for two successive iterations.
The update value is decreased by a factor whenever the derivative with respect that weight
changes sign from the previous iteration. If the derivative is zero, then the update value remains
the same. Whenever the weights are oscillating the weight change will be reduced. If the weight
continues to change in the same direction for several iterations, then the magnitude of the weight
change will be increased [20].

4.2 Scaled Conjugate Gradient Algorithm (SCG)
The scaled conjugate gradient algorithm is an implementation of avoiding the complicated line
search procedure of conventional conjugate gradient algorithm (CGA). According to the SCGA,
the Hessian matrix is approximated by

kk
k

kkkk
kk p

wEpwE
pwE λ

σ
σ

+
−+

=
)()(

)(
''

" (1)

where E' and E" are the first and second derivative information of global error function E (wk).
The other terms pk, σk and λk represent the weights, search direction, parameter controlling the
change in weight for second derivative approximation and parameter for regulating the
indefiniteness of the Hessian. In order to get a good quadratic approximation of E, a mechanism
to raise and lower λk is needed when the Hessian is positive definite [21].

4.3 One-Step-Secant Algorithm (OSS)
Quasi-Newton method involves generating a sequence of matrices G(k) that represents
increasingly accurate approximations to the inverse Hessian (H-1). Using only the first derivative
information of E the updated expression is as follows:

T(k)T
(k)T

(k)T(k)

T

T
(k)1)(k uv)uG(v

vGv
Gvv)(G

vp
ppGG +−+=+ (2)

where
(k)1)(k wwp −= + , (k)1)(k ggv −= + ,

vGv
vGu (k)T

(k)

vp
p
T −= (3)

and T represents transpose of a matrix. The problem with this approach is the requirement of
computation and storage of the approximate Hessian matrix for every iteration. The One-Step-
Secant (OSS) is an approach to bridge the gap between the conjugate gradient algorithm and the
quasi-Newton (secant) approach. The OSS approach doesn’t store the complete Hessian matrix;
it assumes that at each iteration the previous Hessian was the identity matrix. This also has the
advantage that the new search direction can be calculated without computing a matrix inverse
[22].

4.4 Support Vector Machines (SVMs)
The SVM approach transforms data into a feature space F that usually has a huge dimension. It is
interesting to note that SVM generalization depends on the geometrical characteristics of the
training data, not on the dimensions of the input space [22,23]. Training a support vector
machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear
equality constraint. Vapnik shows how training a SVM for the pattern recognition problem leads
to the following quadratic optimization problem [24].

Minimize: ∑ ∑∑
= ==

+−=
l

i
ji

l

j
jiji

l

i
i xxkyyW

1 11
),(

2
1)(αααα (4)

Subject to

Ci

y

i

l

i
ii

≤≤∀

∑
=

α

α

0:
1

 (5)

Where l is the number of training examples α is a vector of l variables and each component
iα corresponds to a training example (xi, yi). The solution of (4) is the vector *α for which (4) is

minimized and (5) is fulfilled.

5. EXPERIMENTS
In our experiments, we perform 5-class classification. The (training and testing) data set contains
11982 randomly generated points from the data set representing the five classes, with the number

of data from each class proportional to its size, except that the smallest class is completely
included. The normal data belongs to class1, probe belongs to class 2, denial of service belongs
to class 3, user to super user belongs to class 4, remote to local belongs to class 5. A different
randomly selected set of 6890 points of the total data set (11982) is used for testing MARS,
SVMs and ANNs.

5.1 MARS Experiments
We used 5 basis functions and selected a setting of minimum observation between knots as 10.
The MARS training mode is being set to the lowest level to gain higher accuracy rates. Five
MARS models are employed to perform five class classifications (normal, probe, denial of
service, user to root and remote to local). We partition the data into the two classes of “Normal”
and “Rest” (Probe, DoS, U2Su, R2L) patterns, where the Rest is the collection of four classes of
attack instances in the data set. The objective is to separate normal and attack patterns. We repeat
this process for all classes. Table 5 summarizes the results of the experiments

TABLE 5 Performance of MARS

Class Accuracy (%)

Normal 96.08

Probe 92.32

DOS 94.73
U2Su 99.71
R2L 99.48

5.2 Neural Network Experiments
The same data set describe in section 2 is being used for training and testing different neural
network algorithms. The set of 5092 training data is divided in to five classes: normal, probe,
denial of service attacks, user to super user and remote to local attacks. Where the attack is a
collection of 22 different types of instances that belong to the four classes described in section 2,
and the other is the normal data. In our study we used two hidden layers with 20 and 30 neurons
each and the networks were trained using training functions described in Table 6. The network
was set to train until the desired mean square error of 0.001 was met.

As multi-layer feed forward networks are capable of multi-class classifications, we partition the
data into 5 classes (Normal, Probe, Denial of Service, and User to Root and Remote to
Local).We used the same testing data (6890), same network architecture and same activations
functions to identify the best training function that plays a vital role for in classifying intrusions.
Table 6 summarizes the results of different networks.

TABLE 6 Performance of Different Neural Network Training Functions

Function
No of

Epochs
Trial 1

No of
Epochs
Trial 2

Accuracy
Trail 1

Accuracy
Trail 2

Gradient descent 3500 3500 61.70 48.14
Gradient descent with 3500 3500 51.60 48.14

momentum
Adaptive learning rate 3500 3500 95.38 92.83

Resilient back
propagation 67 66 97.04 95.44

Fletcher-Reeves
conjugate gradient 891 891 82.18 82.18

Polak-Ribiere conjugate
gradient 313 274 80.54 78.19

Powell-Beale conjugate
gradient 298 256 91.57 83.11

Scaled conjugate
gradient 351 303 80.87 95.25

BFGS quasi-Newton
method 359 359 75.67 75.67

One step secant method 638 638 93.60 93.60
Levenberg-Marquardt 17 16 76.23 74.04
Bayesian regularization 533 549 64.15 63.24

TABLE 7 Performance of the Best Neural Network Training Function
(Resilient Back Propagation)

 Normal Probe DoS U2Su R2L %

Normal 1394 5 1 0 0 99.6

Probe 49 649 2 0 0 92.7

DoS 3 101 4096 2 0 97.5

U2Su 0 1 8 12 4 48.0

R2L 0 1 6 21 535 95.0

% 96.4 85.7 99.6 34.3 99.3

The top-left entry of Table 7 shows that 1394 of the actual “normal” test set were detected to be
normal; the last column indicates that 99.6 % of the actual “normal” data points were detected
correctly. In the same way, for “Probe” 649 of the actual “attack” test set were correctly
detected; the last column indicates that 92.7% of the actual “Probe” data points were detected
correctly. The bottom row shows that 96.4% of the test set said to be “normal” indeed were
“normal” and 85.7% of the test set classified, as “probe” indeed belongs to Probe. The overall
accuracy of the classification is 97.04 with a false positive rate of 2.76% and false negative rate
of 0.20.

5.3 SVM Experiments
The data set described in section 5 is being used to test the performance of support vector
machines. Note the same training test (5092) used for training the neural networks and the same
testing test (6890) used for testing the neural networks are being used to validate the
performance.

Because SVMs are only capable of binary classifications, we will need to employ five SVMs, for
the 5-clas classification problem in intrusion detection, respectively. We partition the data into
the two classes of “Normal” and “Rest” (Probe, DoS, U2Su, R2L) patterns, where the Rest is the
collection of four classes of attack instances in the data set. The objective is to separate normal
and attack patterns. We repeat this process for all classes. Training is done using the RBF (radial
bias function) kernel option; an important point of the kernel function is that it defines the feature
space in which the training set examples will be classified. Table 8 summarizes the results of the
experiments.

TABLE 8 Performance of SVMs

Class Training time
(sec)

Testing time
(sec) Accuracy (%)

Normal 7.66 1.26 99.55

Probe 49.13 2.10 99.70

DOS 22.87 1.92 99.25
U2Su 3.38 1.05 99.87
R2L 11.54 1.02 99.78

6. CONCLUSIONS
 A number of observations and conclusions are drawn from the results reported:
 MARS is superior to SVMs in respect to classifying the most important classes (U2Su and

R2L) in terms of the attack severity.
 SVMs outperform ANNs in the important respects of scalability (SVMs can train with a

larger number of patterns, while would ANNs take a long time to train or fail to converge at
all when the number of patterns gets large); training time and running time (SVMs run an
order of magnitude faster); and prediction accuracy.

 SVMs easily achieve high detection accuracy (higher than 99%) for each of the 5 classes of
data, regardless of whether all 41 features are used, only the important features for each class
are used, or the union of all important features for all classes are used.

 Resilient back propagation achieved the best performance among the neural networks in
terms of accuracy (97.04 %) and training (67 epochs).

Performance Comparison of Testing for 5 class Classifications

Class
SVMs

Accuracy
(%)

RP
Accuracy

(%)

SCG
Accuracy

(%)

OSS
Accuracy

(%)

MARS
Accuracy

(%)
Normal 98.42 99.57 99.57 99.64 96.08
Probe 98.57 92.71 85.57 92.71 92.32
DoS 99.11 97.47 72.01 91.76 94.73

U2Su 64 48 0 16 99.71
R2L 97.33 95.02 98.22 96.80 99.48

We note, however, that the difference in accuracy figures tend to be very small and may not be
statistically significant, especially in view of the fact that the 5 classes of patterns differ in their
sizes tremendously. More definitive conclusions can only be made after analyzing more
comprehensive sets of network traffic data.

7. ACKNOWLEDGEMENTS
Support for this research received from ICASA (Institute for Complex Additive Systems
Analysis, a division of New Mexico Tech) and a U.S. Department of Defense IASP capacity
building grant is gratefully acknowledged. We would also like to acknowledge many insightful
conversations with Dr. Jean-Louis Lassez and David Duggan that helped clarify some of our
ideas.

8. REFERENCES
[1] Denning D. (Feb. 1987) “An Intrusion-Detection Model,” IEEE Transactions on Software

Engineering, Vol.SE-13, No 2.
[2] Kumar S., Spafford E. H. (1994) “An Application of Pattern Matching in Intrusion

Detection,” Technical Report CSD-TR-94-013. Purdue University.
[3] Ghosh A. K. (1999). “Learning Program Behavior Profiles for Intrusion Detection,”

 USENIX.
[4] Cannady J. (1998) “Artificial Neural Networks for Misuse Detection,” National

Information Systems Security Conference.
[5] Ryan J., Lin M-J., Miikkulainen R. (1998) “Intrusion Detection with Neural Networks,”

Advances in Neural Information Processing Systems 10, Cambridge, MA: MIT Press.
[6] Debar H., Becke M., Siboni D. (1992) “A Neural Network Component for an Intrusion

Detection System,” Proceedings of the IEEE Computer Society Symposium on Research in
Security and Privacy.

[7] Debar H., Dorizzi. B. (1992) “An Application of a Recurrent Network to an Intrusion
Detection System,” Proceedings of the International Joint Conference on Neural Networks,
pp.78-83.

[8] Mukkamala S., Janoski G., Sung A. H. (2002) “Intrusion Detection Using Neural Networks
and Support Vector Machines,” Proceedings of IEEE International Joint Conference on
Neural Networks, pp.1702-1707.

[9] Luo J., Bridges S. M. (2000) “Mining Fuzzy Association Rules and Fuzzy Frequency
Episodes for Intrusion Detection,” International Journal of Intelligent Systems, John Wiley
& Sons, pp.687-703.

[10] Cramer M., et. al. (1995) “New Methods of Intrusion Detection using Control-Loop
Measurement,” Proceedings of the Technology in Information Security Conference (TISC)
’95, pp.1-10.

[11] J. Stolfo, Wei Fan, Wenke Lee, Andreas Prodromidis, and Philip K. Chan “Cost-based
Modeling and Evaluation for Data Mining With Application to Fraud and Intrusion
Detection,” Results from the JAM Project by Salvatore.

[12] S Mukkamala, A H. Sung “Identifying Key Features for Intrusion Detection Using Neural
Networks,” Proceedings of ICCC International Conference on Computer Communications
2002.

[13] http://www.ll.mit.edu/IST/ideval/data/data_index.html

[14] Kris Kendall, “A Database of Computer Attacks for the Evaluation of Intrusion Detection
Systems”, Master's Thesis, Massachusetts Institute of Technology, 1998.

[15] Seth E. Webster, “The Development and Analysis of Intrusion Detection Algorithms,” S.M.
Thesis, Massachusetts Institute of Technology, June 1998.

[16] http://kdd.ics.uci.edu/databases/kddcup99/task.htm.
[17] Friedman, J. H, Multivariate Adaptive Regression Splines, Annals of Statistics, Vol 19, 1-

141, 1991.
[18] Steinberg, D, Colla, P. L., and Kerry Martin (1999), MARS User Guide, San Diego, CA:

Salford Systems, 1999.
[19] Ajith Abraham, Dan Steinberg: MARS: Still an Alien Planet in Soft Computing? 2001

International Conference on Computational Science, San Francisco, Springer Verlag
Germany, pp. 235-244, 2001.

[20] Riedmiller, M., and H. Braun, "A direct adaptive method for faster back propagation
learning: The RPROP algorithm," Proceedings of the IEEE International Conference on
Neural Networks, San Francisco, 1993.

[21] Moller A F, A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning, Neural
Networks, Volume (6), pp. 525-533, 1993.

[22] Bishop C. M, Neural Networks for pattern recognition, Oxford Press, 1995.
[23] Joachims T. (1998) “Making Large-Scale SVM Learning Practical,” LS8-Report,

University of Dortmund, LS VIII-Report.
[24] Joachims T. (2000) “SVMlight is an Implementation of Support Vector Machines (SVMs)

in C,” http://ais.gmd.de/~thorsten/svm_light. University of Dortmund. Collaborative
Research Center on Complexity Reduction in Multivariate Data (SFB475).

[25] Vladimir V. N. (1995) “The Nature of Statistical Learning Theory,” Springer.

