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Abstract. Past few years have witnessed a growing recognition of soft computing technologies 
for the construction of intelligent and reliable intrusion detection systems. Due to increasing 
incidents of cyber attacks, building effective intrusion detection systems (IDSs) are essential for 
protecting information systems security, and yet it remains an elusive goal and a great challenge. 
In this paper, we report a performance analysis between Multivariate Adaptive Regression 
Splines (MARS), neural networks and support vector machines. The MARS procedure builds 
flexible regression models by fitting separate splines to distinct intervals of the predictor 
variables.    A brief comparison of different neural network learning algorithms is also given.  
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1. INTRODUCTION 
Intrusion detection is a problem of great significance to protecting information systems security, 
especially in view of the worldwide increasing incidents of cyber attacks. Since the ability of an 
IDS to classify a large variety of intrusions in real time with accurate results is important, we will 
consider performance measures in three critical aspects: training and testing times; scalability; 
and classification accuracy. 

Since most of the intrusions can be located by examining patterns of user activities and audit 
records [1], many IDSs have been built by utilizing the recognized attack and misuse patterns. 
IDSs are classified, based on their functionality, as misuse detectors and anomaly detectors. 
Misuse detection systems use well-known attack patterns as the basis for detection [1,2]. 
Anomaly detection systems use user profiles as the basis for detection; any deviation from the 
normal user behavior is considered an intrusion [1,2,3,4]. 

One of the main problems with IDSs is the overhead, which can become unacceptably high. To 
analyze system logs, the operating system must keep information regarding all the actions 
performed, which invariably results in huge amounts of data, requiring disk space and CPU 
resource. Next, the logs must be processed to convert into a manageable format and then 
compared with the set of recognized misuse and attack patterns to identify possible security 
violations. Further, the stored patterns need be continually updated, which would normally 
involve human expertise. An intelligent, adaptable and cost-effective tool that is capable of 
(mostly) real-time intrusion detection is the goal of the researchers in IDSs. 

Various artificial intelligence techniques have been utilized to automate the intrusion detection 
process to reduce human intervention; several such techniques include neural networks 
[3,4,5,6,7], and machine learning [8]. Several data mining techniques have been introduced to 
identify key features or parameters that define intrusions [9,10,11,12]. 

In this paper, we explore Multivariate Adaptive Regression Splines (MARS), SVMs and neural 
networks, to perform intrusion detection based on recognized attack patterns. The data we used 



  

in our experiments originated from MIT’s Lincoln Lab. It was developed for intrusion detection 
system evaluations by DARPA and is considered a benchmark for IDS evaluations [13].  

We perform experiments to classify the network traffic patterns according to a 5-class taxonomy. 
The five classes of patterns in the DARPA data are (normal, probe, denial of service, user to 
super-user, and remote to local). It is shown that using SVMs for classification gives high 
accuracy and requires less training time and testing time than the artificial intelligent techniques 
like neural networks. The experimental results of MARS and of different neural network training 
functions that play a key role in classification are also presented. 

In the rest of the paper, a brief introduction to the data we use is given in section 2. Section 3 
briefly introduces to MARS. In section 4 a brief introduction to the connectionist paradigms 
(ANNs and SVMs) is given. In section 5 the experimental results of using MARS, ANNs and 
SVMs are given. The summary and conclusions of our work are given in section 6.  

 

FIGURE1 Data Distribution 

2. INTRUSION DETECTION DATA 
In the 1998 DARPA intrusion detection evaluation program, an environment was set up to 
acquire raw TCP/IP dump data for a network by simulating a typical U.S. Air Force LAN.  The 
LAN was operated like a real environment, but being blasted with multiple attacks [14,15]. For 
each TCP/IP connection, 41 various quantitative and qualitative features were extracted [11,16]. 
Of this database a subset of 494021 data were used, of which 20% represent normal patterns. 

Attack types fall into four main categories: 
1. Probing: surveillance and other probing 
2. DoS: denial of service 
3. U2Su: unauthorized access to local super user (root) privileges 
4. R2L: unauthorized access from a remote machine 



  

2.1 Probing 
Probing is a class of attacks where an attacker scans a network to gather information or find 
known vulnerabilities. An attacker with a map of machines and services that are available on a 
network can use the information to look for exploits. There are different types of probes: some of 
them abuse the computer’s legitimate features; some of them use social engineering techniques. 
This class of attacks is the most commonly heard and requires very little technical expertise.  

TABLE1 Probe Attacks 
Attack Type Service Mechanism Effect of the attack 

Ipsweep Icmp Abuse of feature Identifies active machines 

Mscan Many Abuse of feature Looks for known vulnerabilities 

Nmap Many Abuse of feature Identifies active ports on a machine 

Saint Many Abuse of feature Looks for known vulnerabilities 

Satan Many Abuse of feature Looks for known Vulnerabilities 

2.2 Denial of Service Attacks 
Denial of Service (DoS) is a class of attacks where an attacker makes some computing or 
memory resource too busy or too full to handle legitimate requests, thus denying legitimate users 
access to a machine. There are different ways to launch DoS attacks: by abusing the computers 
legitimate features; by targeting the implementations bugs; or by exploiting the system’s 
misconfigurations. DoS attacks are classified based on the services that an attacker renders 
unavailable to legitimate users.  

TABLE 2 Denial of Service Attacks 
Attack Type Service Mechanism Effect of the attack 

Apache2 http Abuse Crashes httpd 
Back http Abuse/Bug Slows down server response 
Land http Bug Freezes the machine 

Mail bomb N/A Abuse Annoyance 
SYN Flood TCP Abuse Denies service on one or more ports

Ping of Death Icmp Bug None 
Process table TCP Abuse Denies new processes 

Smurf Icmp Abuse Slows down the network 
Syslogd Syslog Bug Kills the Syslogd 
Teardrop N/A Bug Reboots the machine 

Udpstrom Echo/ 
Chargen Abuse Slows down the network 

2.3 User to Root Attacks 
User to root exploits are a class of attacks where an attacker starts out with access to a normal 
user account on the system and is able to exploit vulnerability to gain root access to the system. 



  

Most common exploits in this class of attacks are regular buffer overflows, which are caused by 
regular programming mistakes and environment assumptions.  

TABLE 3 User to Super-user Attacks 

Attack Type Service Mechanism Effect of the 
attack 

Eject User session Buffer overflow Gains root shell 
Ffbconfig User session Buffer overflow Gains root shell 
Fdformat User session Buffer overflow Gains root shell 

Loadmodule User session Poor environment 
sanitation Gains root shell 

Perl User session Poor environment 
sanitation Gains root shell 

Ps User session Poor Temp file 
management Gains root shell 

Xterm User session Buffer overflow Gains root shell 

2.4 Remote to User Attacks 
A remote to user (R2L) attack is a class of attacks where an attacker sends packets to a machine 
over a network, then exploits machine’s vulnerability to illegally gain local access as a user. 
There are different types of R2U attacks; the most common attack in this class is done using 
social engineering. 

TABLE 4 Remote to User Attacks 
Attack Type Service Mechanism Effect of the attack 

Dictionary telnet, rlogin, 
pop, ftp, imap Abuse feature Gains user access 

Ftp-write ftp Misconfig. Gains user access 
Guest telnet,  rlogin Misconfig. Gains user access 
Imap imap Bug Gains root access 

Named dns Bug Gains root access 

Phf http Bug Executes commands 
as http user 

Sendmail smtp Bug Executes commands 
as root 

Xlock smtp Misconfig. Spoof user to obtain 
password 

Xnsoop smtp Misconfig. Monitor key stokes 
remotely 

 



  

3. MULTIVARIATE ADAPTIVE REGRESSION SPLINES (MARS) 
Splines can be considered as an innovative mathematical process for complicated curve drawings 
and function approximation. To develop a spline the X-axis is broken into a convenient number 
of regions. The boundary between regions is also known as a knot. With a sufficiently large 
number of knots virtually any shape can be well approximated. While it is easy to draw a spline 
in 2-dimensions by keying on knot locations (approximating using linear, quadratic or cubic 
polynomial etc.), manipulating the mathematics in higher dimensions is best accomplished using 
basis functions. The MARS model is a regression model using basis functions as predictors in 
place of the original data. The basis function transform makes it possible to selectively blank out 
certain regions of a variable by making them zero, and allows MARS to focus on specific sub-
regions of the data. It excels at finding optimal variable transformations and interactions, and the 
complex data structure that often hides in high-dimensional data [17].  

Given the number of records in most data sets, it is infeasible to approximate the function y=f(x) 
by summarizing y in each distinct region of x. For some variables, two regions may not be 
enough to track the specifics of the function. If the relationship of y to some x's is different in 3 
or 4 regions, for example, the number of regions requiring examination is even larger than 34 
billion with only 35 variables. Given that the number of regions cannot be specified a priori, 
specifying too few regions in advance can have serious implications for the final model. A 
solution is needed that accomplishes the following two criteria: 

  
Figure 2. MARS data estimation using spines and knots (actual data on the right) 

• judicious selection of which regions to look at and their boundaries 
• judicious determination of how many intervals are needed for each variable 

Given these two criteria, a successful method will essentially need to be adaptive to the 
characteristics of the data. Such a solution will probably ignore quite a few variables (affecting 
variable selection) and will take into account only a few variables at a time (also reducing the 
number of regions). Even if the method selects 30 variables for the model, it will not look at all 
30 simultaneously. Such simplification is accomplished by a decision tree at a single node, only 
ancestor splits are being considered; thus, at a depth of six levels in the tree, only six variables 
are being used to define the node. 

MARS Smoothing, Splines, Knots Selection and Basis Functions 
To estimate the most common form, the cubic spline, a uniform grid is placed on the predictors 
and a reasonable number of knots are selected. A cubic regression is then fit within each region. 
This approach, popular with physicists and engineers who want continuous second derivatives, 
requires many coefficients (four per region) to be estimated. Normally, two constraints, which 
dramatically reduce the number of free parameters, can be placed on cubic splines: 



  

• curve segments must join, 
• continuous first and second derivatives at knots (higher degree of smoothness) 

  
Figure 2 depicts a MARS spline with three knots. A key concept underlying the spline is the 
knot. A knot marks the end of one region of data and the beginning of another. Thus, the knot is 
where the behavior of the function changes. Between knots, the model could be global (e.g., 
linear regression). In a classical spline, the knots are predetermined and evenly spaced, whereas 
in MARS, the knots are determined by a search procedure. Only as many knots as needed are 
included in a MARS model. If a straight line is a good fit, there will be no interior knots. In 
MARS, however, there is always at least one "pseudo" knot that corresponds to the smallest 
observed value of the predictor [18].  
 

Finding the one best knot in a simple regression is a straightforward search problem: simply 
examine a large number of potential knots and choose the one with the best R2. However, finding 
the best pair of knots requires far more computation, and finding the best set of knots when the 
actual number needed is unknown is an even more challenging task. MARS finds the location 
and number of needed knots in a forward/backward stepwise fashion. A model which is clearly 
overfit with too many knots is generated first; then, those knots that contribute least to the overall 
fit are removed. Thus, the forward knot selection will include many incorrect knot locations, but 
these erroneous knots will eventually (although this is not guaranteed), be deleted from the 
model in the backwards pruning step [19]. 

4. CONNECTIONIST PARADIGMS 
The artificial neural network (ANN) methodology enables us to design useful nonlinear systems 
accepting large numbers of inputs, with the design based solely on instances of input-output 
relationships.  

4.1 Resilient Back propagation (RP) 
The purpose of the resilient back propagation training algorithm is to eliminate the harmful 
effects of the magnitudes of the partial derivatives. Only the sign of the derivative is used to 
determine the direction of the weight update; the magnitude of the derivative has no effect on the 
weight update. The size of the weight change is determined by a separate update value. The 
update value for each weight and bias is increased by a factor whenever the derivative of the 
performance function with respect to that weight has the same sign for two successive iterations. 
The update value is decreased by a factor whenever the derivative with respect that weight 
changes sign from the previous iteration. If the derivative is zero, then the update value remains 
the same. Whenever the weights are oscillating the weight change will be reduced. If the weight 
continues to change in the same direction for several iterations, then the magnitude of the weight 
change will be increased [20]. 

4.2 Scaled Conjugate Gradient Algorithm (SCG) 
The scaled conjugate gradient algorithm is an implementation of avoiding the complicated line 
search procedure of conventional conjugate gradient algorithm (CGA). According to the SCGA, 
the Hessian matrix is approximated by 
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where E' and E" are the first and second derivative information of global error function E (wk). 
The other terms pk, σk and λk represent the weights, search direction, parameter controlling the 
change in weight for second derivative approximation and parameter for regulating the 
indefiniteness of the Hessian. In order to get a good quadratic approximation of E, a mechanism 
to raise and lower λk is needed when the Hessian is positive definite [21].  

4.3 One-Step-Secant Algorithm (OSS) 
Quasi-Newton method involves generating a sequence of matrices G(k) that represents 
increasingly accurate approximations to the inverse Hessian (H-1). Using only the first derivative 
information of E the updated expression is as follows: 
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and T represents transpose of a matrix. The problem with this approach is the requirement of 
computation and storage of the approximate Hessian matrix for every iteration. The One-Step-
Secant (OSS) is an approach to bridge the gap between the conjugate gradient algorithm and the 
quasi-Newton (secant) approach.  The OSS approach doesn’t store the complete Hessian matrix; 
it assumes that at each iteration the previous Hessian was the identity matrix. This also has the 
advantage that the new search direction can be calculated without computing a matrix inverse 
[22]. 

4.4 Support Vector Machines (SVMs) 
The SVM approach transforms data into a feature space F that usually has a huge dimension. It is 
interesting to note that SVM generalization depends on the geometrical characteristics of the 
training data, not on the dimensions of the input space [22,23]. Training a support vector 
machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear 
equality constraint. Vapnik shows how training a SVM for the pattern recognition problem leads 
to the following quadratic optimization problem [24].  

Minimize: ∑ ∑∑
= ==

+−=
l

i
ji

l

j
jiji

l

i
i xxkyyW

1 11
),(

2
1)( αααα   (4) 

Subject to 

Ci

y

i

l

i
ii

≤≤∀

∑
=

α

α

0:
1

    (5) 

Where l is the number of training examples α is a vector of l variables and each component 
iα corresponds to a training example (xi, yi). The solution of (4) is the vector *α for which (4) is 

minimized and (5) is fulfilled.  

5. EXPERIMENTS 
In our experiments, we perform 5-class classification. The (training and testing) data set contains 
11982 randomly generated points from the data set representing the five classes, with the number 



  

of data from each class proportional to its size, except that the smallest class is completely 
included. The normal data belongs to class1, probe belongs to class 2, denial of service belongs 
to class 3, user to super user belongs to class 4, remote to local belongs to class 5. A different 
randomly selected set of 6890 points of the total data set (11982) is used for testing MARS, 
SVMs and ANNs. 

5.1 MARS Experiments 
We used 5 basis functions and selected a setting of minimum observation between knots as 10. 
The MARS training mode is being set to the lowest level to gain higher accuracy rates. Five 
MARS models are employed to perform five class classifications (normal, probe, denial of 
service, user to root and remote to local). We partition the data into the two classes of “Normal” 
and “Rest” (Probe, DoS, U2Su, R2L) patterns, where the Rest is the collection of four classes of 
attack instances in the data set. The objective is to separate normal and attack patterns. We repeat 
this process for all classes. Table 5 summarizes the results of the experiments 

TABLE 5 Performance of MARS  

Class Accuracy (%) 

Normal 96.08 

Probe 92.32 

DOS 94.73 
U2Su 99.71 
R2L 99.48 

5.2 Neural Network Experiments  
The same data set describe in section 2 is being used for training and testing different neural 
network algorithms. The set of 5092 training data is divided in to five classes: normal, probe, 
denial of service attacks, user to super user and remote to local attacks. Where the attack is a 
collection of 22 different types of instances that belong to the four classes described in section 2, 
and the other is the normal data. In our study we used two hidden layers with 20 and 30 neurons 
each and the networks were trained using training functions described in Table 6. The network 
was set to train until the desired mean square error of 0.001 was met.  

As multi-layer feed forward networks are capable of multi-class classifications, we partition the 
data into 5 classes (Normal, Probe, Denial of Service, and User to Root and Remote to 
Local).We used the same testing data (6890), same network architecture and same activations 
functions to identify the best training function that plays a vital role for in classifying intrusions. 
Table 6 summarizes the results of different networks. 
 

TABLE 6 Performance of Different Neural Network Training Functions 

Function 
No of 

Epochs 
Trial 1 

No of 
Epochs 
Trial 2 

Accuracy 
Trail 1 

Accuracy 
Trail 2 

Gradient descent 3500 3500 61.70 48.14 
Gradient descent with 3500 3500 51.60 48.14 



  

momentum 
Adaptive learning rate 3500 3500 95.38 92.83 

Resilient back 
propagation 67 66 97.04 95.44 

Fletcher-Reeves 
conjugate gradient  891 891 82.18 82.18 

Polak-Ribiere conjugate 
gradient 313 274 80.54 78.19 

Powell-Beale conjugate 
gradient 298 256 91.57 83.11 

Scaled conjugate 
gradient 351 303 80.87 95.25 

BFGS quasi-Newton 
method 359 359 75.67 75.67 

One step secant method 638 638 93.60 93.60 
Levenberg-Marquardt 17 16 76.23 74.04 
Bayesian regularization 533 549 64.15 63.24 

 

TABLE 7 Performance of the Best Neural Network Training Function  
(Resilient Back Propagation) 

 Normal Probe DoS U2Su R2L % 

Normal 1394 5 1 0 0 99.6 

Probe 49 649 2 0 0 92.7 

DoS 3 101 4096 2 0 97.5 

U2Su 0 1 8 12 4 48.0 

R2L 0 1 6 21 535 95.0 

% 96.4 85.7 99.6 34.3 99.3  

The top-left entry of Table 7 shows that 1394 of the actual “normal” test set were detected to be 
normal; the last column indicates that 99.6 % of the actual “normal” data points were detected 
correctly. In the same way, for “Probe” 649 of the actual “attack” test set were correctly 
detected; the last column indicates that 92.7% of the actual “Probe” data points were detected 
correctly. The bottom row shows that 96.4% of the test set said to be “normal” indeed were 
“normal” and 85.7% of the test set classified, as “probe” indeed belongs to Probe. The overall 
accuracy of the classification is 97.04 with a false positive rate of 2.76% and false negative rate 
of 0.20. 

5.3 SVM Experiments 
The data set described in section 5 is being used to test the performance of support vector 
machines. Note the same training test (5092) used for training the neural networks and the same 
testing test (6890) used for testing the neural networks are being used to validate the 
performance.  



  

Because SVMs are only capable of binary classifications, we will need to employ five SVMs, for 
the 5-clas classification problem in intrusion detection, respectively. We partition the data into 
the two classes of “Normal” and “Rest” (Probe, DoS, U2Su, R2L) patterns, where the Rest is the 
collection of four classes of attack instances in the data set. The objective is to separate normal 
and attack patterns. We repeat this process for all classes. Training is done using the RBF (radial 
bias function) kernel option; an important point of the kernel function is that it defines the feature 
space in which the training set examples will be classified. Table 8 summarizes the results of the 
experiments. 
 

TABLE 8 Performance of SVMs 

Class Training time 
(sec) 

Testing time 
(sec) Accuracy (%) 

Normal 7.66 1.26 99.55 

Probe 49.13 2.10 99.70 

DOS 22.87 1.92 99.25 
U2Su 3.38 1.05 99.87 
R2L 11.54 1.02 99.78 

 

6. CONCLUSIONS 
 A number of observations and conclusions are drawn from the results reported: 
 MARS is superior to SVMs in respect to classifying the most important classes (U2Su and 

R2L) in terms of the attack severity. 
 SVMs outperform ANNs in the important respects of scalability (SVMs can train with a 

larger number of patterns, while would ANNs take a long time to train or fail to converge at 
all when the number of patterns gets large); training time and running time (SVMs run an 
order of magnitude faster); and prediction accuracy. 

 SVMs easily achieve high detection accuracy (higher than 99%) for each of the 5 classes of 
data, regardless of whether all 41 features are used, only the important features for each class 
are used, or the union of all important features for all classes are used. 

 Resilient back propagation achieved the best performance among the neural networks in 
terms of accuracy (97.04 %) and training (67 epochs).  

Performance Comparison of Testing for 5 class Classifications 

Class 
SVMs 

Accuracy 
(%) 

RP 
Accuracy 

(%) 

SCG 
Accuracy 

(%) 

OSS 
Accuracy 

(%) 

MARS 
Accuracy 

(%) 
Normal 98.42 99.57 99.57 99.64 96.08 
Probe 98.57 92.71 85.57 92.71 92.32 
DoS 99.11 97.47 72.01 91.76 94.73 

U2Su 64 48 0 16 99.71 
R2L 97.33 95.02 98.22 96.80 99.48 



  

We note, however, that the difference in accuracy figures tend to be very small and may not be 
statistically significant, especially in view of the fact that the 5 classes of patterns differ in their 
sizes tremendously. More definitive conclusions can only be made after analyzing more 
comprehensive sets of network traffic data. 
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