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Abstract

Intrusions pose a serious security risk in a network environment. Although systems can be hardened
against many types of intrusions, often intrusions are successful making systems for detecting these
intrusions critical to the security of these system. New intrusion types, of which detection systems are
unaware, are the most difficult to detect. Current signature based methods and learning algorithms which
rely on labeled data to train, generally can not detect these new intrusions. In addition, labeled training
data in order to train misuse and anomaly detection systems is typically very expensive. We present a
new type of clustering-based intrusion detection algorithm, unsupervised anomaly detection, which trains
on unlabeled data in order to detect new intrusions. In our system, no manually or otherwise classified
data is necessary for training. Our method is able to detect many different types of intrusions, while
maintaining a low false positive rate as verified over the KDD CUP 1999 dataset..

1 Introduction

A network intrusion attack can be any use of a network that compromises its stability or the security of
information that is stored on computers connected to it. A very wide range of activity falls under this
definition, including attempts to destabilize the network as a whole, gain unauthorized access to files or
privileges, or simply mishandling and misuse of software. Added security measures can not stop all such
attacks. The goal of intrusion detection is to build a system which would automatically scan network activity
and detect such intrusion attacks. Once an attack is detected, the system administrator is informed and can
take corrective action.

Traditionally, signature based automatic detection methods have been used for this task. These methods
extract features from the network data, and detect intrusions by comparing the feature values to a set
of attack signatures provided by human experts. Obviously, such methods can not detect new types of
intrusions because these intrusions do have have a corresponding signature. The signature database has to
be manually revised for each new type of attack that is discovered. Other approaches use data mining and
machine learning algorithms to train on labeled (i.e. with instances preclassified as being an attack or not)
network data. These approaches the generalization ability of data mining methods in order to attempt to
detect new attacks.

There are two major paradigms for training data mining-based intrusion detection systems: misuse
detection and anomaly detection. In misuse detection approaches, each instance in a set of data is labeled
as normal or intrusion and a machine learning algorithm is trained over the labeled data. An example of a
data mining-based misuse detection system is the MADAM/ID system [19], which extracted features from



network connections and built detection models over connection records that represented a summary of the
traffic from a given network connection. These detection models are generalized rules that classify the data
using the extracted features. These approaches have the advantage of being able to automatically retrain
intrusion detection models on different input data that include new types of attacks. We would have to
insert many labeled instances of these new attacks into the dataset, and the method would readjust its rule
sets to detect them.

Anomaly detection approaches build models of normal data and then attempts to detect deviations from
the normal model in observed data. Anomaly detection algorithms have the advantage that they can detect
new types of intrusions, because these new intrusions, by assumption, will deviate from normal network
usage [5, 13]. Traditional anomaly detection algorithms require a set of purely normal data from which they
train their model. If the data contains some intrusions buried within the training data, the algorithm may
not detect future instances of these attacks because it will assume that they are normal.

However, more often than not, we do not have either labeled or purely normal data readily available.
Generally, we must deal with very large volumes of network data, and thus it is difficult and tiresome to
classify it manually. We can obtain labeled data by simulating intrusions, but then we would be limited to
the set of known attacks that we were able to simulate and new types of attacks occurring in the future will
not be reflected in the training data. Even with manual classification, we are still limited to identifying only
the known (at classification time) types of attacks, thus restricting our detection system to identifying only
those types. Generating purely normal data is also very difficult in practice. If we collect raw data from a
network environment, it is very hard to guarantee that there are no attacks during the time we are collecting
the data.

In this paper, we present a new type of intrusion detection algorithm, unsupervised anomaly detection
(also known as anomaly detection over noisy data [6]), to address these problems. This algorithm takes as
inputs a set of unlabeled data and attempts to find intrusions buried within the data. After these intrusions
are detected, we can apply train a misuse detection algorithm or a traditional anomaly detection algorithm
over the data.

Unsupervised anomaly detection algorithms make two assumptions about the data which motivate the
general approach. The first assumption is that the number of normal instances vastly outnumbers the number
of intrusions. The second assumption is that the intrusions themselves are qualitatively different from the
normal instances. The basic idea is that since the intrusions are both different from normal and rare, they
will appear as outliers in the data which can be detected. Despite these inherent limitations, unsupervised
anomaly detection algorithms have the major advantage of being able to process unlabeled data and detect
some of the intrusions. In addition, these types of algorithms are useful for semi-automated detection in
helping analysts focus on suspicious instances.

A previous approach to unsupervised anomaly detection involves building probabilistic models from the
training data and then using them to determine whether a given network data instance is an anomaly or not
[6]. In that approach, the data was modeled using a probabilistic model that was known to perform well for
that kind of data. In our current work, we drop the requirement of a probabilistic model and instead use
inter-point distances to motivate our algorithm.

The approach we used and describe below, clusters the data instances together into clusters using a
simple distance-based metric. This clustering is performed on unlabeled data, requiring only feature vectors
without labels to be presented. Once the data is clustered, we label as anomalies all of the instances that
appear in small clusters. The reason that this method works can be explained using the assumptions that
we made about the data for unsupervised anomaly detection. Under the first assumption, the number of
normal instances vastly outnumber the number of intrusion instances. This implies that the normal instances
should form large clusters compared to the intrusions. Under the second assumption, since the intrusions
and normal instances are qualitatively different, they will not fall into the same clusters.

Unsupervised anomaly detection algorithms are limited to being able to detect attacks only when the
assumptions hold over that data which is not always the case. For example, these algorithms will not be able



to detect the malicious intent of someone who is authorized to use the network and who uses it in a seemingly
legitimate way. The reason is that this intrusion is not qualitatively different from normal instances of the
user. Our algorithm may cluster these instances together and the intrusion would be undetectable. Another
example is that the algorithm will have a difficulty detecting a syn-flood DoS attack. The reason is that
often under such an attack there are so many instances of the intrusion that it occurs in a similar number to
normal instances. Our algorithm may not label these instances as an attack because the size of the cluster
may be as large as typical clusters of normal instances.

We evaluated our cluster-based unsupervised anomaly detection method over real network data. Both the
training and testing was done using (different subsets of) KDD CUP 99 data [14], which is a very popular
and widely used intrusion attack dataset. Various combinations of subsets of this dataset were used for
training and testing, using standard cross validation techniques, each combination yielding slightly different
results. On average, the detection rate was around 40%-55% with a 1.3%-2.3% false positive rate. Given
the advantages of our method over traditional approaches, that the data was unlabeled, and our method
uses almost no domain knowledge about security, these results indicate that this approach to unsupervised
anomaly detection is promising.

1.1 Related work

Clustering is a well known and studied problem. It has been studied in many fields including statistics [24],
machine learning [23], databases [11], and visualization. Basic methods for clustering include the Linkage
based [3] and K-means [8] techniques. K-means makes several passes through the training data and on each
pass shifts cluster centers to the mean of the data points assigned to that cluster. It then re-assigns data
points to the nearest prototype, and continues iterating in this manner until no significant changes in cluster
center positions occur. The K-means method generally produces a more accurate clustering than linkage
based methods, but it has a greater time complexity and this becomes an extremely important factor in
network intrusion detection due to very large dataset sizes. Although some optimizations of K-means for
very large datasets exist , they still do not perform sufficiently fast for datasets with high dimensionality.
Some other techniques for clustering include Clarans [20], Birch[26], density based methods such as Dbscan
[7], and AI methods like Self-Organizing Maps [23]and Growing Networks [1].

Anomaly detection is a widely used method in the field of computer security, and there are approaches
that utilize it for detecting intrusions [5]. Various techniques for modeling anomalous and normal data
have been developed for intrusion detection. A survey of these techniques is given in [25]. An approach
for modeling normal sequences using look ahead pairs and contiguous sequences is presented in [12], and
a statistical method to determine sequences which occur more frequently in intrusion data as opposed to
normal data is presented in [10]. One approach use a prediction model obtained by training decision trees
over normal data [18], while another one uses neural networks to obtain the model [9]. Lane and Brodley
[17] evaluated unlabeled data for anomaly detection by looking at user profiles and comparing the activity
during an intrusion to the activity during normal use. A technique developed at SRI in the Emerald system
[13] uses historical records as its normal training data. It then compares distributions of new data to the
distributions obtained from those historical records and differences between the distributions indicate an
intrusion. The problem with this approach, however, is that if the historical distributions contain intrusions,
the system may not be able to detect similar intrusions in the new instances.

Another algorithm for unsupervised anomaly detection is presented in [6]. In this algorithm, a mixture
model for explaining the presence of anomalies is presented, and machine learning techniques are used to
estimate the probability distributions of the mixture to detect the anomalies. There is recent work in distance
based outliers that is similar to our approach [15, 16, 4]. These approaches examine inter-point distances
between instances in the data to determine which points are outliers. A difference between these approaches
and the problem of unsupervised anomaly detection is that the nature of the outliers are different. Often in
network data, the same intrusion occurs multiple times which means there are many similar instances in the



data. However, the number of instances of this intrusion is significantly smaller than the typical cluster of
normal instances.

A problem related to anomaly detection is the study of outliers in the field of statistics. Various techniques
have been developed for detecting outliers in univariate, multivariate and structured data, using a given
probability distribution. A survey of outliers in statistics is given by [2].

2 Methodology

In this section we describe the dataset and how it is used to build clusters and detect intrusions. We first
examine what type of data was present in the dataset, what features were extracted, and what intrusion
types were represented. Then, we discuss how the data was normalized based on the standard deviation
of the training set, so that the system would be able to create clusters with data coming from different
distributions. A description of the metric and the clustering algorithm follows, and finally the methods for
labeling clusters and classifying unseen instances are discussed.

2.1 Dataset Description

The dataset used was the KDD Cup 1999 Data [14], which contained a wide variety of intrusions simulated
in a military network environment. It consisted of approximately 4,900,000 data instances, each of which is
a vector of extracted feature values from a connection record obtained from the raw network data gathered
during the simulated intrusions. A connection is a sequence of TCP packets to and from some IP addresses.
The TCP packers were assembled into connection records using the Bro program [21] modified for use with
MADAM/ID [19]. Each connection was labeled as either normal or as exactly one specific kind of attack.
All labels are assumed to be correct.

The simulated attacks fell in one of the following four categories : DOS - Denial of Service (e.g. a syn
flood), R2L - Unauthorized access from a remote machine (e.g. password guessing), U2R - unauthorized
access to superuser or root functions (e.g. a buffer overflow attack), and Probing - surveillance and other
probing for vulnerabilities (e.g. port scanning). There were a total of 24 attack types.

The extracted features included the basic features of an individual TCP connection such as its duration,
protocol type, number of bytes transferred, and the flag indicating the normal or error status of the connec-
tion. Other features of an individual connection were obtained using some domain knowledge, and included
the number of file creation operations, number of failed login attempts, whether root shell was obtained, and
others. Finally, there were a number of features computed using a two-second time window. These included
- the number of connections to the same host as the current connection within the past two seconds, percent
of connections that have ”SYN” and "REJ” errors, and the number of connections to the same service as the
current connection within the past two seconds. In total, there were 41 features, with most of them taking
on continuous values.

2.2 Normalization

Since our algorithm is designed to be general, it must be able to create clusters given a dataset from an
arbitrary distribution. A problem with typical data is that different features are on different scales. This
causes bias toward some features over other features.

As an example, consider two 3-feature vectors, each set coming from different distributions : {(1,3000, 2), (1,4000,3)}.
Under an Euclidean metric, the squared distance between feature vectors will be (1 — 1) + (3000 — 4000)2 +
(2 — 3)2 which is dominated by the second column.

To solve this problem, we convert the data instances to a standard form based on the training dataset’s
distribution. That is, we make the assumption that the training dataset accurately reflects the range and



deviation of feature values of the entire distribution. Then, we can normalize all data instances to a fixed
range of our choosing, and hard code the cluster width based on this fixed range.
Given a training dataset, the average and standard deviation feature vectors are calculated :

N
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avg_vector[j] = N Z instance;[j]
i=1
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std_vector[j] = (m ;(mstancei[g] — avg-vector[j])*)
=
where vector[j] is the jth element (feature) of the vector.
Then each instance (feature vector) in the training set is converted as follows :

instance[j] — avg-vector[j]
std_vector[j]

new_instance[j] =

In other words, for every feature value we calculate how many standard deviations it is away from the
average, and that result becomes the new value for that feature. Only continuous features were converted;
symbolic ones were preserved as they were.

In effect this is a transformation of an instance from its own space to our standardized space, based on
statistical information retrieved from the training set.

2.3 Metric

One of the main assumptions made was that data instances having the same label will tend to be closer
together than instances with different labels under some metric. Therefore, finding or constructing an
appropriate metric is critical to the performance of the method.

The particular choice of metric is likely to be dictated by the domain. In detecting network intrusions,
it seemed at first that some features of the data instances would be important (have greater weight) than
others, and thus differences in the values of those features should have a greater contribution to the overall
distance. Therefore, we experimented with several weighted metrics, with higher weights assigned to different
subsets of features.

However, in the end we used a standard Euclidean metric, with equally weighted features. One reason
for this was that while the weighted metric did show some increase in performance, it was not a significant
amount. But more importantly, tuning the metric’s parameters to achieve maximum performance for a
particular domain, data distribution, and feature set would undermine the system’s generality and would
contribute to over fitting.

Some features took on discrete values, and so there was an issue of how to factor them into the metric.
The metric we used added a constant value to the squared distance between two instances for every discrete
feature where they had two distinct values. This is equivalent to treating each different value as being
orthologous in the feature space.

2.4 Clustering

To create clusters from the input data instances, we used a simple variant of single-linkage clustering.
Although this is not the most effective clustering algorithm, it has the advantage of working in near linear
time. The algorithm starts with an empty set of clusters, and generates the clusters with a single pass
through the dataset. For each new data instance retrieved from the normalized training set, it computes
the distance between it and each of the centroids of the clusters in the cluster set so far. The cluster with
the shortest distance is selected, and if that distance is less than some constant W (cluster width) then the



instance is assigned to that cluster. Otherwise, a new cluster is created with the instance as its center. More
formally, the algorithm proceeds as follows :

Assume we have fixed a metric M, and a constant cluster width W. Let dist(C,d) where C' is a cluster
and d is an instance, be the distance under the metric M, between C’s defining instance and d. The defining
instance of a cluster is the feature vector that defines the center (in feature space) of that cluster. We refer
to this defining instance as the centroid.

1. Initialize the set of clusters, S, to the empty set.

2. Obtain a data instance (feature vector) d from the training set. If S is empty, then create a cluster
with d as the defining instance, and add it to S. Otherwise, find the cluster in S that is closest to this
instance. In other words, find a cluster C in S, such that for all C; in S, dist(C,d) <= dist(C1,d).

3. If dist(C,d) <= W, then associate d with the cluster C. Otherwise, d is more than W away from any
cluster in S, and so a new cluster must be created for it : S < S U {C,} where C, is a cluster with
d as its defining instance.

4. Repeat steps 2 and 3, until no instances are left in the training set.

2.5 Labeling clusters

Our hope is that under our metric, instances with the same classification are close together and those with
different classifications are far apart. If an appropriate cluster width W was chosen, then after clustering
we obtain a set of clusters with instances of a single type in each of them. This corresponds to our second
assumption about the data that the normal and intrusion instances are qualitatively different.

Since we are dealing with unlabeled data, we do not have access to labels during training. Therefore,
it is necessary to find some other way to determine which clusters contain normal instances and which
contain attacks (anomalies). Our first assumption about the data is that normal instances constitute an
overwhelmingly large portion (> 98%) of the training dataset. Under this assumption it is highly probable
that clusters containing normal data will have a much larger number of instances associated with them
then would clusters containing anomalies. We therefore label some percentage IV of the clusters containing
the largest number of instances associated with them as 'normal’. The rest of the clusters are labeled as
’anomalous’ and are considered to contain attacks.

A problem may arise with this approach, however, depending on how many sub-types of normal instances
there are in the training set. For example, there may be many different kinds of normal network activity,
such as using different protocols - ftp, telnet, www, etc. Each of these uses might have its own distinct point
in feature space where network data instances for that use will tend to cluster around. This, in turn, might
produce a large number of such 'normal’ clusters, one for each type of normal use of the network. Each
of these clusters will then have a relatively small number of instances associated with it - less than some
clusters containing attack instances. Then these normal clusters will be incorrectly labeled as anomalous.
To prevent this problem, we need to insure that the percentage of normal instances in the training set is
indeed extremely large in relation to attacks. Then, it is very likely that each type of normal network use
will have adequate (and larger) representation than each type or sub-type of attack.

2.6 Detection

Once the clusters are created from a training set, the system is ready to perform detection of intrusions.
Given an instance d, classification proceeds as follows :

1. Convert d based on the statistical information of the training set from which the clusters were created.
Let d' be the instance after conversion.



2. Find a cluster which is closest to d' under the metric M (i.e. a cluster C in the cluster set, such that
for all C'"in S, dist(C,d') <= dist(C',d').

3. Classify d' according to the label of C (either normal or anomalous).

In other words, we simply find the cluster that is closest to d (converted) and give it that cluster’s
classification.

3 System evaluation and results

3.1 Performance measures

To evaluate our system we were interested in two major indicators of performance : the detection rate and
the false positive rate. The detection rate is defined as the number of intrusion instances detected by the
system divided by the total number of intrusion instances present in the test set. The false positive rate is
defined as the total number of normal instances that were (incorrectly) classified as intrusions divided by
the total number of normal instances. These are good indicators of performance, since they measure what
percentage of intrusions the system is able to detect and how many incorrect classifications it makes in the
process. We calculate these values over the labeled data to measure performance.

3.2 Filtering the training dataset

The KDD dataset was obtained by simulating a large number of different types of attacks, with normal
activity in the background. The goal was to produce a good training set for learning methods that use
labeled data. As a result, the proportion of attack instances to normal ones in the KDD training dataset is
very large as compared to data that we would expect to observe in practice.

Our second major assumption, however, states that the training set should represent normal network
activity, where attacks are very rare and most of the data represents normal operation. Therefore, the raw
KDD dataset obviously does not satisfy this condition. We trained the system with this raw set and obtained
very poor performance, as was to be expected. To meet the requirement, we generated training sets from
KDD data by filtering it for attacks. It was filtered such that the resulting training set consisted of 1 to
1.5% attack and 98.5 to 99% normal instances.

3.3 Parameter Estimation

There were two main parameters whose values needed to be fixed before performance could be measured.
The first one is the cluster width for doing clustering, which determines how close two instances have to be
to be assigned to the same cluster. The second is the percentage of the largest clusters N that would be
labeled 'normal’ during the detection phase. The goal was to set values for these two variables such that the
performance over the entire domain would be maximized.

In this section we report results over the same dataset to give intuitions of how the dynamics of the
parameters behave. In the following section we present results of testing over separate data sets to give a
more accurate measure of the performance. We used a single subset (around 10%) of the KDD data to run
a series of tests with different values for these two variables, measuring the resulting performance. A hazard
is that the training set might represent a narrow spectrum of the domain and we might over fit the values
of the two variables to that spectrum. However, the subset that we chose was representative of the entire
KDD dataset, as it contained many instances of each type of attack.

Once we found the values for cluster width and the N that maximized results for that set, those values
were fixed for all the subsequent experiments over different datasets. The two parameters are set to compare
the best values over this type of data. Cluster width is a measure indicating the average radius in feature



Width | N Detection rate | False positive rate
20 15% | 35.7% 1.44%

20 ™% | 66.2% 2.7%

20 2% | 88.% 8.14%

Table 1: These are the results of some tests to obtain the value of N (percentage of largest clusters to label
as normal during detection). The cluster width was fixed for these tests.

Width | N Detection rate | False positive rate
30 15% | 28.1% 1.07%

40 15% | 30.77% 0.84%

60 15% | 31.9.% 0.7%

80 15% | 22.84% 0.6%

Table 2: These are the results of some tests to obtain the value of the cluster width variable. Cluster width
of 40 was chosen for subsequent tests.

space of a cluster containing instances of the same type. This is a particular property of the domain -
network connection records. The N is also a property of the network - it attempts to measure the ratio of
the number of sub-types of normal instances to the total number of different sub-types.

When fixing the values of the cluster width and percentage of largest clusters variables, and measuring
performance on the single training/test set, the results are shown in Table 3.3.

We decided to use 15% as the value for N in subsequent tests, since it produced an acceptable false
positive rate, without sacrificing too much detection rate. To find the value for cluster width we conducted
several tests on the same training/test set combination, and with a fixed value for N The results of some of
these tests are shown in Table 2.

Cluster width of 40 was chosen even though width=60 produced a slightly higher detection rate and a
false positive rate. The difference was minor however, and tests on different datasets indicated that with
width=60 performance was worse than with width=40.

Figure 1 shows an ROC (Receiver Operating Characteristic) [22] curve depicting the relationship between
false positive and detection rates for one fixed training/test set combination. ROC curves are a way of
visualizing the trade-offs between detection and false positive rates.

100
i
&0
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40

20

0 2 T al= positive rate % S

Figure 1. The ROC curve of false positive vs. detection rate, for a fixed training and test set combination.



3.4 Cross validation testing

Finally, after all parameters were specified, we evaluated the system by using a variant of the cross validation
method. Cross validation is the standard technique used to obtain an estimation of a method’s performance
over unseen data.We partitioned the entire KDD dataset into ten subsets, each containing approximately
490,000 instances or 10% of the data. Unfortunately, the distribution of the attacks in the KDD dataset is
very uneven which made cross validation very difficult. Many of these subsets contained instances of only a
single type. For example, the 4th, 5th, 6th, and 7th 10% portions of the full dataset contained only SMURF
attacks, and the data instances in the 8th were almost entirely NEPTUNE intrusions. Since we require that
all intrusion (and normal) sub-types should be represented at least to some degree in the training dataset,
we did not use these subsets because they failed to meet this requirement. For cross validation training only
four of the ten subsets were selected. These four subsets contained a good mix of various intrusion types,
and conformed to our necessary assumptions about the data. They were likely to produce a clustering that
would be representative of many intrusions.

Each of these four subsets was then selected, and filtered such that the intrusion would constitute 1%
of the resulting dataset. The system was trained on this filtered data, and the cluster set that resulted was
saved. We then evaluated system performance of this cluster set over each of these four subsets, this time
used as test sets. This process was repeated several times, with a different subset selected for training each
time. The results are shown in Table 3.5.

The test sets were also filtered to contain approximately equal number of instances of each type of
attack. This was necessary in order to have a meaningful measure of performance, since for example if 80%
of intrusions in the test set were of a single type, then a detection rate of 81% would indicate that the system
is well suited for detecting only this particular type of attack. If, however, the test sets contain an equal
percentage of different types of instances, then an 81% detection rate would show the system as capable of
detecting several different types of intrusions.

3.5 Variations to clustering and detection

In addition to the experiments with the cluster width and the constant indicating the percent of largest
clusters to be labeled normal, we explored some variations to the clustering and detection methods, and the
evaluated the performance over the single training and test sets.

The clustering method was altered by allowing multiple (two in the version we used) passes for the
creation and assignment of instances to clusters. Previously, only one pass was made, during which for every
instance a cluster nearest to it was found in the set of currently existing clusters, and the instance was
assigned to that cluster if it was less than cluster width away (under the metric). If it was farther away, a
new cluster was created for that instance. In this scheme the instances which appeared earlier in the training
dataset had a smaller set of existing clusters to compare distance to. It was thought that this might have
possibly resulted in a non-optimal assignment of an instance to a cluster, in the sense that if it was closest
to some type or sub-type of instances and the cluster representing them was not yet present in the set, it
would have been assigned (if it was within cluster width) to the closest cluster that was in the set at the time
that instance was considered. That cluster would be a non-optimal choice, as it might represent a different
type or sub-type than that of the instance which was assigned to it. To prevent this from occurring, we
implemented a double pass method where we would first only create the clusters without assigning instances
to them, and then during a second pass through the training set assign instances based on the closest cluster
in this complete set.

The performance of the system with this change is shown in Table 3.5. Another variation was changing
the clustering method. The performance obtained from changing the clustering method to use two passes
was the same or worse than the performance of clustering with one pass.

The second variation was applied to the detection method, where instead of choosing the closest cluster
to the presented instance and assigning it that cluster’s classification (either normal or anomalous), we chose



Training set | Test set | Detection rate | False positive rate
P10 P1 55.7% .99%
P10 P2 51.04% 1.58%
P10 P3 53.01% 1.67%
P10 P10 53.39% 1.04%
P2 P1 46.3% 46%
P2 P2 22.0% 70%
P2 P3 29.3% 2.35%
P2 P10 23.0% 9.83%
P1 P1 28.3% 4.5%
P1 P2 50.5% 1.26%
P1 P3 38.5% 3.45%
P1 P10 50.4% 11.37%
P3 P1 56.25% 3%

P3 P2 18.56% 6%

P3 P3 18.75% 74%
P3 P10 23.0% 1.31%

Table 3: Performance of the system under various training and test set combinations. P1, P2, P3, and
P10 represent the first, second, third, and the tenth 10% partitions of the 4,000,000 KDD CUP 99 dataset,
respectively. Cluster width was set to 40, and 20% of largest clusters were marked as normal. Both the
training and test sets were filtered prior to their use. The training was done over only 10% of the total data
since there was enough data in this subset to for good clusters.

N | Detection rate | False positive rate
2 | 28.5% .56%

3 | 51.3% 1.21%

4 | 47.2% 93%

5 | 53.3% 1.61%

6 | 50.9% 1.36%

7 |65.7% 1.78%

Table 4: Results for the labeling by majority variation to the detection method.
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N closest clusters to that instance and assigned it the majority’s classification (i.e. if a larger number of
those N clusters were labeled anomalous then the instance was classified correspondingly, and as normal
otherwise).

After experimenting with these changes and evaluating their performance on a test set as described
below, we concluded that they did not improve detection accuracy and in some cases decreased the detection
accuracy.

4 Analysis

The results from cross validation show that performance of our system depends heavily on which training
set was used. In fact, it depends on how well the training set meets the requirement of representing a wide
variety of intrusion and normal sub-types. As Table 4 shows, training on sets P2 or P1 resulted in a very
high false positive rate compared to the other sets. A closer examination of those datasets revealed that
they contained a smaller number of different normal sub-types than the other two sets. This resulted in the
failure to create clusters for many normal regions of the feature space, and therefore data instances from
those regions were assigned to incorrect clusters, possibly to those marked as anomalous. This may have
caused the high false positive rate.

The training set P10 showed the best performance across all four of the test sets, with a high detection
and a low false positive rate. When training on P10 and testing on the P3 sets, 53.01% detection and 1.67%
false positive rates were obtained. On the other hand, when we reversed the situation by training on P3 and
testing on P10, only a 23% detection rate was obtained (with a similar false positive rate). This can again
be explained by the fact that in the P10 dataset more different types of intrusions were represented than in
the P3 set, and therefore training on P10 resulted in a better cluster set than training on P3, which in turn
manifested itself in the increased detection rate.

In an actual application of the system, the expected performance greatly depends on the composition of
the data as shown with the variability of the detection rate over the different subsets. However, in all of
these datasets, we have a significant detection rate with a low false positive which suggests that the method
will be able to detect some of the attacks successfully.

4.1 Detection vs. false positive rates

The trade-off between the false positive and detection rates is inherently present in many machine learning
methods. By comparing these quantities against each other we can evaluate the performance invariant of
the bias in the distribution of labels in the data. This is especially important in intrusion detection problems
because the normal data outnumbers the intrusion data by a factor of 100 : 1. The classical accuracy measure
is misleading because a system that always classifies all data as normal would have a 99% accuracy.

In our system, the false positive vs. detection rate trade-off was very apparent. As the percent of largest
clusters to be labeled normal was decreased, detection rate increased substantially since a larger number of
clusters were now labeled anomalous. The intrusion instances which were assigned to those clusters but were
previously classified as normal (because those clusters were labeled normal), now were classified correctly as
intrusions. However, at the same time the false positive rate also increased because all the normal instances
assigned to clusters that were previously labeled normal and that now were labeled anomalous, were classified
as intrusions as well. If those clusters indeed represented anomalous regions in the feature space, then those
normal instances were assigned to them incorrectly, perhaps due to an sub-optimal metric or because the
assumption that instances of the same type or sub-type will cluster together was not satisfied. However,
the negative effect of this mis-assignment on performance could have been avoided if the percent of largest
clusters to be labeled normal was not decreased.

To successfully utilize the system, then, a suitable value for that percentage must be found, one that would
yield a high detection rate while keeping the false positive rate within a tolerable low value. If we assume
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that no mis-assignment of instances to clusters occurs, then this essentially amounts to measuring a property
of the domain - the ratio of the number of sub-types of normal instances to the total number of different
sub-types. This ratio will be reflected in the number of clusters representing normal regions of the feature
space relative to the number of clusters representing all regions. In reality, when our assumptions are not
met and mis-assignment occur, that ratio can be estimated indirectly, by noting the value for the percentage
of largest clusters to be labeled normal which makes the false positive and detection rate combination most
favorable. For example, we could choose a value which minimizes their sum (possibly weighted).

4.2 Variations to the Algorithms

It was concluded that the changes made to the clustering algorithm and to the detection method did not
increase performance for several reasons. Changing the detection method to perform classification based on
the majority of k nearest clusters’ labels showed improved results for the single training and test set that
were used to measure performance. The detection rate was generally higher for values of £ > 1 than when &
was equal to 1, while still keeping the false positive rate relatively low. However, the results varied greatly
with k, with no apparent pattern as k increased. This lead us to suspect that the value of k which produced
the best results was related to the particular training/test set that was used, and that it did not represent a
value that increased performance over the entire domain. In other words, the number (k) of nearest clusters
to be considered that yielded the best results, was in reality dependent on the training/test set combination
and the portion of the domain it represented. Using this value for training on different sets might give
different, less favorable, results. This suspicion of over fitting to the single training/test set was confirmed
when we tested the labeling by majority method on other training and test set combinations. Results for
those tests indicated that the method did not improve, and in some cases lowered, the performance.

The idea of changing clustering to use the double pass method was discarded immediately, after the
results with that variation used were obtained. They showed that detection rate was about the same with
false positive rate remaining the same or even slightly higher when using the double pass method than
without using it. One possible explanation for the increased false positive rate is that with the double pass
method less instances were being assigned to each cluster on average (because instances were now more
evenly distributed across clusters). This could have led to the inability to differentiate between anomalous
and normal clusters during the detection phase, since due to the more even distribution some truly normal
clusters now had less instances assigned to them than previously. Therefore they might have been labeled
as anomalous, and this increased the false positive rate.

5 Conclusion

The contribution that we presented in this paper was a method for detecting intrusions based on feature
vectors collected from the network, without being given any information about classifications of these vectors.
We designed a system that implemented this method, and it was able to detect a large number of intrusions
while keeping the false positive rate reasonably low. There are two primary advantages of this system over
signature based classifiers or learning algorithms that require labeled data in their training sets. The first
is that no manual classification of training data needs to be done. The second is that we do not have to be
aware of new types of intrusions in order for the system to be able to detect them. All that is required is
that the data conform to several assumptions. The system then will try to automatically determine which
data instances fall into the normal class and which ones are intrusions.

Even though the detection rate of the system we implemented is not as high as of those using algorithms
relying on labeled data, our system is still very useful. Since no prior classification is required on the training
data, and no knowledge is needed about new attacks, we can automate the process of training and creating
new cluster sets. In practice, this would mean periodically (every 2 weeks for example) collecting raw data
from the network, extracting feature values from it, and training on the resulting set of feature vectors. This
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will help detect new and yet unknown attacks. In addition, the method can be used for semi-automated
detection by helping analysts focus on portions of the data that are more likely to contain intrusions.

5.1 Future work

Future work involves possible extensions or modifications to our method to achieve better performance and a
better degree of automation. Currently, during detection clusters are labeled as either anomalous or normal
according to the relative number of instances they contain. Another possibility would be to label clusters
which are outliers in the feature space as anomalous, and all others as normal. This involves making the
assumption that normal data of different sub-types will be clustered together, while sub-types of intrusion
data will not be near the normal region of feature space.

To achieve a greater degree of automation, we can also determine the value for the percentage of largest
clusters labeled normal N variable automatically, perhaps based on the standard deviation and average
values of the number of instances in clusters. In that scheme, clusters containing only a ’small’ (some fixed
standard deviations lower than the mean) number of instances will be labeled anomalous. The advantage
to this method is that in the current system as more new and unknown attacks are introduced into the
network environment, the ratio of the number of normal sub-types to the total number of sub-types will
decrease. Having a fixed value for N which does not reflect the decreased ratio will therefore cause the
algorithm to label more clusters as normal, some of which should have really been labeled as anomalous.
As a result, detection rate will decrease as more new intrusion types are introduced, and therefore periodic
manual updates of the value for N will be required. If the system determines the value for N automatically,
however, then no manual intervention will be required even over long periods of time.
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