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Abstract— This paper describes a system for automated gener-
ation of attack signatures for network intrusion detection systems.
Our system applies pattern-matching techniques and protocol
conformance checks on multiple levels in the protocol hierarchy
to network traffic captured a honeypot system. We present results
of running the system on an unprotected cable modem connection
for 24 hours. The system successfully created precise traffic
signatures that otherwise would have required the skills and time
of a security officer to inspect the traffic manually.

Index Terms— network intrusion detection, traffic signatures,
honeypots, pattern detection, protocol analysis, longest-common-
substring algorithms, suffix trees.

I. INTRODUCTION

CURRENT network intrusion detection systems (NIDSs)
often work as misuse detectors, where the packets in the

monitored network are compared against a repository of sig-
natures that define characteristics of an intrusion. Successful
matchings then fire alerts.

This work focuses on signature generation. At present, the
creation of these signatures is a tedious, manual process that
requires detailed knowledge of each software exploit that is
supposed to be captured. Simplistic signatures tend to generate
large numbers of false positives, too specific ones cause false
negatives.

To address these issues, we present Honeycomb, a system
that generates signatures for malicious network traffic automat-
ically. Our system uses pattern-detection techniques and packet
header conformance tests on traffic captured on honeypots.
Looking only at traffic on a honeypot provides the major
benefit of knowing that one is dealing with suspicious traffic,
since the whole point of honeypots is to capture such activity
(see Section II-B).

We have extended the open-source honeypot honeyd by a
subsystem that inspects traffic inside the honeypot at different
levels in the protocol hierarchy; currently we examine IP, TCP
and UDP headers as well as payload data. Our tests indicate
that this is a promising approach to automating the generation
of intrusion detection signatures for unknown attacks.

The remainder of this paper is structured as follows: Sec-
tion II reviews NIDS signatures, honeypot systems and pattern
detection algorithms, Section III describes the Honeycomb
architecture in detail and Section IV presents initial results.
Finally, Section V discusses our approach, and Section VI
summarizes the paper.

II. BACKGROUND

A. Intrusion Detection Signatures

The purpose of attack signatures is to describe the charac-
teristic elements of attacks. There is currently no common
standard for defining these signatures. As a consequence,
different systems provide signature languages of varying ex-
pressiveness.

Generally, a good signature must be narrow enough to cap-
ture precisely the characteristic aspects of exploit it attempts
to address; at the same time, it should be flexible enough to
capture variations of the attack. Failure in one way or the
other leads to either large amounts of false positives or false
negatives.

Our system supports signatures for the Bro[1] and Snort[2]
NIDSs. Bro has a powerful signature language that allows
the use of regular expressions, association of traffic going
in both directions, and encoding of attacks that comprise
multiple stages. Snort’s signature language is currently not
as expressive as Bro’s. We include Snort here because of its
current popularity and large signature repository.

B. Honeypots

Honeypots are decoy computer resources set up for the
purpose of monitoring and logging the activities of entities
that probe, attack or compromise them[3][4][5]. Activities
on honeypots can be considiered suspicious by definition,
as there is no point for benign users to interact with these
systems. Honeypots come in many shapes and sizes; examples
include dummy items in a database, low-interaction network
components like preconfigured traffic sinks, or full-interaction
hosts with real operating systems and services.

Our system is an extension of honeyd [6], a popular low-
interaction open-source honeypot. honeyd simulates hosts
with individual networking personalities. It intercepts traffic
sent to nonexistant hosts and uses the simulated systems to
respond to this traffic. Each host’s personality can be indi-
vidually configured in terms of OS type (as far as detectable
by common fingerprinting tools) and running network services
(termend subsystems).

C. String-based Pattern Detection Algorithms

Our system is unique in that it generates signatures. In
contrast to NIDSs, it cannot read a database of signatures
upon startup to match them against live traffic to spot matches.



Thus, the commonly employed pattern-matching algorithms
in NIDSs are of no use to us. Instead, the system tries
to spot patterns in traffic previously seen on the honeypot:
we overlay parts of flows in the traffic and use a longest
common substring (LCS) algorithm to spot similarities in
packet payloads. Like pattern matching, LCS algorithms have
been thoroughly studied in the past. Our LCS implementation
is based on suffix trees, which are used as building blocks for
a variety of string algorithms. Using suffix trees, the longest
common substring of two strings is straightforward to find
in linear time [7]. Several algorithms have been proposed to
build suffix trees in linear time [8][9]; our implementation uses
Ukkonen’s algorithm[10].

III. HONEYCOMB ARCHITECTURE

The following sections explain individual aspects of our
system in detail.

A. honeyd Extension

We have added two new concepts to honeyd: a plugin
infrastructure and event callback hooks. The plugin infras-
tructure allowes us to write extensions that remain logically
separated from the honeyd codebase1, while the event hooks
provide a mechanism to integrate the plugins into the activities
inside the honeypot. Currently, hooks allow a plugin to be
informed when packets are received and sent, when data is
passed to and received from the subsystems and to receive
updates about honeyd’s connection state. Honeycomb is
implemented as a honeyd plugin. Figure 1 illustrates the
architecture.
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Fig. 1. Honeycomb’s architecture, illustrated as a typical honeyd setup.
honeyd is simulating a number of different machines, each running a number
of pre-configured services. The Honeycomb plugin has hooked itself into the
wire to see in- and outgoing connections, and into honeyd’s connection state
management.

Integrating our system into honeyd has several advantages
over a standalone bump-in-the-wire approach:
� NO DUPLICATION OF EFFORT: Our system needs access

to network traffic. For a standalone application, libp-
cap [11] would be an obvious choice. honeyd already
does this – it inspects the network traffic using libpcap
and passes the relevant packets to the network stacks of

1The plugins are implemented as shared libraries, dynamically linked in at
runtime.

the simulated hosts and eventually to their configured
subsystems. Our approach is a minimum-effort solution
that avoids performance hits by making use of packet
data already transferred to userspace.� AVOIDANCE OF COLD-START ISSUES: the bigger advan-
tage lies in the fact that honeyd is not passively listening
to traffic going in and out of the honeypot, it creates the
traffic coming out of it through the simulated network
stacks and the configured subsystems. By integrating
Honeycomb into honeyd we avoid desynchronization
from the current state of connections: when honeyd
receives a packet that starts a new connection (whether
in a legal fashion or not), Honeycomb knows that this
starts the connection. The question whether it may have
missed the beginning of the connection is a non-issue, in
contrast to other systems that use the bump-in-the-wire
approach[12][13].

B. Signature Creation Algorithm

The philosophy behind our approach is to keep the system
free of any knowledge specific to certain application layer
protocols. Each received packet causes Honeycomb to initiate
the same sequence of activities:
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Fig. 2. High-level overview of Honeycomb’s signature creation algorithm.

� If there is any existing connection state for the new
packet, that state is updated, otherwise new state is
created.� If the packet is outbound, processing stops here.� Honeycomb performs protocol analysis at the network
and transport layer.� For each stored connection:

– Honeycomb performs header comparison in order to
detect matching IP networks, initial TCP sequence
numbers, etc.

– If the connections have the same destination port,
Honeycomb attempts pattern detection on the ex-
changed messages.

� If no useful signature was created in the previous step,
processing stops. Otherwise, the signature is used to
augment the signature pool as described in Section III-F.



� Periodically, the signature pool is logged in a configurable
manner, for example by appending the Bro representation
of the signatures to a file on disk.

Figure 2 illustrates the algorithm. Each activity is explained
in more detail in the following sections.

C. Connection Tracking

Honeycomb maintains state for a limited number of TCP
and UDP connections2, but has rather unique requirements
concerning network connection statekeeping. Since our aim is
to generate signatures by comparing new traffic on the honey-
pot to previously seen one, we cannot release all connection
state immediately when a connection is terminated. Instead,
we only mark connections as terminated but keep them around
as long as possible, or until we can be sure that we will not
benefit from storing them any longer.

Connections that have exchanged lots of information are
potentially more valuable for detecting matches with new
traffic. The system must prevent aggressive port scans from
overflowing the connection hashtables which would cause the
valuable connections to be dropped. Therefore, both UDP and
TCP connections are stored in a two-stage fashion: Connec-
tions are at first stored in a “handshake” table and move to an
“established” table when actual payload is exchanged.

The system performs stream reassembly: for TCP, we re-
assemble flows up to a configurable total maximum of bytes
exchanged in the connection. We store the reassembled stream
as a list of exchanged messages up to a maximum allowed size,
where a message is all the payload data that was transmitted
in one direction without any payload (i.e., at most pure ACKs)
going the other way. For example, a typical HTTP request is
stored as two messages: one for the HTTP request and one for
the HTTP reply. For UDP, we similarly create messages for
all payload data going in one direction without payload data
going the other way. Figure 3 illustrates the idea.

D. Protocol Analysis

After updating connection state, Honeycomb creates an
empty signature record for the flow and starts inspecting the
packet. Each signature record has a unique identifier and stores
discovered facts (i.e., characteristic properties) about the cur-
rently investigated traffic independently of any particular NIDS
signature language. The signature record is then augmented
continuously throughout the detection process, maintaining a
count of the number of facts recorded3.

We currently perform protocol analysis at the network and
transport layers for IP, TCP and UDP packet headers, using the
header-walking technique previously used in traffic normaliza-
tion [12]. Instead of correcting detected anomalies, we record
them in the signature, for example invalid IP fragmentation
offsets or unusual TCP flag combinations. Note that for these
checks, Honeycomb does not need to perform any comparison

2When referring to UDP “connections” we just mean the packets exchanged
using the same IP address and port number pairs.

3We use the terms “signature record” and “signature” interchangeably
throughout the text, except for cases when we want to stress the difference
between a signature record and a NIDS-specific signature string produced
from the record.
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Fig. 3. A TCP packet exchange (left) and the way Honeycomb traces the
connection (right). The packet initiating the connection is copied separately;
afterwards, two 100-Byte payloads are received and assembled as one mes-
sage. 200 Bytes follow in response, forming a new message. This in turn is
answered by another 300 Bytes, forming the final message. The successful
completion of the TCP teardown triggers the labeling of the connection as
“terminated”.

to previously seen packets. We refer to a signature at this point
as the analysis signature.

Honeycomb then performs header comparison with each
currently stored connection of the same type (TCP or UDP).
If the stored connection has already moved to the second-
level hashtable, Honeycomb tries to look up the corresponding
message and uses the headers associated with that message.

If any overlaps are detected (e.g., matching IP identifiers or
address ranges), the analysis signature is cloned and becomes
specific to the currently compared flows. The discovered facts
are then recorded in the new signature.

E. Pattern Detection in Flow Content

After protocol analysis, Honeycomb proceeds to the analysis
of the reassembled flow content. Honeycomb applies the
LCS algorithm to binary strings built out of the exchanged
messages. It does this in two different ways, illustrated in
Figures 4 and 5.
� HORIZONTAL DETECTION: Assume that the number of

messages in the current connection after the connection
state update is � . Honeycomb then attempts pattern
detection on the � th messages of all currently stored con-
nections with the same destination port at the honeypot
by applying the LCS algorithm to the payload strings
directly.� VERTICAL DETECTION: Honeycomb also concatenates
incoming messages of an individual connection up to a
configurable maximum number of bytes and feeds the
concatenated messages of two different connections to
the LCS algorithm. The point here is that horizontal
detection will fail to detect patterns in interactive sessions
like Telnet, whereas vertical detection will still work.
More importantly, vertical detection also masks TCP
dynamics: the concatenation suppresses the effects of
slicing the communication flow into individual messages,
which proved to be valuable (see Section IV-B).
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Fig. 5. Vertical pattern detection: for both connections, several incoming
messages are concatenated into one string and then passed as input to the
LCS algorithm for detection.

In either case, if a common substring is found that exceeds
a configurable minimum length, the substring is added to the
signature as a new payload byte pattern.

F. Signature Lifecycle

If the signature record contains no facts at this point,
processing of the current packet ends. Otherwise, Honeycomb
checks hows the signature can be used to improve the sig-
nature pool, which represents the recent history of detected
signatures.

The signature pool is implemented as a queue with con-
figurable maximum size; once more signatures are detected
that can be stored in the pool, old ones are dropped. Dropped
signatures are not lost, since the contents of the signature pool
are reported in regular intervals (see Section III-G).

Honeycomb tries to reduce the number of reported signa-
tures as much as possible by performing signature aggrega-

tion. We have defined a number of relational operators for the
generated signatures for this purpose:
�����	��

�����	��� : signature identity. This operator evaluates

to true when ���	��
 and ������� match in all attributes ex-
cept those which can be expressed as lists in resulting
signatures (e.g., ephemeral source port numbers).�����	� 
�� ���	� � : signature ���	� 
 defines only a subset of ���	� � ’s
facts. This particularly includes any payload patterns
detected by the LCS algorithm: A byte sequence � 
 is
considered weaker than � � when � 
 is a substring of � � .

If a new signature is a superset of an existing one, the new
signature improves the old one, otherwise the new signature
is added to the pool as a new entry.

G. Signature Output

The contents of the signature pool are periodically reported
to an output module which implements the actual logging of
the signature records. At the moment, there are modules that
convert the signature records into Bro or pseudo-Snort format4,
and a module that dumps the signature strings to a file.

The periodic reporting scheme is an easy way to make sure
all signatures are reported while in the signature pool and
also allows for tracking of the evolution of signature records
through the signature identifier in a post-processing stage.

IV. EVALUATION

The implementation consists of roughly 9000 lines of C
code, with about 3000 lines for a separate library implement-
ing the LCS algorithm. We tested our system on an unfil-
tered cable modem connection in three consecutive sessions,
covering a total period of three days. We were particularly
interested in the traffic patterns and signatures created for a
typical home-user connection, which can be assumed to be
often only weakly protected, if at all.

A. Traffic Characteristics

During the 24-hour period, we captured 224 KB of traffic,
comprising 557 TCP connections, 145 UDP connections and
27 ICMP pings. Figure 6 shows the distribution of the ports
requested at the honeypot, in terms of numbers of connections.

B. Signature Detection

Honeycomb created 38 signatures for hosts that just probed
common ports. 25 signatures were created containing flow
content strings. These are relatively long; on average they
contain 136 bytes. The longest strings are those describing
worms: Honeycomb managed to create precise signatures for
the Slammer and CodeRed II worms, see Figures 7 and 8.
Note that these are the overlaps after 6 hits of Slammer and 3
CodeRed II hits, so they are more reliable than a match found
in only two flows! Also, Honeycomb did not report the typical,
long HTTP GET string for CodeRed II; rather, it reported the
longer string of bytes following afterwards.

4We require the ability to define a list of non-contiguous ports, and Snort
currently does not permit this.
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alert udp any any -> 192.168.169.2/32 1434 (msg: "Honeycomb Fri Jul 18 11h46m33 2003 "; content: "|04 01 01 01 01 01 01
01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
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|DC C9 B0|B|B8 01 01 01 01|1|C9 B1 18|P|E2 FD|5 |01 01 01 05|P|89 E5|Qh.dllhel32hkernQhounthickChGetTf|B9|llQh32.dhws2_f
|B9|etQhsockf|B9|toQhsend|BE 18 10 AE|B|8D|E|D4|P|FF 16|P|8D|E|E0|P|8D|E|F0|P|FF 16|P|BE 10 10 AE|B|8B 1E 8B 03|=U
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j|02|j|02 FF D0|P|8D|E|C4|P|8B|E|C0|P|FF 16 89 C6 09 DB 81 F3|<a|D9 FF 8B|E|B4 8D 0C|@|8D 14 88 C1 E2 04 01 C2 C1 E2 08|
)|C2 8D 04 90 01 D8 89|E|B4|j|10 8D|E|B0|P1|C9|Qf|81 F1|x|01|Q|8D|E|03|P|8B|E|AC|P|FF D6 EB|"; )

Fig. 7. Signature Honeycomb created for the Slammer Worm.

alert tcp 80.0.0.0/8 any -> 192.168.169.2/32 80 (msg: "Honeycomb Mon May 5 16h59m09 2003 "; flags: A; flow: established;
content: "u|08 81|˜0|9A 02 00 00 0F 84 C4 00 00 00 C7|F0|9A 02 00 00 E8 0A 00 00 00|CodeRedII|00 8B 1C|$|FF|U|D8|f|0B C0
0F 95 85|8|FE FF FF C7 85|P|FE FF FF 01 00 00 00|j|00 8D 85|P|FE FF FF|P|8D 85|8|FE FF FF|P|8B|E|08 FF|p|08 FF 90 84 00
00 00 80 BD|8|FE FF FF 01|thS|FF|U|D4 FF|U|EC 01|E|84|i|BD|T|FE FF FF|,|01 00 00 81 C7|,|01 00 00 E8 D2 04 00 00 F7 D0
0F AF C7 89|F4|8D|E|88|Pj|00 FF|u|08 E8 05 00 00 00 E9 01 FF FF FF|j|00|j|00 FF|U|F0|P|FF|U|D0|Ou|D2 E8|;|05 00 00|i|BD|
T|FE FF FF 00|\&|05 81 C7 00|\&|05|W|FF|U|E8|j|00|j|16 FF|U|8C|j|FF FF|U|E8 EB F9 8B|F4)E|84|jd|FF|U|E8 8D 85|<|FE FF FF|
P|FF|U|C0 0F B7 85|<|FE FF FF|=|88 88 00 00|s|CF 0F B7 85|>|FE FF FF 83 F8 0A|s|C3|f|C7 85|p|FF FF FF 02 00|f|C7 85|r
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00 C7 85|l|FF FF FF 00 00 00 00 C7 85|‘|FF FF FF 01 00 00 00 8B|E|80 89 85|d|FF FF FF 8D 85|h|FF FF FF|Pj|00 8D 85|‘|FF
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00|P|FF|u|80 FF|U|AC|=|EA 0E 00 00|u|11|j|00|j|01 8D 85|\|FE FF FF|P|FF|u|80 FF|U|A8 FF|u|80 FF|U|B4 E9 E7 FE FF FF BB
00 00 DF|w|81 C3 00 00 01 00 81 FB 00 00 00|xu|05 BB 00 00 F0 BF|‘|E8 0E 00 00 00 8B|d$|08|dg|8F|"; )

Fig. 8. Signature Honeycomb created for the CodeRed II Worm.

C. Performance Overhead

We measured the performance overhead involved when
running Honeycomb compared to normal honeyd operation;
the results are displayed in Figure 9.
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part is hardly visible.

V. DISCUSSION

Our tests show that Honeycomb works and produces inter-
esting signatures. It has to be seen how easily the generated

signatures can be used in production environments, and how
the system performs under higher load. However, honeypots
generally see only relatively little traffic, so this problem
should be manageable.

The performance as illustrated in Figure 9 shows that
Honeycomb can run for extended times on quiet sites without
problems. More testing is necessary to investigate the per-
formance on busy sites, particularly with traffic that leads to
increased amounts of connection state.

The system is rich in configuration parameters, which can
have major influence on the performance of the system. Our
tests were done with reasonable default values, which may not
be the optimal values for the described environment.

VI. SUMMARY

We have presented Honeycomb, a system that can produce
NIDS signatures automatically by analyzing traffic on a honey-
pot. The system produces good-quality signatures on a typical
end user’s Internet connection. The system is particularly
good at producing signatures for worms5 — the signatures
for Slammer and CodeRed II are extremely precise and were
produced without any specific knowledge hardcoded into the
system.

5That is, as long as these worms are not polymorphic.



Honeypots are increasingly deployed in networks; however,
they are mostly used passively: Administrators watch what
happens and then manually perform forensic analysis once
a machine has been compromised. Our results suggest that
automated signature creation on honeypots is feasible and we
believe our work is a first step towards integrating honeypots
more closely into the security infrastructure.

Future Work

In the future, we want to expose Honeycomb to more
aggressive traffic patterns to get a better understanding of
its performance. We are working on reducing the amount of
effort spent per arriving packet. Regarding the LCS algorithm,
approximate matching schemes would allow us to create
signatures that contain regular expressions. The system can
currently be “distracted” by long, identical byte sequences
that are inherent in some protocols like NetBIOS, potentially
causing false positives. Future work needs to investigate means
to mitigate this danger, for example using white-listing of
known benign sequences. Better tools to analyze the created
signatures and to ease their integration into the signature
management toolchain is another interesting aspect.

Generally, Honeycomb’s approach could also be used for
creating signatures of other traffic. On NIDS mailing lists,
some of the most commonly asked questions are requests
for signatures for a certain application or a particular exploit.
Analysis of unsolicited email also comes to mind. Honeycomb
could be a great tool for facilitating this — once a traffic
stream with the traffic in question can be obtained, applying
Honeycomb to this traffic could help provide the answer.
We have in fact already used Honeycomb in order to verify
existing signatures. We intend to provide a standalone applica-
tion version of Honeycomb that performs signature generation
on libpcap tracefiles instead of live traffic going through
honeyd.
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