Detecting Anomalous Network Traffic with
Self-Organizing Maps*

Manikantan Ramadas, Shawn Ostermann, and Brett Tjaden

Ohio University
[mramadas|ostermann] @cs.ohiou.edu

James Madison University
tjadenbc@jmu.edu

Abstract. Integrated Network-Based Ohio University Network Detec-
tive Service (INBOUNDS) is a network based intrusion detection system
being developed at Ohio University. The Anomalous Network-Traffic De-
tection with Self Organizing Maps (ANDSOM) module for INBOUNDS
detects anomalous network traffic based on the Self-Organizing Map al-
gorithm. Each network connection is characterized by six parameters
and specified as a six-dimensional vector. The ANDSOM module creates
a Self-Organizing Map (SOM) having a two-dimensional lattice of neu-
rons for each network service. During the training phase, normal network
traffic is fed to the ANDSOM module, and the neurons in the SOM are
trained to capture its characteristic patterns. During real-time opera-
tion, a network connection is fed to its respective SOM, and a “winner”
is selected by finding the neuron that is closest in distance to it. The
network connection is then classified as an intrusion if this distance is
more than a pre-set threshold.

Keywords : Intrusion Detection, Anomaly Detection, Self-Organizing Maps

1 Introduction

We have seen an explosive growth of the Internet in the past two decades. As
of January 2003, the Internet connected over 171 million hosts [12]. With this
tremendous growth has come our dependence on the Internet for more and more
activities of our lives. Hence, it has become critical to protect the integrity and
availability of our computer resources connected to the Internet. We have to
protect our computer resources from malicious users on the Internet who try to
steal, corrupt, or otherwise abuse them. Towards this goal, intrusion detection
systems are being actively developed and increasingly deployed.

Intrusion detection systems have commonly used two detection approaches,
namely, misuse detection and anomaly detection. The misuse detection approach
uses a database of “signature”s of well known intrusions and uses a pattern

* This work was funded by the National Science Foundation under grant ANI-0086642

matching scheme to detect intrusions in real-time. The anomaly detection ap-
proach, on the other hand, tries to quantify the normal operation of the host, or
the network as a whole, with various parameters and looks for anomalous values
for those parameters in real-time.

Integrated Network Based Ohio University Network Detective Service (IN-
BOUNDS) is an intrusion detection system being developed at Ohio University.
INBOUNDS uses the anomaly detection approach to detect intrusions, and is
network-based i.e., it can be used to passively monitor the network as a whole.
In this paper, we present the Self-Organizing Map based approach for detecting
anomalous network behavior developed for INBOUNDS.

We organize this paper as follows. In Section 2, we give a brief description
of Self-Organizing Maps and follow up in Section 3 with details of related work
in the intrusion detection domain based on Self-Organizing Maps. In Section 4,
we describe the INBOUNDS system and the design of the Self-Organizing Map
based module for detecting intrusions. In Section 5, we present some of our ex-
perimental results, and in Section 6 we conclude and give some recommendations
for future work.

2 Self-Organizing Maps

The concept, design, and implementation techniques of Self-Organizing Maps are
described in detail in [25]. The Self-Organizing Map algorithm performs a non-
linear, ordered, smooth mapping of high-dimensional input data manifolds onto
the elements of a regular, low-dimensional array [25]. The algorithm converts
non-linear statistical relationships between data points in a high-dimensional
space into geometrical relationships between points in a two-dimensional map,
called the Self-Organizing Map (SOM). A SOM can then be used to visualize
the abstractions (clustering) of data points in the input space.

The points in the SOM are called neurons, and are represented as multi-
dimensional vectors. If the data points in the input space are characterized using
k parameters and represented by k-dimensional vectors, the neurons in the SOM
are also specified as k-dimensional vectors.

2.1 Learning

In the SOM Learning phase, the neurons in the SOM are trained to model the
input space. This phase has the following two important characteristics:

— Competitive Each sample data point from the input data space is shown
in parallel to all the neurons in the SOM, and the “winner” is chosen to be
the neuron that responds best. The k-dimensional values of the winner are
adjusted so that it responds even better to similar input.

— Cooperative A neighborhood is defined for the winner to include all neu-
rons in its near vicinity in the SOM. The k-dimensional values of neurons
in the neighborhood are also adjusted so that they too respond better to a
similar input.

-« -

@@ OO
OO OO

— W

(O
O O OO O O

o] O-]oJo- oo
O+ @@ @ OO
O @\ @@ 0|0

| o or|oor oo
(:>*_
O~

»
>

Winner

Input data point Neighborhood

Fig.1. SOM Learning

The SOM learning principle, illustrated in Figure 1, shows the SOM, with
the circles representing neurons. The input data point is fed in parallel to all the
neurons in the SOM. The winner neuron is colored black, and a square of length
5 centered around it represents the neighborhood.

During the learning phase, samples of data are collected from the input space
and “shown” to the SOM. For this purpose, sample vectors representing input
data covering the range of operational behavior are collected. The neurons in
the SOM are initialized to values chosen from the range of sample data. The
neurons can be assigned values linearly in the range (linear initialization), or
assigned random values within the range (random initialization).

Distance Measure For the purpose of locating the winner neuron given the
data sample, a suitable measure of distance has to be defined. The commonly
used distance measures are the Euclidean and the Dot-product measures. In the
Euclidean measure, given two points X (z1,Z2,...,2) and Y (y1,¥y2,...,Yk) in
k-dimensional space, the Euclidean distance is given by

\/(1‘1 —y) (2 —y2)" + o+ (e —yn)”

If the Dot-product measure is to be used, the input data points and the neu-
rons in the SOM have to be normalized. Normalization of a vector V (vq, v, . . ., Uk)
is a process of transforming its components into

(%1 V2 Vg
<\/'U12+'U22+---+Uk2’\/U12+U22+---+'Uk2,‘”,\/'U12+'U22+---+Uk2>

so that the modulus of the normalized vector is unity. The dot-product of the
input data point is calculated individually with each of the neurons, where the
dot-product of two normalized vectors X (1,22, ..., zk), and Y (y1,y2,.-.Yk) is
defined to be

T1.Y1 +T2.Y2 + ... + Tk Yk

The winner is selected to be the neuron that gives the maximum dot product.

Neighborhood function The neighborhood function determines the size and
nature of the neighborhood around the winner neuron. The commonly used
neighborhood functions are Bubble and Gaussian. In the Bubble function, the
neighborhood radius is specified by a variable o, and all neurons within the
neighborhood are adjusted by the same factor o towards the winner. The pa-
rameter «, called the learning rate factor, and the neighborhood size o, are
generally chosen to be monotonically decreasing functions of time ¢, where t is a
discrete time measure incremented with every iteration of the training process.
The Bubble neighborhood function h;(t) is specified as :

hei(t) = {a(t) [|7e, || < o(t)

0 otherwise

where r. and r; represent the positions of the winner ¢ and neuron ¢ in the SOM,
and ||r.,r;|| is the distance between them.

The Gaussian neighborhood function adjusts the winner neuron the most
towards the sample data, and adjusts the remaining neurons within the neigh-
borhood lesser and lesser as their distance from the winner increases, based on
a bell shaped Gaussian function. It is specified as :

_re,ra] 2 '
hcz(t) = {Cl(t)@l’p(202 (t)) ||rc>7'z|| < O'(t)

B 0 otherwise

The Gaussian neighborhood function is illustrated in Figure 1. The winner
shown in black is moved the most towards the sample data, while the neurons
in the neighborhood are moved lesser and lesser as shown in the gray-shades.

Learning function After the winner is found and the neighborhood is de-
termined, the k-dimensional values of the neurons are adjusted based on the
learning function. The learning function is specified as :

mi(t +1) = mi(t) + hei(8)[z(t) —m(t)]

where m;(t), m;(t + 1) represent k-dimensional values of neuron i, at time
t and t + 1 respectively; x(t) represents the k-dimensional values of the sample
data.

To summarize, for every neuron in the SOM, the learning function calculates
its distance from the sample data, and adjusts its k-dimensional values towards
the sample data by a factor specified by the neighborhood function h.;(t).

2.2 Algorithm

The choice of the factors described in the previous section affect the nature of the
SOM generated. Once these factors are decided upon, the following algorithm
can be used to train the SOM.

After the SOM is initialized, the learning process is carried out in two phases.
In the initial phase, a relatively large neighborhood radius is chosen. The learn-
ing rate factor a(t) is also chosen to have a high value, close to unity. This phase
is carried out for relatively lesser number of iterations. Most of the map organiza-
tion happens in this phase. In the final fine-tuning phase, a smaller neighborhood
radius and smaller learning rate factor are chosen. This phase is carried out for
relatively larger number of iterations. The adjustment done to the neurons are
much smaller in this phase.

2.3 Operation

In a k-dimensional space, the sample data and the SOM neurons appear as
points. During the course of the learning algorithm described above, the neurons
“move” in the k-dimensional space to characterize the sample data as closely as
possible. While clusters of neurons would form at spaces where the sample data
points are concentrated, fewer neurons would represent the space where sample
data occur sparsely.

During operation, a real-time sample can be fed to the SOM, and its winner
located. It can be flagged normal if it is sufficiently closer to the winner, and
flagged anomalous if its distance from the winner is more than a preset threshold.

3 Related Work

In the work cited in this paper, SOM-based profiles of various network services
like web, email, etc., are built to perform anomaly-based intrusion detection.
Using network-service profiles to perform intrusion detection is not new how-
ever. The paper [7] discusses the approach used to build statistical profiles of
network services for the EMERALD [20] intrusion detection system. The paper
[16] discusses a Neural network based approach to develop connection signatures
of common network services.

Self-Organizing Maps have also been used in the past in the intrusion de-
tection domain for various purposes. The paper [10] describes a Multi-level Per-
ceptron/SOM prototype used to perform misuse-based intrusion detection. The
paper [23] describes a system that uses SOMs as a monitor-stack to profile net-
work data at various layers of the TCP/IP protocol stack. This system was used
to detect buffer-overflow attacks by building profiles of application data based
on percentage of bytes that were alphabetical, numerical, control, or binary. The
paper [15] describes a system that uses Neural networks using the Resilient Prop-
agation Algorithm (RPROP) to detect intrusions that uses SOMs for clustering
and visualizing the data.

The paper [18] describes a host-based intrusion detection system that uses
multiple SOMs to build profiles of user sessions, and uses them to detect ab-
normal user activities. The paper [17] describes an anomaly-based intrusion de-
tection system that characterizes each connection based on the following fea-
tures: Duration of the connection, Protocol type (TCP/UDP), Service type
(HTTP/SMTP/etc.), Status of the connection, Source bytes (Bytes sent from
Source to Destination), and Destination bytes (Bytes sent from Destination to
Source). SOMs based on these features were used to classify network traffic into
normal or anomalous. In our approach cited in this paper, we characterize each
network connection based on a different set of features, and build SOMs for each
individual network service of interest.

4 SOM-based Anomaly Detection

In this section, we describe the Anomalous Network-traffic Detection using Self-
Organizing Maps (ANDSOM) module used by INBOUNDS for detecting intru-
sions. We briefly describe the design of the INBOUNDS system as a whole, and
then describe the ANDSOM module in detail.

4.1 INBOUNDS Architecture

Active
Response
Module

INBOUNDS

Intrusion Detection Engine

Data Data
Source | | Processor

R , - Intrusion

Data L. Data R detection
_Source v || i Processor | module
7777777777 h fomemm=emmaan,

Data L Y Data

Source \ Processor

Data store
or previously
classifed
intrusions

Fig. 2. INBOUNDS Architecture Diagram

The INBOUNDS Architecture diagram is shown in Figure 2. Some of the
modules of the INBOUNDS system are currently under development. The goal

of this section is only to present a high-level view of the INBOUNDS system, so
as to give proper context to describe the ANDSOM module.

The Intrusion Detection Engine is the heart of the INBOUNDS system. Mul-
tiple Data Source modules feed real-time network data into the engine. This en-
gine makes a decision on whether a network connection looks normal or anoma-
lous. The Display module shall display real-time network traffic seen in the
network on which INBOUNDS is being run, with a GUI front-end. The Active
Response module takes response actions against intrusions. The response actions
include being able to add a rule in the network firewall (if available) to block
the traffic, to rate-limit traffic, to close the TCP connection by sending a RST
packet to the sender etc. The Intrusion Detection module is present as a place-
holder for a module that can make the final decision on whether the connection
being analyzed is intrusive or not. The goal of this module is to incorporate
the results of other modules, beside the ANDSOM module, and come up with
a final decision. The modules that could be added in future include signature-
based intrusion detection systems like SNORT [3] and modules based on other
paradigms like the Bayesian module under development.

Data Source Module The Data Source module feeds live network data pack-
ets to the Intrusion Detection Engine. The program tcpurify [9] runs as the Data
Source module, captures network packets off the wire, removes the application
data from the packet and reports only the first 64 bytes of each packet, covering
the IP and TCP/UDP protocol headers. The tcpurify program can also obfus-
cate the sender and receiver IP addresses and provide anonymity to the two
hosts involved in the network connection during traffic analysis. This module is
explained in detail in [22].

Data Processor Module This module receives the raw packets from the Data
Source modules as input and runs the teptrace [19] program with the INBOUNDS
module. The INBOUNDS module for tcptrace reports the following messages for
every connection seen in the network.

Open messages are reported upon seeing a new connection being opened in
the network. The Open (O) message is of the format :

0 TimeStamp Protocol <src host:port> <dst host:port> Status

The TimeStamp field reports the time the connection was opened. The Pro-
tocol field keeps track of if the protocol was TCP or UDP. Since UDP traffic
doesn’t have an implicit notion of connection unlike TCP, the Data Processor
module groups UDP traffic between unique

< Sourcel P, SourcePort, Destinationl P, DestinationPort >

4-tuples as connections, and uses a time-out mechanism to expire old connec-
tions. The < srchost : port >, and < dsthost : port > fields together identify the
end-points involved in the connection. The Status field is reported as 0 if both

SYN packets opening the connection were seen, and reported as 1 otherwise, for
TCP connections. For UDP connections, the Status field is always reported as
0.

Update messages are reported periodically during the lifetime of the con-
nection. The Update (U) message is of the following format :

U TimeStamp Protocol <src host:port> <dst host:port> INTER ASOQ ASOA QAIT AQIT

The period with which successive Update (U) messages are reported is tun-
able and defaults to 60 seconds. The INTER field reports the interactivity of
the connection, defined as the number of questions per second seen during the
past period. A sequence of data packets seen from the sender to the receiver
constitute a single question until the receiver sends a packet carrying some data
(pure TCP acknowledgments do not count), which would mark the end of the
question. The answers are similarly defined for the receiver to sender direction.
The ASOQ field reports the Average Size of Questions seen during the past pe-
riod and the ASOA field reports the Average Size of Answers seen during the
past period. The QAIT (Question-Answer Idle Time) field reports the idle time
seen between seeing a question and an answer during the past period, averaged
per second. The AQIT (Answer-Question Idle Time) similarly identifies the idle
time between seeing an answer and a question, averaged per second, in the past
period.

Close messages are reported when a previously open connection is closed in
the network. The Close (C) message is of the following format :

C TimeStamp Protocol <src host:port> <dst host:port> Status

For TCP connections, the Status field is reported as 0 if both the FIN packets
were seen during the connection close. If the connection was closed with a RST
packet, the Status is reported as 1. UDP connections are reported as closed if
they are found inactive for an expire-interval. The expire-interval is tunable,
and defaults to 120 seconds. The Status field is always reported as 0 for UDP
connections.

4.2 ANDSOM module - Training

The ANDSOM module implements the SOM-based approach for intrusion de-
tection. In the training phase, SOMs are built to model different network services
like web, email, telnet etc. For example, if we are trying to model web traffic in
our network, a training data set is first collected by capturing dumpfiles from
the network having a large number of sample web connections. It is important to
make sure that intrusions themselves do not get into the training data set, since
such intrusions may be perceived as normal by the SOM being built. For this,
the signature-based intrusion detection system SNORT is run on the dumpfile,
and connections reported by SNORT as intrusive are removed. However, it is
still possible that we could have intrusions missed by SNORT if it had no rules

to detect them. To make our system robust against this possibility, we could
use multiple training data sets to generate multiple SOMs for each network ser-
vice and run training data sets against other maps to prune out anomalies from
getting into our model, as discussed in [23].

The submodules that make up the ANDSOM module are explained below.

TRC2INP submodule This submodule receives the ‘O’, ‘U’, and ‘C’ messages
generated by the Data Processor module as input and generates six-dimensional
vectors characterizing network connections. The parameters constituting the six
dimensions are INTER, ASOQ, ASOA, L_QAIT, L_AQIT, and DOC. The IN-
TER, ASOQ, and ASOA dimensions are calculated by averaging the INTER,
ASOQ, and ASOA values from the ‘U’ messages received during the lifetime of
the connection. The dimensions L_QAIT, and L_AQIT represent log base 10 val-
ues of the average QAIT and AQIT parameters calculated from the ‘U’ messages
received during the course of the connection. The DOC dimension reports the
Duration of Connection, and is the difference between the TimeStamps reported
in the ‘O’ and ‘C’ messages of the connection.

The rationale behind using log base 10 values of QAIT and AQIT is to be
more robust to false-positives. Since the QAIT and AQIT values tend to be
relatively low in magnitude compared to other dimensions, if the QAIT value of
a connection was reported as 0.0008 for example, and if the mean value found
in the training data set was 0.0002, the connection was perceived to be four
times the mean and had a high probability of being found anomalous. However,
this might turn out to be a false-alarm, and what we might actually need is the
order of QAIT and AQIT, whether they are in milli-seconds or micro-seconds
etc., than the actual values themselves. We observed false-positives similar to
the above example during our experiments, and decided to use the log value of
the dimensions to mitigate the problem.

Normalizer submodule Using the six-dimensional vectors reported by the
TRC2INP module to build SOMs directly tends to be biased to certain dimen-
sions, as different dimensional values tend to be in different units. Normalizing
all dimensions to values from 0 to 1, for example, could help, but still the di-
mension with the most variance would tend to dominate the SOM formation.
Hence we use the following variance normalization procedure in this submodule
to normalize the six-dimensional vectors.

The goal of variance normalization is to normalize the six-dimensional vec-
tors of the training data set so that, in the set of normalized vectors, each
dimension has a variance of unity. This normalization process is done in two
steps. In the first step, the mean (u) and standard deviation (o) values are
calculated for each of the six dimensions in the training data set. In the sec-
ond step, a six-dimensional vector < di,ds,ds,ds,ds,dg > is normalized to
< ni,N2,n3,Ng,Ns,Ne >, by
di =y

i

i

where p; and o; are the mean and standard deviations of dimension 3.
At the end of the normalization process, the mean and standard deviation
values found are stored in a data file for use in real-time operation.

SOM Training We used the public domain software packages SOM_PAK [5],
and SOMTOOLBOX [4], during this phase. The SOM_PAK is a set of C pro-
grams that implement various stages of the SOM algorithm. The SOMTOOL-
BOX is a Toolbox for the MATLAB package, which we used for its graphical
visualization functions.

SOM Initialization The SOMs were initialized with the som_lininit function

from the SOMTOOLBOX. This function uses Principal Component Anal-
ysis [14] to arrive at the SOM dimensions by calculating the eigen values
and eigen vectors of the auto-correlation matrix of the training data set.
The orientation corresponding to the two largest eigen values, which are the
directions in which the data set exhibits the most variance, is found. The
ratio between the SOM dimensions are chosen based on the ratio of the two
largest eigen values. The actual dimensions are chosen depending on this
ratio and on the number of vectors in the training data set, and is explained
in further detail in [22].
The SOM was chosen to be of hexagonal topology, and an Euclidean distance
measure was used. After choosing the dimensions, the som_lininit function
initializes the neurons in the SOM to values linearly chosen from the range
of values in the training data set.

Initial Training Phase The vsom program from the SOM_PAK package was
used to train the neurons in the SOM. The number of iterations of training
in this phase were chosen to be low, in the order of a few thousands. In
our experiments, for each network service, we typically had a few thousand
samples, and this phase was done so that each sample was shown at most
once to the SOM being built. The Gaussian neighborhood function was used
with an initial neighborhood radius as the lower of the SOM dimensions.
The neighborhood radius decreased linearly to 1 at the end of the training.
The learning rate factor «(t) was chosen to be 0.9 and reduced linearly to 0
at the end of training.

Final Training Phase The vsom program was used again in the final training
phase, and the number of iterations of training was chosen to be high, in
the range of 100,000s. The number of iterations was set to be 500 times the
product of the lattice dimensions (based on the heuristic recommended in
[25]). The Gaussian neighborhood function with a low initial neighborhood
radius of 5, and a low learning rate factor of 0.05 were set, and the map was
fine-tuned in the Final Training Phase.

SOM Validation We evaluate the SOM at the end of the training phase, by
feeding back the training data set to the SOM, and calculating the distance
to winner for each of the samples. We validate the SOM if at least 95.44% of

sample vectors in the training data set had a winner within 2 units of distance.
This heuristic assumes the training data set to follow Gaussian distribution. If
the data in the training data set were to follow Gaussian distribution strictly,
95.44% of the samples must fall within 2 units of standard deviation from the
mean, according to properties of Gaussian distribution. If the 95.44% heuristic
is not met at the end of training, the samples that do not have a winner within
2 units are shown more often to the SOM, and the training is repeated.

Although this heuristic lets the SOM model capture the behavior exhibited
by the bulk of traffic, it does not capture the out-lier behavior exhibited by fewer
connections. These outliers may give rise to false-positives with our model. If we
were to raise the heuristic and try to capture more outliers into our model, we
could get rid of some false-positives, but would be subjecting ourselves to more
false-negatives. Note that to include an out-lier in our model, we need a SOM
neuron within 2 units of standard deviation from it in six-dimensional space,
as all connections with winner more than 2 units distant will be classified as
anomalous. When we have such a neuron, all connection samples within the
six-dimensional hyper-sphere of radius 2 units from the neuron will be classified
as normal traffic. If an attack were to fall in such a hyper-sphere surrounding
such a neuron, it would give rise to a false-negative. Thus, as we increase our
heuristic value, we would add a lot of such hyper-spheres for the outliers into
our model and the SOM would tend to get more and more general in nature,
losing its specificity of modeling only the network service of interest.

We believe that our 95.44% Gaussian heuristic is a reasonable value to cap-
ture the characteristics exhibited by the bulk of traffic. However, our experiments
need to be repeated with various threshold percentages for the heuristic as a fu-
ture work, to study the trade-off more thoroughly.

4.3 ANDSOM module - Operation

During real-time operation phase, the ANDSOM module receives the ‘O’, ‘U,
and ‘C’ messages of connections from the Data Processor module. These mes-
sages are converted to six-dimensional vectors by the TRC2INP module. If a
SOM was built for that network service, it is normalized based on the mean (1)
and standard deviation (o;) values found from the training data used to build
the SOM. The normalized vector is then fed to the SOM, and the winner is
found. The network connection is classified as anomalous, if the distance to the
winner was more than 2 units.

5 Experimental Results

In this section, we describe our experiments with the SOM models for Domain
Name System (DNS) and web (Hyper-Text Transfer Protocol) traffic, and ana-
lyze the performance of the models built.

5.1 DNS

DNS [21] traffic runs on top of both TCP and UDP. Although some DNS con-
nections are observed on top of TCP, typically when two name servers transfer
bulk domain information, the bulk of DNS traffic is found to be on top of UDP,
and involve simple query-response of domain information. We collected dump-
files from our network yielding 8857 sample DNS connections, and a SOM of
dimensions 19x25 was built and linearly initialized. The mean and standard de-
viation values of this data set found by the Normalizer submodule shown in
Table 1 illustrate the traits of DNS traffic found in our network.

Table 1. DNS Training Data Statistics

|Dimensions| Mean|Standard Deviation

INTER 0.653 0.701
ASOQ 29.082 19.831
ASOA 112.352 94.651
L. QAIT | -1.142 1.376
L_AQIT 20.016 0.186
DOC 2.033 1.056

The mean INTER value of 0.65 and the DOC value of 2 seconds, indicate that
a DNS connection has 1.3 questions asked during the course of a connection. This
is expected since the bulk of DNS connections involve a single query-response.
The relative mean values of ASOQ and ASOA indicate that the answers tend to
be much bigger than the questions, which is expected since DNS responses tend
to be much bigger than DNS queries in general. The mean L_QAIT indicates that
the QAIT value tends to be in hundredths of second per second. The L_AQIT
value close to 0 corresponds to an AQIT value close to a second per second and is
expected because single query-response traffic has no request (question) following
a response (answer). The AQIT value is hence reported as the maximum value
of 1 second per second for these connections, causing the mean L_AQIT value
to be close to 0.

Table 2. DNS Exploit Vector

[INTER] ASOQ[ASOA [L_QAIT[L_AQIT[DOC]
| 1.989 [493.000[626.000] -2.847 | -2.375 [1.006]

For testing the SOM model, we generated anomalous DNS traffic with an
attack based on an exploit of the BIND [11] DNS server. BIND server version

Table 3. DNS Normalized Exploit Vector

[INTERJASOQ[ASOAJL_QAIT|L_AQIT[DOC|
| 1.906 [23.393]5.427 | -1.239 |-12.664 |-0.973]

Table 4. DNS Winner Neuron

[INTER]ASOQJASOAJL_QAIT[L_AQIT[DOC |Distance]
| 0.708 [6.072 [-0.799] 0.150 | -0.212 |-0.128[22.314]

8.2.x was run as a vulnerable server in our test-bed. The exploit [1], available in
the public domain, is based on the buffer-overflow vulnerability [6] in processing
Transaction Signatures found in 8.2.x versions.

Table 2 shows the six-dimensional values of the DNS exploit vector, and
Table 3 shows the normalized values of the DNS exploit vector, based on the
mean and standard deviation values found in the training data set. We can
observe from these tables that the ASOQ value of 493 bytes is highly anomalous
with a distance of 23.393 standard deviations, since the training data set had a
mean ASOQ value of 29 bytes. The ASOA value of 626 bytes is also anomalous
from the training data set with 5.427 standard deviations away from the mean
ASOA of 112.35 bytes. Further, the L_AQIT value of the -2.375 indicates that
the actual AQIT was in the order of milli seconds per second. This happens
to be highly anomalous with a normalized value of -12.664 standard deviations
because the mean L_AQIT was in the order of -0.016, corresponding to an AQIT
value of close to one second per second.

The winner neuron for the DNS exploit, and its distance to the winner in six
dimensional space, are shown in Table 4. We can see that the winner neuron was
at a distance of 22.314 standard deviations in the six-dimensional space, resulting
in the DNS exploit being successfully classified with our intrusion threshold of
2 units.

To aid in the visualization of the six-dimensional space, we split the space
into two three-dimensional views. The dimensions that take the X, Y, and Z
axes of the two views were chosen arbitrarily with the goal of showing the attack
point from the training data points clearly. The two three-dimensional views are
shown in Figure 3.

5.2 HTTP

We built a SOM to model web traffic based on the HTTP [8] [13] protocol. A
training dataset of 7194 HTTP connections collected from our network was used,
and a SOM of dimensions 16x27 was built and linearly initialized. The mean

+ Training data + Training data
O SOM neurons O SOM neurons
% Attack * Attack

(a) View 1 (b) View 2

Fig. 3. DNS Exploit View (Units : Standard-Deviations from Mean)

and standard deviation values of the training data set found by the Normalizer
submodule are shown in Table 5.

The mean interactivity of a HTTP connection is close to 0.8 questions per
second. The mean size of questions is an order of magnitude smaller than the
size of the answers, implying that more data seems to come from web-servers to
web-clients than in the other direction. However ASOQ and ASOA tend to be
highly variant as indicated by their high standard deviations. The QAIT seems
to be in hundredth-s of a second per second, which could correspond to the fact
that web-servers tend to be across the Internet causing the delay between the
questions and answers. The AQIT value is in the order of ten-thousandths of a
second per second and seems to indicate the fact that it takes very less time for a
web-client to generate the next question, once the answer to a previous question
is received. The mean duration of a HTTP connection is 9 seconds, although
this duration is found to be highly variant with a standard deviation of 27.

We used the HTTP Tunnel [2] program to generate anomalous HTTP traffic
in the network. The HTTP Tunnel program creates application-layer HTTP
tunnels between two hosts, and lets any type of traffic to be run on top of HTTP.
The HTTP tunnel program can be used by attackers inside an organization to
break firewall rules. For example, assuming an organization firewall allows traffic
to a host A on HTTP port 80, a malicious user inside the organization could setup
an HTTP tunnel server on host A, and could let a user outside the organization
on host B establish a telnet session to A by encapsulating all data as HTTP. The
HTTP tunnel program uses the HTTP POST and GET methods to establish a
duplex connection between two hosts; the POST method is used by the tunnel

Table 5. HTTP Training Data Statistics

|Dimensions| Mean| Standard Deviation|

INTER 0.829 0.773
ASOQ 589.120 743.973
ASOA 6302.338 59463.781
L_QAIT 1.383 0.874
L_AQIT -3.714 3.324
DOC 9.463 27.244

client on B to send data to A, and the GET method is used by the client on B
to fetch data from A.

We used this program for our experiment by running a tunnel server in our
test-bed, and establishing a telnet session to it from a tunnel client across the
Internet. Although this traffic shows up as HTTP, we expect our model to clas-
sify it as anomalous since its connection characteristics might be different from
normal HTTP traffic. The telnet connection was run on the HTTP tunnel for
approximately 10 minutes, during which 13 connections (3 POST connections
and 10 GET connections) were opened. We present the GET and POST con-
nections that turned out to be highly anomalous amongst the 13 connections.
The six dimensional vectors of those GET and POST connections are shown in
Table 6 and the normalized values of these vectors are shown in Table 7.

Table 6. HTTP Tunnel Traffic

| [INTER[ASOQ| ASOA [L_QAIT|L_AQIT| DOC]

GET | 0.004 | 17.200 22860.200| -5.699 | -5.854 |247.687
POST| 0.023 |491.667| 0.000 |—5.523 -10.000 |307.706

Table 7. HTTP Normalized Tunnel Traffic

| [INTER[ASOQ[ASOAJL_QAIT|L_AQIT| DOC |

GET | -1.068 |-0.769| 0.270 | -4.937 | -0.644 |8.744
POST| -1.044 |-0.131|-0.114| -4.735 | -1.891 (10.947

In the HTTP GET connection, a single query is made at the beginning of
the connection by the client, and all replies from the server form a single answer.

Hence, the QAIT value is calculated only once, when the first data packet is
seen on the tunnel from the server after the GET request is made. Such a QAIT
value, calculated and normalized to a 60 second update interval, turns out to
be very low, in the order of micro-seconds, which results in the L_.QAIT value
of -5.699, which is considered to be highly anomalous, being approximately -
4.94 standard deviations from the mean. The duration of the connection (DOC)
happens to be 247 seconds and is found to be highly anomalous with a distance
of 8.74 standard deviations.

Similarly, since the POST connection lasts for 307 seconds approximately,
the DOC dimension is considered highly anomalous. The ASOA value is found
to be 0 bytes in Table 6 because all data in the POST connection flows from the
tunnel client to the tunnel server, with only pure TCP ACKSs arriving from the
tunnel server. The L_AQIT value is also calculated to be -10.000 since no sample
was available to calculate AQIT as there were no answers. The AQIT is found
to be its initial value of 0 at the end. Since log base 10 of 0 is negative infinity,
a low value of -10.000 is reported by the TRC2INP submodule. The L_QAIT is
found to be anomalous with the value of -5.523, which corresponds to a QAIT
value in microseconds. This again is due to the fact that no data flowed in the
opposite direction, causing all data from tunnel client to server to be perceived
as one question. The QAIT value was calculated when the FIN packet was seen
on the connection. This happens to be low, as the first FIN packet seen is also
sent from the tunnel client.

To summarize, both the GET and POST connections are found to be anoma-
lous because the packet flow in both directions is found to be almost completely
uni-directional, which is unusual for HTTP traffic, and because of the fact that
the connections last a much longer time compared to the normal HTTP traffic
used in training. The same winner neuron was found for both the GET and
POST connection traffic, which is presented in Table 8.

Table 8. HTTP Winner Neuron

| [INTER]ASOQJASOA[L_QAIT|L_AQIT[DOC]|Distance]

GET | -0.953 |-0.389| 0.022 | -1.460 | 1.131 |5.895| 4.855
POST| -0.953 |-0.389| 0.022 | -1.460 | 1.131 |5.895| 6.743

Both the connections are classified as intrusions with the intrusion threshold
of 2 units. The two three-dimensional views of six-dimensional space for HTTP
traffic, are shown in Figure 4.

5.3 Performance Analysis

In this section, we present the Run-time and Modeling analyses of our system.
Run-time analysis is aimed at estimating the feasibility of using the SOM-based

Training data
SOM neurons

+ Training data
GET Tunnel O SOM neurons
*
x

POST Tunnel GET Tunnel
POST Tunnel

L_QAIT

-6 —

-8

100

2~ -50

INTER L_AQIT

(a) View 1 (b) View 2

Fig. 4. HTTP Exploit View (Units : Standard-Deviations from Mean)

approach real-time, and the Modeling analysis is aimed at evaluating the effi-
ciency with which the traffic characteristics of a network-service are modeled by
its SOM.

Run-time Analysis We performed an off-line evaluation of the modules of
the INBOUNDS system to estimate its run-time performance. Traffic from our
department network was captured in dumpfiles of varying durations (15 min, 30
min, 45 min, 1 hour, 2 hours, and 3 hours), and the Data Processor module was
run off-line on them to generate the ‘O’,‘U’, and ‘C’ messages [Sec. 4.1]. These
messages were fed to the TRC2INP module to generate six-dimensional vectors
of network connections. The locator module normalized the vectors based on the
HTTP training statistics (mean and standard deviation of the dimensions), fed
it to the HTTP SOM, determined the winner neuron and the distance to it. The
connection is classified anomalous if this distance was more than 2 units. Com-
munication between the modules was through pipes, with each module reading
its input from STDIN and writing out its output to STDOUT. Finally, as the
goal was just to estimate the peak run-time performance, traffic from all network
services found (not necessarily HTTP) was fed to the HTTP SOM.

Here, we present the results of the 1-hour, 2-hour, and 3-hour dumpfiles. The
tests were performed on a GNU/Linux system running on a 800 MHz Pentium
III processor with 256 MB RAM. The reader is referred to [22] for a more detailed
analysis of the evaluation.

Table 9 illustrates the total bytes seen for various durations of capture, the
Average Data Rate seen in that duration, total number of packets seen, the total

Table 9. Off-line Run-time Performance Analysis

Duration Bytes Avg. Data Rate| Packets | Conns. |Proc. Time|Proc. Rate
(Hours) (Mbps) (sec) (Mbps)
1 1,096,577,208 2.44 2,536,807| 10,704 57.11 153.61
2 1,954,570,814 2.17 5,322,218| 87,817 214.6 72.86
3 2,810,266,341 2.08 7,686,773|124,935| 295.6 76.06

number of connections found, total Processing Time taken by all the modules
together, and the corresponding Processing Rate of the modules. The net pro-
cessing time depends on the size of the dumpfile and the number of packets
and connections per unit time found in the network. Further, the bulk of the
processing time is spent on the Data Processor module that needs to keep state
of all active connections. For example, when the experiments were repeated to
evaluate the time taken by individual modules for the 3-hour dumpfile, the Data
Processor module took 254.9 seconds, the TRC2INP module took 21.9 seconds,
while the locator module that actually implements the SOM algorithm took
just 11.24 seconds. The SOM algorithm itself seems to be fairly light-weight in
that once a trained SOM is available, it merely involves normalizing the vector
based on the service statistics (mean and standard deviation of the dimensions)
and computing the distance from the normalized vector to all the neurons in the
SOM (taking linear time in the number of neurons in the SOM) and determining
the winner.

Modeling Analysis To determine the modeling efficiency of the SOMs con-
structed, the amount of false-positives generated for the vectors from the train-
ing data set for different values of threshold (distance to the winner on which a
connection is considered anomalous) was measured.

The percentage of false-positives generated for the DNS and HTTP SOMs
shown in Figure 5 show the false-positive percentages as the threshold value is
increased from 0.1 in steps of 0.1 until the threshold required to classify all the
vectors in the training data set are classified as normal. For the threshold of 2
units used in our modules, which was sufficient to classify the attacks studied as
anomalous, 1.18% and 1.16% of the DNS and HTTP training data set vectors
give rise to false positives. The false-positive percentage drops exponentially,
and increasing the threshold beyond 2 units seems to yield limited drops in the
percentages of false-positives.

We also tested the HTTP SOM for streaming music and chat programs as
these programs tend to run on HTTP port 80, and hence could be perceived
as HTTP traffic. Streaming music connections (running on TCP) tend to be
classified as anomalous, giving rise to false-positives. Such connections exhibit
high ASOA values since unidirectional streams are treated as single huge Answers
from the server to the client. Chat sessions are classified as anomalous too based

100

100

”dnsAféIse-posAdat” usihg 12 —— "httpAfélse-posAdat” usihg 12 ——
(o) (o)
g g
£ 10 ¢] 10 ¢
@ @
© o
[[
o o
2 1 2 1
3 3
o o
N N
8 o1} 8 o1}
© ©
w w
0.01 - - 0.01 - -
0.1 1 10 100 0.1 1 10 100
Threshold Threshold
(a) DNS SOM (b) HTTP SOM

Fig. 5. SOM Sensitivity

on the DOC dimension when they last for more than a couple of minutes, since
the Mean and Standard-deviation values of DOC for the HTTP training data
set were 9.5 seconds and 27.2 respectively. Although we can mitigate the false-
positives rising out of such streaming music and chat sessions by adding multiple
samples of them to the training data set and repeating the SOM training process,
this could make the HTTP SOM to be more generic in nature, yielding false-
negatives to attacks that resemble music streams/chat sessions.

6 Conclusions

The ability of the SOM based approach to correlate multiple aspects of a net-
work connection (reported by the six parameters) to decide if it looks normal or
abnormal, makes it a powerful technique for anomaly detection. The SOM model
we built to characterize SMTP (email) traffic was also successful in detecting a
Sendmail [24] buffer overflow attack, and is described in [22]. The SOM based
approach seems to be particularly well suited to detect buffer-overflow attacks,
as they tend to differ from the normal traffic behavior on the six dimensions.

However, the ANDSOM module may not detect attacks that resemble normal
operational behavior. An intrusion massaged to resemble normal traffic might
go un-noticed. Another limitation is that although the behavior exhibited by the
bulk of traffic for a network service can be modeled, corner-case behavior occur-
ring infrequently may be classified as intrusions, giving rise to false-positives.

For future work, it could be interesting to study the effects of modification to
the SOM algorithm, including trying other neighborhood functions and different
map topologies. It would also be interesting to construct and validate maps with
various values of threshold with the Gaussian heuristic, and also by assuming
other distributions of data besides Gaussian for the training data set.

References

1. Bind named 8.2.x Remote Exploit. http://downloads.securityfocus.com/vulnerabilities/exploits/tsig.c.

2. HTTP Tunnel. http://www.nocrew.org/software/httptunnel.html.

3. Snort - The Open Source Network Intrusion Detection System.
http://www.snort.org.

4. SOM Toolbox for Matlab. http://www.cis.hut.fi/projects/somtoolbox.

5. SOM_PAK. http://www.cis.hut.fi/research/som_lvq-pak.shtml.

6. VU#196945 ISC BIND 8 Buffer Overflow in TSIG Handling Code.
http://www.kb.cert.org/vuls/id/196945.

7. Phillip A.Porras and Alfonso Valdes. Live Traffic Analysis of TCP/IP Gateways. In
Proceedings of the ISOC Symposium on Network and Distributed Systems Security,
1998.

8. T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Protocol —
HTTP/1.0, May 1996. RFC 1945.

9. Ethan Blanton. TCPurify. http://irg.cs.ohiou.edu/~eblanton/tcpurify.

10. James Cannady and Jim Mahaffey. The Application of Artificial Intelligence to
Misuse Detection. In Proceedings of the First Recent Advances in Intrusion Detec-
tion (RAID) Conference, 1998.

11. Internet Software Consortium. Bind. http://www.isc.org/products/BIND.

12. Internet Software Consortium. Internet Domain Survey, Jan 2003.
http://www.isc.org/ds/WWW-200301/index.html.

13. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. Hypertext Transfer Protocol — HTTP /1.1, June 1999. RFC 2616.

14. J.Hollmen. Principal Component Analysis. http://www.cis.hut.fi/~jhollmen/dippa/node29.html.

15. Chaivat Jirapummin, Naruemon Wattanapongsakorn, and Prasert Kanthamanon.
Hybrid Neural Networks for Intrusion Detection System, 2002.

16. K.Tan and B.Collie. Detection and Classification of TCP/IP Network Services. In
Proceedings of the 13th Annual Computer Security Applications Conference, 1997.

17. Peter Lichodzijewski, A.Nur Zincir-Heywood, and Malcolm I.Heywood. Dynamic
Intrusion Detection Using Self-Organizing Maps. In The 14th Annual Canadian
Information Technology Security Symposium (CITSS), 2002.

18. Peter Lichodzijewski, A.Nur Zincir-Heywood, and Malcolm I.Heywood. Host-based
Intrusion Detection Using Self-Organizing Maps. In The IEEE World Congress on
Computational Intelligence, International Joint Conference on Neural Networks,
IJCNN’02, 2002.

19. Shawn Ostermann. Tcptrace - TCP Connection Analysis Tool.
http://www.tcptrace.org.

20. P.A.Porras and P.G.Neumann. EMERALD : Event Monitoring Enabling Re-
sponses to Anomalous Live Disturbances. In Proceedings of the National Infor-
mation Security Conference, pages 353-365, Oct 1997.

21. P.Mockapetris. Domain Names - Concepts and Facilities, November 1987. RFC
1034.

22. Manikantan Ramadas. Detecting Anomalous Network Traffic with
Self-Organizing Maps. Master’s thesis, Ohio University, Mar 2003.
http://irg.cs.ohiou.edu/~mramadas/documents/MS-Thesis/thesis.pdf.

23. Brandon Craig Rhodes, James A.Mahaffey, and James D.Cannady. Multiple Self-
Organizing Maps for Intrusion Detection. In Proceedings of the 23rd National
Information Systems Security Conference, 2000.

24. The Sendmail Consortium. Sendmail. http://www.sendmail.org.

25. T.Kohonen. Self Organizing Maps. Springer, third edition, 2001.

