T1B2 1555

Proceedings of the 2002 IEEE
‘Workshop on Information Assurance and Security
United States Military Academy, West Point, NY, 17-19 June 2002

Connection-history based anomaly detection

Thomas Toth, Christopher Kruegel

I. ABSTRACT

In the past few years, many vulnerabilities of wide-spread
software services, often running on of publicly accessible
hosts, have been discovered. These vulnerabilities allow
hackers to gain access to those machines, thereby compro-
mising their security.

When a vulnerable service is deployed on large numbers
of publicly accessible hosts, software tools (called worms)
can automate the task of intruding a machine and spread-
ing to new locations. These worms consume a large amount
of bandwidth by attempting to find and infect other vul-
nerable machines and compromise the security and confi-
dentiality of these hosts.

Because of the fact that worms are most of the time im-
plemented as directly executable code, they are processed
at very high speed. This allows a worm to quickly spread
over a network. Usually, it is too late when one manually
detects the presence of a worm — in most cases the whole
network has already been infected. This makes an auto-
mated response mechanism imperative. In this paper, we
present an approach to automatically identify worms and
perform damage limitation by firewall rule modification.

II. INTRODUCTION

The constant increase of attacks against networks and
their resources causes a necessity to protect these valuable
assets. Although well-configured firewalls provide good
protection against many attacks, some services (like HTTP
or DNS) have to be publicly available. In such cases a
statically configured firewall has to allow incoming traffic
from the Internet without restrictions. The programs im-
plementing such services are often complex and old pieces
of software. This inevitably leads to the existence of pro-
gramming bugs. Skilled intruders exploit such vulnerabil-
ities by sending packets with carefully crafted content to
the services. This content causes situations which have
not been taken into account by the programmers and al-
low the intruder to gain access to the machine. Worms like
the Morris Internet worm [5] are pieces of executable code
that try to replicate themselves by automatic exploitation
of vulnerable services running on publicly accessible hosts.

T. Toth: Distributed Systems Group, Technical University Vienna,
ttoth@infosys.tuwien.ac.at.

C.Kruegel: Distributed Systems Group, Technical University Vi-
enna, chris@infosys.tuwien.ac.at.

ISBN 0-7803-9814-9/$10.00 ©2002 IEEE

A major problem in connection with worms is the fact
that they spread with a very high speed. Generally, it is
too late when one notices that a system has been infected,
because the worm has already inflicted its damage and con-
tinued to replicate itself.

Another problem is that the behavior (and damage func-
tionality) of a worm often cannot be predicted by simply
monitoring its activity over a short period of time. Hidden
features might exist and worms often use a wide variety
of methods for spreading, having several exploits available
to target different services. In the best case, worms only
perform a denial of service attack against the infected net-
work by scanning it for vulnerable services and attempt-
ing to infect other machines. Unfortunately, worms can
carry arbitrary pieces of software with them, even remote
management tools that allow third parties to access the
compromised host. Such a combination of a worm and a
remote management tools like Netbus of Back Orifice not
only wastes valuable resources but threatens confidential-
ity. Remote management tools allow to execute arbitrary
commands on a host allowing others to sniff information
like passwords, credit card numbers or confidential docu-
ments from all kind of devices (e.g. keyboard, hard disc,
local network traffic).

As a worm is not only a nuisance to the system admin-
istrator but can have a serious impact on system security,
our claim that a worm infection can be considered as in-
trusive behavior is justified. Intrusion Detection Systems
(IDS) are security tools that are used to detect traces of
malicious activities which are targeted against the network
and its resources. IDS are traditionally classified as sig-
nature based [7] or anomaly based [1]. In signature based
systems, an administrator defines malicious patterns that
the system has to detect. Anomaly based intrusion systems
[8] on the other hand base on the construction of a profile
of known good behavior and attempt to monitor deviations
thereof.

The problem with misuse based systems is that they re-
quire a signature in order to find attacks which is usually
only the case when a certain exploit is wide-spread and well
known. If an attack is performed against a service with an
exploit whose signature is unknown, the signature based
IDS does not recognize the malicious behavior. Because
of the fact that a worm can appear in a huge number of
different flavors, a unique signature or pattern cannot be

30

given to such a system. Another problem are worms that
are new and unknown to the ID creator (or vendor).

Anomaly based IDS traditionally focus on user or pro-
gram behavior. Profiles of such behavior are created in
advance or during normal system operation. New events
are then compared against those profiles. This has the ad-
vantage of being able to recognize unknown exploits which
manifest themselves in an unusual or abnormal way. The
disadvantage is that anomaly based IDS raise many false
alarms (therefore having a high false positive rate). Nor-
mally, every incident should be investigated carefully man-
ually, but if thousands of alarms are generated every day,
the use of the IDS is voided.

A well-known intrusion detection system that explicitly
deals with the problem of detecting worms is GrIDS [9].
GrIDS is an intrusion detection system that attempts to
detect worms by building so called activity graphs that rep-
resent network connections between hosts and by searching
for predefined patterns in these graphs. GrIDS provides
support for having constraints on parts of the pattern via
assertions and allows the combination (aggregation) of in-
dividual nodes. The aim of this system is to be able to
handle a large number of hosts as their intended target are
large enterprise networks.

Although GrIDS offers many interesting features and is
a step into the right direction, it still suffers from several
disadvantages.

First, their detection is aimed at large scale detection of
worms. This process requires data exchange between many
nodes in different networks which results in a considerable
bandwidth overhead. To make this mechanism scalable, a
data reduction scheme had to be introduced which causes
valuable information to be lost.

Second, their worm detection is based on tree shaped
patterns with branches at certain nodes (i.e. multiple con-
nections originating at a certain machine). Nevertheless,
such branches do not necessarily have to occur in a con-
nection pattern of a worm (although they often do).

Third, the worm detector does not include the packet
payload into the correlation process. GrIDS only considers
events such as the establishment or closing of a connection
or takes very specialized information into account such as
the user name that was used for a login. Using such a re-
duced event base makes correlation possible, but does not
make full use of the available information. Detecting sim-
ilarities in the payload of different packets can enable the
system to increase the certainty that observed connections
really represent a worm. This would allow the system to
lower the false positive rate.

Fourth, GrIDS does not take into account the suspicious
occurrence of connections to non-existing services or non-
existing hosts. These are strong indicators for the existence
of worms that attempt to locate vulnerable services and
remote hosts.

ISBN 0-7803-9814-9/$10.00 ©2002 IEEE

Fifth, GrIDS does not include any response mechanism
in the case that a worm has been detected. This is a major
shortcoming, because by utilizing available components like
firewalls, further damage could be prevented.

In this paper, we present a model that addresses the is-
sues mentioned above in connection with GrIDS. Our aim
is to protect the uncompromised machines in a network
by quickly identifying the behavior of a spreading worm
and automatically responding with adequate mechanisms
in near real-time. In addition, we discuss the implementa-
tion of our proposed mechanisms and present some evalu-
ation results.

I1I. REQUIREMENTS

We have defined several requirements for our model that
our design has to fulfill. These are enumerated and ex-
plained below.

o Automatic worm propagation determination
o Worm detection with a very low false positive rate
« Effective Countermeasures
— automatic responses in near real-time
— prevent infected hosts from infecting other hosts
— prevent non-infected hosts from being infected
« Easy configurability

Automatic worm propagation determination means that
the system has to be capable to determine the mechanisms
that a worm uses for replicating itself. This is done by ex-
amining connections between different hosts together with
their temporal relationships.

Worm detection with a very low false positive rate de-
mands that the system should not report an intrusion in
the case that there is none. Because of the fact that worms
might use arbitrary connection patterns, misuse based IDS
(which use predefined patterns) are definitely not ade-
quate. Anomaly based intrusion detection systems which
are based on statistical approaches and default behavior
profiles usually have a high false positive rate. So neither
a pure signature based system nor a pure anomaly based
system seems adequate. Only a mixture of both methods
is suitable to fulfill this requirement.

Countermeasures have to be performed when an actual
intrusion (in the form of a worm) is detected. In this paper,
we limit our countermeasures to the appropriate changes
of firewall rules. Nevertheless, other response mechanisms
might also be suitable. The response mechanisms must be
triggered as soon as signs for a spreading worm are spotted.
In order to be efficient, they have to be executed at a speed
comparable to the speed of the worm propagation itself.

In general, the countermeasures serve two different pur-
poses. The first is to prevent infected hosts from infecting
others. This is reasonable, because when the source for
further infections can be isolated immediately, the rest of
the hosts remain unaffected. As an attacker could have
included mechanisms into the malicious worm code to cir-

31

cumvent such protection approaches, the second require-
ment demands that non-infected hosts are protected from
being infected. When the worm has been faster than the re-
sponse mechanism on the infected host itself, the majority
of hosts could, for example, be saved by disabling access to
the vulnerable service. If access to services is not granted
to infected hosts, the worm cannot spread anymore.

Easy configurability means that a system administrator
must be able to customize the detection algorithm’s pa-
rameters. This is solved by a configuration file.

IV. Basic MODEL

For our model, we assume that each node participating
in the network has installed a personal firewall which is
configurable at runtime. The individual hosts can run an
arbitrary operating system as long as it provides such a
service. One host per local network segment (i.e. broad-
cast segment) runs a monitoring tool that puts the network
interface into promiscuous mode and sniffs the TCP traffic.
Especially important are TCP packets that are used to set
up a communication channel (packets with an enabled syn
flag in their header).

The monitoring station maintains a history of all recent
connections and attempts to find recurring data in con-
nections or connections which do not fit into the picture
of normal operation. Notice that interesting patterns are
not provided a-priori by external means - instead they are
extracted from the connection history. While connections
are monitored, a connection profile is built. Connection
patterns that indicate spreading worms have to follow the
properties listed below.

o Similarity of connection patterns
o Causality of connection patterns
o Obsolete connections

The similarity of connection patterns describes the fact
that a worm exhibits similar behavior when it attempts to
spread from node to node. This is caused by the fact that
a worm only contains a certain number of modules that
can launch different attacks against vulnerable services. It
is very likely that a worm attempts to repeatedly exploit
the same vulnerability at different machines, especially be-
cause it is often the case that all hosts of a network are all
running the same version of a certain service. Even when
different modules are at hand, they are limited in num-
ber. Therefore it is justified to assume that there will be
detectable similarities in the connection patterns. Nimda
[6] was one of the first worms that made use of multiple
vulnerabilities.

The causality of connection patterns means that a certain
connection pattern or event depends on the occurrence of
another, preceding event. For example, it is obvious that
a node has to be infected first, before it starts to act in
an infected manner. Although such causality of events or
patterns is not a certain sign of an intrusion, it can provide

ISBN 0-7803-9814-9/$10.00 ©2002 IEEE

a strong indication. An interesting situation is the obser-
vation that the destination node of a certain connection
opens a similar connection to another host after a short
period of time. No regular service behaves that way with
the exception of a DNS server that tries to resolve a request
from a client which it cannot handle. In this case, the query
has to be forwarded and causes a similar connection to an-
other machine. Causal relationships are of interest because
they help to dramatically reduce the search space for pat-
tern matching algorithms as only a few connections that
happen after a certain event have to be taken into account.

Obsolete connections are caused by a worm that has suc-
cessfully compromised a host and attempts to locate new
victims which can be infected. Finding other vulnerable
services is usually implemented by connecting to services
at random IP-addresses. In the case that the random host
does not exist or the targeted service is not available, an
obsolete connection is recorded. Such a connection is a
strong indicator for either a misconfiguration or for a worm
searching for new targets. Even when the worm does not
use TCP messages to find other hosts, it still has to use
some available communication services (e.g. ICMP echo
requests or UDP messages) to do so. Such occurrences are
also monitored on the network.

Following these three properties, we define the charac-
teristics of the behavior of a worm. The occurrence of
events are evaluated according to these principles and are
assigned a certain severity. The following section explains
the mechanisms that are utilized to rate connections and
to find potential offending patterns.

V. WORM PATTERN DETECTION

Before suspicious patterns can be detected, they need to
be defined in some way. As mentioned above, such pat-
terns are often specified in advance (e.g. signature based
systems). Our approach is different in the way that we do
not provide any specific patterns that should be searched
for. Instead, we define a metrics that allows the system to
evaluate the likelihood that an observed pattern is mali-
cious (i.e. caused by a worm). This enables the system to
distill the behavior of the worm from live connection data.

To make the explanation of the pattern evaluation algo-
rithm easier to follow, we first introduce some definitions.

Definition: A connection is a tuple (timestamp, srcHost,
srcPort, dstHost, dstPort, data) representing a successfully
opened TCP connection at time timestamp from machine
srcHost, srcPort to machine dstHost, dstPort. data does not
contain all bytes that have been exchanged, but only the
first z ones (where z is a configurable number).

A connection-set is a set of connections where each con-
nection is assigned a unique number. The numbers are
assigned in the order the connections occur.

Definition: A chain is a subset of a connection-set. For

32

the elements ¢; (1 <= i <=1) of a chain of length [, the
following holds.

o For all connections ¢; and c;4p of the connection-set, the
property timestamp(c;) < timestamp(c;yp) holds (with
p>=0).

o For each connection ¢; and 7 > 1, the destination of the
connection ¢;_; is the source of ¢;.

A chain represents a number of TCP session establish-
ments that are sent consecutively from one host to another.
An outgoing connection from a host is an element of the
chain only if another host opened a connection to the men-
tioned host before. Loops (the same host being present
twice in a chain) are allowed as the timestamp allows or-
dering of connections.

Definition A trail of a node N consists of all chains that
end at node N.

Fig. 1. Example for chains and trails

In the example shown in Figure 1 the numbers associ-
ated with the edges denote the time of occurrence of the
connection. An example for a chain are the connections at
time 27, 34 and 52 from node 1 to node 6 (via node 3 and
node 2). The connections at times 27 and 23 do not form a
chain because they violate the timestamp condition. The
trail of node 6 consists of the chain starting at node 1 and
leading to node 6 and the chain that starts at node 5 and
leads to node 6.

These definitions allow us to explain the pattern evalua-
tion algorithm in detail below.

A. Combined determination and identification of worm
patterns

As mentioned above, a central analyzer collects the con-
nection data of all nodes in a local area network segment.
The following data structures are utilized.

o Connection history
« Connection trap list
o Possible worm pattern pool

Connection history: The connection history for each host
contains all connection tuples that have been opened to
that host. This includes data extracted from the first few
TCP segments (i.e. the first z bytes). A ignore list, which
is also provided for each host, allows the specification of
events which should not be inserted into the connection

ISBN 0-7803-9814-9/$10.00 ©2002 IEEE

history. This a-priori knowledge helps to reduce the storage
overhead by focusing on interesting occurrences.

Connection trap list: The connection trap list for each
host summarizes the information of its connection history.
Tts elements are lists, one for each chain that ends at this
node (i.e. one element for each chain in this node’s trail).
The elements of these lists are pairs of (destination port,
content) of all previous connections for the corresponding
chain. This obviously includes connections that do not di-
rectly end at that node, but are in chains which eventually
end there.

When an outgoing connection is detected that matches
an entry of any element of a list of this connection trap
list (i.e. a connection with a destination port and a con-
tent that is exactly similar to an element of the trap list),
a part of a potential worm pattern has been found. The
complete list where the matching element is member of (i.e.
one element of the trap list) is then inserted into the possi-
ble worm pattern pool of the new connection’s destination
node.

Possible worm pattern pool: This pool contains the lists
that have been identified as parts of a possible worm. For
each entry in this possible worm pattern pool (i.e. for each
list), an anomaly score is calculated to determine whether
it is malicious or not. This is done with the the following
metrics.

anomalyvalue = repeatcount x r factor + nehost *
hfactor + neservice x s factor

where
o repeatcount is calculated as the sum of all elements in the
list that appear more than once.

o nehost is the number of connections opened to distinct
non-existing hosts, where the characteristic of the connec-
tions have to be present in the currently evaluated chain.
o neservice is the number of connections opened to non-
existing services at existing servers, where the characteris-
tic of the connections have to be present in the currently
evaluated chain.

o rfactor, hfactor and sfactor are configurable factors to
weight the gathered numbers.

Not all connections to non-existing services / non-
existing hosts are counted, but only those which have been
observed after the first connection of the corresponding
chain under consideration is monitored.

This metric is evaluated for each chain of the trails of all
nodes. Notice however, that this calculation has only to
be done when a chain changes (i.e. it gets extended with a
new connection).

With the ignore list described above, many chains can
be eliminated that would otherwise have to be considered
as parts of worms. A worm pattern is deduced in the case
that the anomaly-value of a chain exceeds a predefined,
configurable threshold. In such a case, the information

33

about the worm pattern is disseminated to all the other
hosts of the network via a broadcast in order to trigger
appropriate response mechanisms (as explained below).

B. Ezample

This subsection presents an example that shows the de-
tection of a worm. Assume that we have 5 nodes, which
are numbered from 1 to 5. The following connections have
been recorded.

time src srcport dst dstport content
27 1 1231 4 80 GET \..\..
28 2 8329 4 25 -
33 4 2215 ns 80 GET \..\..
35 5 9782 3 80 GET index.h
39 4 11251 5 25 contentA
41 5 5214 nh 25 contentA
42 5 28315 3 80 GET \..\..
44 3 18763 2 80 contentA

The shape of the connection graph together with the
timestamps and destination ports of every individual con-
nection is shown in figure 2.

ns: serice not available
nh: host not existant

Fig. 2. Worm detection example

The following parameters have been utilized for the de-
tection algorithm.

rfactor hfactor sfactor trigger value

0.3 0.2 0.05 1.0

Events that represent connections to unreachable or un-
available services get a comparably low weight. This is
justified by the fact that a service might become unavail-
able by simply crashing. In contrast to this, connection to
non-existent hosts and repeated actions are weighted with
a higher value.

The first connection from Figure 2 results in a trap for
connections leaving node 4 to port 80 with the recorded
content. An additional trap is inserted there after the sec-
ond connection from node 2 to node 4. A connection from

ISBN 0-7803-9814-9/$10.00 ©2002 IEEE

node 4 to a non existing service is performed afterwards,
creating an anomaly value of 0.05 at host 4. The connec-
tion from 5 to 3 is not important for this example because
the causality relationship does not hold (but a trap is in-
serted at node 3). The connection from 4 to 5 does not
have any effect because the content is different from the
one before (2 to 4). The connection from 5 to a non exist-
ing host results in an anomaly value of 0.55, the one from
5 to 3 in a value of 0.85 and the one from 3 to 2 in a value
of 1.15. At this point the worm is recognized, its means of
spreading are identified as ports 25 and 80.

VI. AUTOMATIC RESPONSE MECHANISMS

As stated above, a broadcast is used to disseminate the
characteristics of a detected worm. At all hosts, appropri-
ate countermeasures can be launched in reaction to such a
broadcast. This is done by reconfiguring the local firewall
to block the ports utilized by the worm’s spreading mech-
anisms. This step is necessary to prevent the worm from
infecting new hosts.

Additionally, hosts that are identified to be infected in-
sert rules into their firewalls that prevent outgoing traffic to
the identified vulnerable services. This helps to prevent the
worm from flooding the network with reconnaissance pack-
ets when it searches for new victims. The mechanism also
helps to protect other hosts that are not directly covered
by our proposed approach (e.g. hosts on the Internet).

Even when not all possible ways have been identified that
the worm can utilize to spread, the threat has been vastly
reduced. When the worm attempts to use an alternative
way, it will be detected very soon and the firewalls are
updated accordingly. The known mechanisms are no longer
effective as they are blocked at the firewall.

VII. IMPLEMENTATION

We have implemented a prototype that realizes the ap-
proach described above. A single node runs a network snif-
fer in promiscuous mode (with full TCP stream reassem-
bly) together with the above explained model. In combi-
nation with a dynamic firewall configuration daemon at all
hosts this is enough to perform the desired tasks. While
the sniffer collects the available network traffic (TCP, UDP
and ICMP messages) and detects worm signatures the dae-
mons configure the firewalls at the other hosts accordingly.

Our prototype has been implemented in C on a Linux
2.4.18 (SuSE 8.0) system. Parameters from the model are
configurable via a configuration file that is read at startup
time. These values are considered constant during nor-
mal operation. Because memory is a limited resource, the
amount of data that can be stored is not infinite. There-
fore, the connection history only stores connection data of
a certain period of time. This can be justified because the
strength of worms is their ability to spread very quickly
over whole networks.

34

The daemon uses the iptables module to insert into
and remove firewall rules from the system. These firewall
rules can be configured such that they only remain active
for a limited amount of time. This is motivated by the
fact that hosts that are infected with the worm also have
a firewall that has closed the outgoing ports. When the
worm activity has stopped (because the personal firewalls
have been reconfigured according to the worm patterns)
the ports used by the services can be made available again.

The communication channel that is used to broadcast
reconfiguration and worm property information over the
network is protected. This is done by calculating a MD5
sum of the payload that is sent out from the monitoring
station to the individual client daemons and encrypting it
with its secret key. The public key of the monitoring station
is present at all hosts of the network. Using this public key,
the authenticity of the message can be determined by the
daemon (that obviously only accepts valid and authentic
messages).

VIII. EVALUATION

We made experiments in a network that consists of
nine Linux hosts where different services (e.g. HTTP,
DNS, SSHD) as well as personal firewalls have been in-
stalled. The behavior of different worms were simulated
with tcpreplay [3], including connections to non-existing
hosts or services. A single machine was running our proto-
type implementation with the secure infrastructure as ex-
plained above. We used the same parameters as in the ex-
ample shown above. In all seven cases, our system has been
able to reliably detect the worm pattern. Especially the in-
clusion of the payload has been valuable. This allowed us
to identify similar connections (e.g. identical ports) with
different payloads as different without causing the system
to detect this case as an alarm. As an optimization, we
inserted known connections occurring in our network into
the ignore-list which then reduced the amount of data that
had to be processed.

We collected experimental results with our prototype.
The sniffer performed the TCP reassembly of the first 512
bytes which were then included into the connection history.
The timeout for the connection history had been set to 120
s. With this scenario the system followed the network ac-
tivity easily on a heavy loaded network. The average mes-
sage length that has been broadcasted by the monitoring
station was 81 bytes. The calculations of MD5 sums of
the request payloads lasted 0.002 ms on average, while the
encryption of the MD5 sums lasted 0.085 ms. These mea-
surements were taken on an Intel Pentium III with 550
MHz.

The modification of the dynamic firewall rules starting
from the point when the monitoring station initiated the
action to the activation of the rule lasted 23 ms on average.
This justifies our claim that the system can protect all hosts

ISBN 0-7803-9814-9/$10.00 ©2002 IEEE

of a network with appropriate speed once a worm has been
detected.

IX. CONCLUSION AND FURTHER RESEARCH

In this paper, we have presented the design and imple-
mentation of a system that monitors a network for connec-
tion patterns that represent spreading worms.

In contrast to misuse based systems, the signatures that
specify a worm are not provided a-priori. The system it-
self identifies the characteristics of the worm by deriving
the relevant information by an anomaly based metrics and
interesting temporal relationships between different con-
nections. Also connection attempts to non-existing hosts
or services provide a high level of confidence that witnessed
behavior represents a malicious worm.

In contrast to classic anomaly based systems, we don’t
build profiles of good behavior and then attempt to detect
malicious deviations. This makes our system more resistant
against attacks in which an attacker behaves in a way such
that his illegal actions are considered normal.

We include a security framework with authentication to
ensure that only rules from the legitimate monitoring sta-
tion are dynamically inserted into the distributed firewalls.
Currently, the single monitoring station is a single point of
failure. In future versions, a replicating this service should
be taken into account in order to make it more fault toler-
ant.

REFERENCES

[1] Denning, Dorothy An Intrusion-Detection Model, 1986 In IEEE
Symposium on Security and Privacy, Oakland, USA

[2] Anderson, James P. Computer Security Threat Monitoring and
Surveillance February 1980

[3] tcpreplay http://www.tcpdump.org/cgi-bin/cvsweb/tcpreplay/

[4] Staniford-Chen et al GrIDS - A Graph-Based Intrusion De-
tection System for Large Networks In Proceedings of the 19th
National Information Systems Security Conference.

[5] E. Spafford. The Internet Worm Program: Analysis. Computer
Communication Review, January 1989.

[6] The nimda worm analysis http://aris.securityfocus.com/alerts/
nimda/010921-Analysis-Nimda-v2.pdf

[7] Giovanni Vigna and Richard A. Kemmerer. NetSTAT: A
Network-based Intrusion Detection System. In 14th Annual
Computer Security Applications Conference, December 1998.

[8] Laurent Eschenauer. Imsafe. http://imsafe.sourceforge.net,

2001.
[9] Karl Levitt,Matt Bishop GrIDS design
http://seclab.cs.ucdavis.edu/arpa/grids/design.html
35

