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Abstract
Today’s Internet intrusion detection systems (IDSes) moni-
tor edge networks’ DMZs to identify and/or filter malicious
flows. While an IDS helps protect the hosts on its local edge
network from compromise and denial of service, it cannot
alone effectively intervene to halt and reverse the spreading
of novel Internet worms. Generation of theworm signatures
required by an IDS—the byte patterns sought in monitored
traffic to identify worms—today entails non-trivial human la-
bor, and thus significant delay: as network operators detect
anomalous behavior, they communicate with one another and
manually study packet traces to produce a worm signature.
Yet intervention must occur early in an epidemic to halt a
worm’s spread. In this paper, we describe Autograph, a sys-
tem thatautomaticallygenerates signatures for novel Internet
worms that propagate using TCP transport. Autograph gen-
erates signatures by analyzing theprevalence of portions of
flow payloads, and thus uses no knowledge of protocol se-
mantics above the TCP level. It is designed to produce sig-
natures that exhibit highsensitivity(high true positives) and
high specificity(low false positives); our evaluation of the
system on real DMZ traces validates that it achieves these
goals. We extend Autograph to share port scan reports among
distributed monitor instances, and using trace-driven simula-
tion, demonstrate the value of this technique in speeding the
generation of signatures for novel worms. Our results elu-
cidate the fundamental trade-off between early generationof
signatures for novel worms and the specificity of these gener-
ated signatures.

1 Introduction and Motivation

In recent years, a series of Internetwormshas exploited the
confluence of the relative lack of diversity in system and
server software run by Internet-attached hosts, and the ease
with which these hosts can communicate. A worm program
is self-replicating: it remotely exploits a software vulnerabil-
ity on a victim host, such that the victim becomes infected,
and itself begins remotely infecting other victims. The sever-
ity of the worm threat goes far beyond mere inconvenience.
The total cost of the Code Red worm epidemic, as measured
in lost productivity owing to interruptions in computer and
network services, is estimated at $2.6 billion [7].

Motivated in large part by the costs of Internet worm epi-
demics, the research community has investigated worm prop-
agation and how to thwart it. Initial investigations focused
on case studies of the spreading of successful worms [8], and
on comparatively modeling diverse propagation strategiesfu-
ture worms might use [18, 21]. More recently, researchers’
attention has turned to methods forcontainingthe spread of a
worm. Broadly speaking, three chief strategies exist for con-
taining worms by blocking their connections to potential vic-
tims: discovering ports on which worms appear to be spread-
ing, and filtering all traffic destined for those ports; discover-
ing source addresses of infected hosts and filtering all traffic
(or perhaps traffic destined for a few ports) from those source
addresses; and discovering the payload content string thata
worm uses in its infection attempts, and filtering all flows
whose payloads contain that content string.

Detecting that a worm appears to be active on a particular
port [22] is a useful first step toward containment, but is often
too blunt an instrument to be used alone; simply blocking all
traffic for port 80 at edge networks across the Internet shuts
down the entire web when a worm that targets web servers
is released. Mooreet al. [9] compared the relative efficacy
of source-address filtering and content-based filtering. Their
results show that content-based filtering of infection attempts
slows the spreading of a worm more effectively: to confine
an epidemic within a particular target fraction of the vulner-
able host population, one may begin content-based filtering
far later after the release of a worm than address-based fil-
tering. Motivated by the efficacy of content-based filtering,
we seek in this paper to answer the complementary question
unanswered in prior work:how should one obtain worm con-
tent signatures for use in content-based filtering?

Here, asignatureis a tuple(IP-proto, dst-port,
byteseq) , where IP-proto is an IP protocol number,
dst-port is a destination port number for that proto-
col, andbyteseq is a variable-length, fixed sequence of
bytes.1 Content-based filtering consists of matching network
flows (possibly requiring flow reassembly) against signatures;
a match occurs whenbyteseq is found within the pay-
load of a flow using theIP-proto protocol destined for
dst-port . We restrict our investigation to worms that prop-
agate over TCP in this work, and thus hereafter consider sig-
natures as(dst-port, byteseq) tuples.



Today, there exist TCP-flow-matching systems that are
“consumers” of these sorts of signatures. Intrusion detec-
tion systems (IDSes), such as Bro [11] and Snort [19], moni-
tor all incoming traffic at an edge network’s DMZ, perform
TCP flow reassembly, and search for known worm signa-
tures. These systems log the occurrence of inbound worm
connections they observe, and can be configured (in the case
of Bro) to change access control lists in the edge network’s
router(s) to block traffic from source IP addresses that have
sent known worm payloads. Cisco’s NBAR system [3] for
routers searches for signatures in flow payloads, and blocks
flows on the fly whose payloads are found to contain known
worm signatures. We limit the scope of our inquiry to the
detection and generationof signatures for use by these and
future content-based filtering systems.

It is important to note that all the content-based filtering
systems use databases of worm signatures that aremanually
generated: as network operators detect anomalous behavior,
they communicate with one another, manually study packet
traces to produce a worm signature, and publish that signature
so that it may be added to IDS systems’ signature databases.
This labor-intensive, human-mediated process of signature
generation is slow (on the order of hours or longer), and ren-
ders today’s IDSes unhelpful in stemming worm epidemics—
by the time a signature has been found manually by network
operators, a worm may already have compromised a signifi-
cant fraction of vulnerable hosts on the Internet.

We seek to build a system that automatically, without fore-
knowledge of a worm’s payload or time of introduction, de-
tects the signature of any worm that propagates by randomly
scanning IP addresses. We assume the system monitors all in-
bound network traffic at an edge network’s DMZ.Autograph,
our worm signature detection system, has been designed to
meet that goal. The system consists of three interconnected
modules: a flow classifier, a content-based signature genera-
tor, andtattler, a protocol through which multiple distributed
Autograph monitors may share information, in the interest of
speeding detection of a signature that matches a newly re-
leased worm.

In our evaluation of Autograph, we explore two important
themes. First, there is a trade-off between early detectionof
worm signatures and avoiding generation of signatures that
cause false positives. Intuitively, early in an epidemic, worm
traffic is less of an outlier against the background of innocu-
ous traffic. Thus, targeting early detection of worm signatures
increases the risk of mistaking innocuous traffic for worm
traffic, and producing signatures that incur false positives.
Second, we demonstrate the utility of distributed, collabora-
tive monitoring in speeding detection of a novel worm’s sig-
nature after its release.

In the remainder of this paper, we proceed as follows: In
the next section, we catalog the goals that drove Autograph’s
design. In Section 3, we describe the detailed workings of
a single Autograph monitor: its traffic classifier and content-
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Figure 1: Combinations of sensitivity and specificity.

based signature generator. Next, in Section 4, we evaluate the
quality of the signatures Autograph finds when run on real
DMZ traces from two edge networks. In Section 5 we de-
scribe tattler and the distributed version of Autograph, and us-
ing DMZ-trace-driven simulation evaluate the speed at which
the distributed Autograph can detect signatures for newly in-
troduced worms. After cataloging limitations of Autograph
and possible attacks against it in Section 6, and describing
related work in Section 7, we conclude in Section 8.

2 Desiderata for a Worm Signature Detection
System

Signature quality. Ideally, a signature detection system
should generate signatures that match worms and only
worms. In describing the efficacy of worm signatures in fil-
tering traffic, we adopt the parlance used in epidemiology to
evaluate a diagnostic test:

• Sensitivityrelates to thetrue positivesgenerated by a sig-
nature; in a mixed population of worm and non-worm
flows, the fraction of the worm flows matched, and thus
successfully identified, by the signature. Sensitivity is
typically reported ast ∈ [0,1], the fraction of true posi-
tives among worm flows.

• Specificityrelates to thefalse positivesgenerated by a
signature; again, in a mixed population, the fraction of
non-worm flows matched by the signature, and thus in-
correctly identified as worms. Specificity is typically re-
ported as(1− f ) ∈ [0,1], wheref is the fraction of false
positives among non-worm flows.

Throughout this paper, we classify signatures according to
this terminology, as shown in Figure 1.

In practice, there is a tension between perfect sensitivity
and perfect specificity; one often suffers when the other im-
proves, because a diagnostic test (e.g.,“is this flow a worm
or not?”) typically measures only a narrow set of features in
its input, and thus does not perfectly classify it. There may
be cases where two inputs present with identical features in
the eyes of a test, but belong in different classes. We examine
this sensitivity-specificity trade-off in detail in Section 4.



Signature quantity and length. Systems that match flow
payloads against signatures must compare a flow to all signa-
tures known for its IP protocol and port. Thus, fewer signa-
tures speed matching. Similarly, the cost of signature match-
ing is proportional to the length of the signature, so short
signatures may be preferable to long ones. Signature length
profoundly affects specificity: when one signature is a subse-
quence of another, the longer one is expected to match fewer
flows than the shorter one.

Robustness against polymorphic worms. A polymorphic
worm2 changes its payload in successive infection attempts.
Such worms pose a particular challenge to match with sig-
natures, as a signature sensitive to a portion of one worm
payload may not be sensitive to any part of another worm
payload. If a worm were “ideally” polymorphic, each of its
payloads would contain no byte sequence in common with
any other. That ideal is impossible, of course; single-bytese-
quences are shared by all payloads. In practice, a “strongly”
polymorphic worm is one whose successive payloads share
only very short byte subsequences in common. Such short
subsequences,e.g., 4 bytes long, cannot safely be used as
worm signatures, as they may be insufficiently specific. Poly-
morphism generally causes an explosion in the number of
signatures required to match a worm. An evaluation of the
extent to which such worm payloads are achievable is beyond
the scope of this paper. We note, however, that if a worm
exhibits polymorphism, but does not change one or more rel-
atively long subsequences across its variants, an efficientsig-
nature detection system will generate signatures that match
these invariant subsequences, and thus minimize the number
of signatures required to match all the worm’s variants.

Timeliness of detection. Left unchecked by patches, traffic
filtering, or other means, port-scanning worms infect vulner-
able hosts at an exponential rate, until the infected population
saturates. Provos [12] shows in simulation that patching of
infected hosts is more effective the earlier it is begun after the
initial release of a new worm, and that in practical deploy-
ment scenarios, patching must begin quickly (before 5% of
vulnerable hosts become infected) in order to have hope of
stemming an epidemic such that no more than 50% of vul-
nerable hosts ever become infected. Mooreet al. [9] show
similarly that signature-based filtering of worm traffic stops
worm propagation most effectively when begun early.

Automation. A signature detection system should require
minimal real-time operator intervention. Vetting signatures
for specificity with human eyes,e.g., is at odds with timeli-
ness of signature detection for novel worms.

Application neutrality. Knowledge of application protocol
semantics above the TCP layer (e.g.,HTTP, NFS RPCs,&c.)

Suspicious Flow Selection

Selecting Suspicious traffic  
using heuristics

Signature Generation

Prevalence
Histogram

Construction
Flow 

reassembly

Payload
Partitioning

(COPP)Suspicious  
inbound 
packets

Content blocks

Prevalence 
Histogram

Non-
suspicious  
inbound
packets

W
o

rm
 S

ig
n

at
u

re
s

C
ro

ss
-D

M
Z

 t
ra

ff
ic ���������	

tattler Other Autograph Monitors

Port-scanner IP addresses

Figure 2: Architecture of an Autograph Monitor

may be useful in distinguishing worm and innocuous traffic,
and thus in producing signatures that are sensitive and spe-
cific. Avoiding leaning on such application-protocol knowl-
edge, however, broadens the applicability of the signaturede-
tection system to all protocols layered atop TCP.

Bandwidth efficiency. If a signature detection system is de-
ployed in distributed fashion, such that traffic monitors com-
municate with one another about their observations, that com-
munication should remain scalable, even when a worm gen-
erates tremendous network activity as it tries to spread. That
is, monitor-to-monitor communication should grow slowly as
worm activity increases.

3 Autograph System Design

Motivated by the design goals given in the previous sec-
tion, we now present Autograph. We begin with a schematic
overview of the system, shown in Figure 2. A single Auto-
graph monitor’s input is all traffic crossing an edge network’s
DMZ, and its output is a list of worm signatures. We defer
discussion of tattler, used in distributed deployments of Au-
tograph, to Section 5.2. There are two main stages in a single
Autograph monitor’s analysis of traffic. First, asuspicious
flow selectionstage uses heuristics to classify inbound TCP
flows as either suspicious or non-suspicious.

After classification, packets for these inbound flows are
stored on disk in asuspicious flow poolandnon-suspicious
flow pool, respectively. For clarity, throughout this paper, we
refer to the output of the classifier using those terms, and re-
fer to the true nature of a flow asmaliciousor innocuous.
Further processing occursonly on payloads in the suspicious
flow pool. Thus, flow classification reduces the volume of
traffic that must be processed subsequently. We assume in
our work that such heuristics will be far from perfectly accu-
rate. Yet any heuristic that generates a suspicious flow pool
in which truly malicious flows are a greater fraction of flows
than in the total inbound traffic mix crossing the DMZ will
likely reduce generation of signatures that cause false posi-
tives, by focusing Autograph’s further processing on a flow
population containing a lesser fraction of innocuous traffic.
Autograph performs TCP flow reassembly for inbound pay-
loads in the suspicious flow pool. The resulting reassembled



payloads are analyzed in Autograph’s second stage,signature
generation.

We stress that Autograph segregates flows by destination
port for signature generation; in the remainder of this paper,
one should envision one separate instance of signature gen-
eration for each destination port, operating on flows in the
suspicious flow pool destined for that port. Signature genera-
tion involves analysis of thecontentof payloads of suspicious
flows to select sensitive and specific signatures. Two proper-
ties of worms suggest that content analysis may be fruitful.
First, a worm propagates by exploiting one software vulner-
ability or a set of such vulnerabilities. That commonality in
functionality has to date led to commonality in code, and thus
in payload content, across worm infection payloads. In fact,
Internet worms to date have had a single, unchanging payload
in most cases. Even in those cases where multiple variants
of a worm’s payload have existed (e.g.,Nimda), those vari-
ants have shared significant overlapping content.3 Second,
a worm generates voluminous network traffic as it spreads;
this trait stems from worms’ self-propagating nature. For
port-scanning worms, the exponential growth in the popu-
lation of infected hosts and attendant exponential growth in
infection attempt traffic are well known [8]. As also noted
and exploited by Singhet al. [15], taken together, these two
traits of worm traffic—content commonality and magnitude
of traffic volume—suggest that analyzing the frequency of
payload content should be useful in identifying worm pay-
loads. During signature generation, Autograph measures the
frequency with which non-overlapping payload substrings
occur across all suspicious flow payloads, and proposes the
most frequently occurring substrings as candidate signatures.

In the remainder of this section, we describe Autograph’s
two stages in further detail.

3.1 Selecting Suspicious Traffic

In this work, we use a simple port-scanner detection tech-
nique as a heuristic to identify malicious traffic; we clas-
sify all flows from port-scanning sources as suspicious. Note
that we do not focus on the design of suspicious flow clas-
sifiers herein; Autograph can adoptany anomaly detection
technique that classifies worm flows as suspicious with high
probability. In fact, we deliberately use a port-scanning flow
classifier because it is simple, computationally efficient,and
clearly imperfect; our aim is to demonstrate that Autograph
generates highly selective and specific signatures, even with
a naive flow classifier. With more accurate flow classifiers,
one will only expect the quality of Autograph’s signatures to
improve.

Many recent worms rely on scanning of the IP address
space to search for vulnerable hosts while spreading. If a
worm finds another machine that runs the desired service on
the target port, it sends its infectious payload. Probing a
non-existent host or service, however, results in an unsuc-

cessful connection attempt, easily detectable by monitoring
outbound ICMP host/port unreachable messages, or identify-
ing unanswered inbound SYN packets. Hit-list worms [18],
while not yet observed in the wild, violate this port-scanning
assumption; we do not address them in this paper, but com-
ment on them briefly in Section 6.

Autograph stores the source and destination addresses of
each inbound unsuccessful TCP connection it observes. Once
an external host has made unsuccessful connection attempts
to more thans internal IP addresses, the flow classifier con-
siders it to be a scanner. All successful connections from an
IP address flagged as a scanner are classified as suspicious,
and their inbound packets written to the suspicious flow pool,
until that IP address is removed after a timeout (24 hours in
the current prototype).4 Packets held in the suspicious flow
pool are dropped from storage after a configurable intervalt.
Thus, the suspicious flow pool contains all packets received
from suspicious sources in the past time periodt.5

Autograph reassembles all TCP flows in the suspicious
flow pool. Everyr minutes, Autograph considers initiating
signature generation. It does so when for a single destination
port, the suspicious flow pool contains more than a threshold
number of flowsθ. In an online deployment of Autograph,
we envision typicalr values on the order of ten minutes. We
continue with a detailed description of signature generation
in the next subsection.

3.2 Content-Based Signature Generation

Autograph next selects the most frequently occurring byte se-
quences across the flows in the suspicious flow pool as signa-
tures. To do so, it divides each suspicious flow into smaller
content blocks, and counts the number of suspicious flows in
which each content block occurs. We term this count a con-
tent block’sprevalence, and rank content blocks from most to
least prevalent. As previously described, the intuition behind
this ranking is that a worm’s payload appears increasingly fre-
quently as that worm spreads. When all worm flows contain
a common, worm-specific byte sequence, that byte sequence
will be observed in many suspicious flows, and so will be
highly ranked.

Let us first describe how Autograph divides suspicious
flows’ payloads into shorter blocks. One might naively di-
vide payloads into fixed-size, non-overlapping blocks, and
compute the prevalence of those blocks across all suspicious
flows. That approach, however, is brittle if worms even triv-
ially obfuscate their payloads by reordering them, or insert-
ing or deleting a few bytes. To see why, consider what oc-
curs when a single byte is deleted or inserted from a worm’s
payload; all fixed-size blocks beyond the insertion or deletion
will most likely change in content. Thus, a worm author could
evade accurate counting of its substrings by trivial changes in
its payload, if fixed-size, non-overlapping blocks were used
to partition payloads for counting substring prevalence.
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Figure 3: COPP with a breakmark ofr(“0007”)

Instead, as first done in the file system domain in
LBFS [10], we divide a flow’s payload intovariable-length
content blocks using COntent-based Payload Partitioning
(COPP). Because COPP determines the boundaries of each
block based on payload content, the set of blocks COPP gen-
erates changes little under byte insertion or deletion.

To partition a flow’s payload into content blocks, COPP
computes a series of Rabin fingerprintsr i over a slidingk-byte
window of the flow’s payload, beginning with the firstk bytes
in the payload, and sliding one byte at a time toward the end
of the payload. It is efficient to compute a Rabin fingerprint
over a sliding window [13]. As COPP slides its window along
the payload, it ends a content block whenr i matches a prede-
terminedbreakmark, B; whenr i ≡B (moda).6 The average
content block size produced by COPP,a, is configurable; as-
suming random payload content, the window at any byte po-
sition within the payload equals the breakmarkB (moda)
with probability 1/a.

Figure 3 presents an example of COPP, using a 2-byte win-
dow, for two flows f0 and f1. Sliding a 2-byte window from
the first 2 bytes to the last byte, COPP ends a content block
ci whenever it sees the breakmark equal to the Rabin finger-
print for the byte string “0007”. Even if there exist byte in-
sertions, deletions, or replacements between the two flows,
COPP finds identicalc1 andc3 blocks in both of them.

Because COPP decides content block boundaries proba-
bilistically, there may be cases where COPP generates very
short content blocks, or takes an entire flow’s payload as a
single content block. Very short content blocks are highly
unspecific; they will generate many false positives. Taking
the whole payload is not desirable either, because long signa-
tures are not robust in matching worms that might vary their
payloads. Thus, we impose minimum and maximum content
block sizes,m andM, respectively. When COPP reaches the
end of a content block and fewer thanm bytes remain in the
flow thereafter, it generates a content block that contains the
lastm bytes of the flow’s payload. In this way, COPP avoids
generating too short a content block, and avoids ignoring the
end of the payload.

After Autograph divides every flow in the suspicious flow
pool into content blocks using COPP, it discards content
blocks that appear only in flows that originate from a sin-
gle source IP address from further consideration. We found
early on when applying Autograph to DMZ traces that such

content blocks typically correspond to misconfigured or oth-
erwise malfunctioning sources that arenot malicious; such
content blocks typically occur in many innocuous flows, and
thus often lead to signatures that cause false positives. Singh
et al. [15] also had this insight—they consider flow endpoint
address distributions when generating worm signatures.

Suppose there areN distinct flows in the suspicious flow
pool. Each remaining content block matches some portion of
theseN flows. Autograph repeatedly selects content blocks
as signatures, until the selected set of signatures matchesa
configurable fractionw of the flows in the suspicious flow
pool. That is, Autograph selects a signature set that “covers”
at leastwN flows in the suspicious flow pool.

We now describe how Autograph greedily selects content
blocks as signatures from the set of remaining content blocks.
Initially the suspicious flow poolF contains all suspicious
flows, and the set of content blocksC contains all content
blocks produced by COPP that were found in flows origi-
nating from more than one source IP address. Autograph
measures the prevalence of each content block—the number
of suspicious flows inF in which each content block inC
appears—and sorts the content blocks from greatest to least
prevalence. The content block with the greatest prevalenceis
chosen as the next signature. It is removed from the set of
remaining content blocksC, and the flows it matches are re-
moved from the suspicious flow pool,F . This entire process
then repeats; the prevalence of content blocks inC in flows
in F is computed, the most prevalent content block becomes
a signature, and so on, untilwN flows in the originalF have
been covered. This greedy algorithm attempts to minimize
the size of the set of signatures by choosing the most preva-
lent content block at each step.

We incorporate ablacklistingtechnique into signature gen-
eration. An administrator may configure Autograph with a
blacklist of disallowed signatures, in an effort to preventthe
system from generating signatures that will cause false pos-
itives. The blacklist is simply a set of strings. Any sig-
nature Autograph selects that is a substring of an entry in
the blacklist is discarded; Autograph eliminates that content
block from C without selecting it as a signature, and con-
tinues as usual. We envision that an administrator may run
Autograph for an initialtraining period,and vet signatures
with human eyes during that period. Signatures generated
during this period that match common patterns in innocu-
ous flows (e.g.,GET /index.html HTTP/1.0 ) can be
added to the blacklist.

At the end of this process, Autograph reports the selected
set of signatures. The current version of the system publishes
signature byte patterns in Bro’s signature format, for direct
use in Bro. Table 1 summarizes the parameters that control
Autograph’s behavior.

Note that because the flow classifier heuristic is imperfect,
innocuous flows will unavoidably be included in the signa-
ture generation process. We expect two chief consequences



 0

 10

 20

 30

 40

 50

 60

 70

 0  20  40  60  80  100

O
cc

ur
en

ce
 (

%
)

Content Blocks (sorted)

Average block size (a) = 64

from Nimda

from Code-RedII from Nimda (16 different payloads)

from WebDAV source

m = 8
m = 16
m = 32
m = 40
m = 64

Figure 4: Prevalence histogram of content blocks,a=64
bytes, ICSI2 DMZ trace, day 3 (24 hrs).

of their inclusion:

Prevalent signatures matching innocuous and malicious
flows. One possible result is that the probabilistic COPP
process will produce content blocks that contain only pro-
tocol header or trailer data common to nearlyall flows car-
rying that protocol, whether innocuous or malicious. Such
blocks will top the prevalence histogram, but would clearly
be abysmally unspecific if adopted for traffic filtering. To
avoid choosing such unspecific content blocks, we can varya
andm toward longer block sizes.

Non-prevalent signatures for innocuous flows. Another
possibility is that Autograph chooses a content block com-
mon to only afew innocuous flows. Such content blocks will
not be prevalent, and will be at the tail of the prevalence his-
togram. Two heuristics can exclude these signatures from
publication. First, by using a smallerw value, Autograph
can avoid generation of signatures for the bottom(1−w)%
of the prevalence distribution, though this choice may have
the undesirable side effect of delaying detection of worms.
The second useful heuristic comes from our experience with
the initial COPP implementation. Figure 4 shows the preva-
lence histogram Autograph generates from a real DMZ trace.
Among all content blocks, only a few are prevalent (those
from Code-RedII, Nimda, and WebDAV) and the prevalence
distribution has a noticeable tail. We can restrict Autograph
to choose a content block as a signature only if more thanp
flows in the suspicious flow pool contain it, to avoid publish-
ing signatures for non-prevalent content blocks.

4 Evaluation: Local Signature Detection

We now evaluate the quality of signatures Autograph gener-
ates. In this section, we answer the following two questions:
First, how does content block size affect the the sensitivity

Symbol Description
s Port scanner detection threshold
a COPP parameter: average content block size
m COPP parameter: minimum content block size
M COPP parameter: maximum content block size
w Target percentage of suspicious flows to be represented

in generated signatures
p Minimum content block prevalence for use as signature
t Duration suspicious flows held in suspicious flow pool
r Interval between signature generation attempts
θ Minimum size of suspicious flow pool to allow

signature generation process

Table 1: Autograph’s signature generation parameters.

and specificity of the signatures Autograph generates? And
second, how robust is Autograph to worms that vary their
payloads?

Our experiments demonstrate that as content block size
decreases, the likelihood that Autograph detects commonal-
ity across suspicious flows increases. As a result, as con-
tent block size decreases, Autograph generates progressively
more sensitive but less specific signatures. They also reveal
that small block sizes are more resilient to worms that vary
their content, in that they can detect smaller common parts
among worm payloads.

4.1 Offline Signature Detection on DMZ
Traces

We first investigate the effect of content block size on the
quality of the signatures generated by Autograph. In this sub-
section, we use a suspicious flow pool accumulated during an
interval t of 24 hours, and consider only a single invocation
of signature generation on that flow pool. No blacklisting is
used in the results in this subsection, and filtering of content
blocks that appear only from one source address before signa-
ture generation is disabled. All results we present herein are
for a COPP Rabin fingerprint window of widthk = 4 bytes.7

In our experiments, we feed Autograph one of three packet
traces from the DMZs of two research labs; one from Intel
Research Pittsburgh (Pittsburgh, USA) and two from ICSI
(Berkeley, USA). IRP’s Internet link was a T1 at the time our
trace was taken, whereas ICSI’s is over a 100 Mbps fiber to
UC Berkeley. All three traces contain the full payloads of all
packets. The ICSI and ICSI2 traces only contain inbound traf-
fic to TCP port 80, and are IP-source-anonymized. Both sites
have address spaces of 29 IP addresses, but the ICSI traces
contain more port 80 traffic, as ICSI’s web servers are more
frequently visited than IRP’s.

For comparison, we obtain the full list of HTTP worms
in the traces using Bro with well-known signatures for the
Code-Red, Code-RedII, and Nimda HTTP worms, and for an
Agobot worm variant that exploits the WebDAV buffer over-
flow vulnerability (present only in the ICSI2 trace). Table 2
summarizes the characteristics of all three traces.



IRP ICSI ICSI2
Measurement Period Aug 1-7 Jan 26 Mar 22-29

2003 2004 2004
1 week 24 hours 1 week

Inbound HTTP packets 70K 793K 6353K
Inbound HTTP flows 26K 102K 825K
HTTP worm sources 72 351 1582

scanned 56 303 1344
not scanned 16 48 238

Nimda sources 18 57 254
CodeRed II sources 54 294 997

WebDav exploit sources - - 336
HTTP worm flows 375 1396 7127

Nimda flows 303 1022 5392
CodeRed flows 72 374 1365

WebDav exploit flows - - 370

Table 2: Summary of traces.

Autograph’s suspicious flow classifier identifies unsuccess-
ful connection attempts in each trace. For the IRP trace, Au-
tograph uses ICMP host/port unreachable messages to com-
pile the list of suspicious remote IP addresses. As neither
ICSI trace includes outbound ICMP packets, Autograph in-
fers failed connection attempts in those traces by looking at
incoming TCP SYN and ACK pairs.

We run Autograph with varied scanner detection thresh-
olds,s∈ {1,2,4}. These thresholds are lower than those used
by Bro and Snort, in the interest of catching as many worm
payloads as possible (crucial early in an epidemic). As a re-
sult, our flow classifier misclassifies flows as suspicious more
often, and more innocuous flows are submitted for signature
generation.

We also vary the minimum content block size (m) and aver-
age content block size (a) parameters that govern COPP, but
fix the maximum content block size (M) at 1024 bytes. We
vary w∈ [10%,100%] in our experiments. Recall thatw lim-
its the fraction of suspicious flows that may contribute content
to the signature set. COPP adds content blocks to the signa-
ture set (most prevalent content block first, and then in order
of decreasing prevalence) until one or more content blocks in
the set matchw percent of flows in the suspicious flow pool.

We first characterize the content block prevalence distribu-
tion found by Autograph with a simple example. Figure 5
shows the prevalence of content blocks found by COPP when
we run COPP withm= 64,a= 64, andw= 100% over a sus-
picious flow pool captured from the full 24-hour ICSI trace
with s= 1. At w = 100%, COPP adds content blocks to the
signature set untilall suspicious flows are matched by one or
more content blocks in the set. Here, thex axis represents
the order in which COPP adds content blocks to the signa-
ture set (most prevalent first). They axis represents the cu-
mulative fraction of the population of suspicious flows con-
taining any of the set of signatures, as the set of signatures
grows. The trace contains Code-RedII, Nimda, and WebDAV

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20

C
D

F

Selected Content Block ID

Popularity Distribution of Suspicious Flows (s=1, m=64, a=64), ICSI

CodeRedII
Nimda(1)

Nimda(16)
Misclassified(1)

Figure 5: Prevalence of Selected Content Blocks in Suspi-
cious Flow Pool, ICSI DMZ trace (24 hrs).

worm flows. Nimda sources send 16 different flows with ev-
ery infection attempt, to search for vulnerabilities under16
different URLs. The first signature COPP generates matches
Code-RedII; 28% of the suspicious flows are Code-RedII in-
stances. Next, COPP selects 16 content blocks as signatures,
one for each of the different payloads Nimda-infected ma-
chines transmit. About 5% of the suspicious flows are mis-
classified flows. We observe that commonality across those
misclassified flows is insignificant. Thus, the content blocks
from those misclassified flows tend to be lowly ranked.

To measure true positives (fraction of worm flows found),
we run Bro with the standard set of policies to detect worms
(distributed with the Bro software) on a trace, and then run
Bro using the set of signatures generated by Autograph on
that same trace. The true positive rate is the fraction of the
total number of worms found by Bro’s signatures (presumed
to find all worms) also found by Autograph’s signatures.

To measure false positives (fraction of non-worm flows
matched by Autograph’s signatures), we create asanitized
trace consisting of all non-worm traffic. To do so, we elimi-
nate all flows from a trace that are identified by Bro as worms.
We then run Bro using Autograph’s signatures on the sani-
tized trace. The false positive rate is the fraction of all flows
in the sanitized trace identified by Autograph’s signaturesas
worms.

Because the number of false positives is very low com-
pared to the total number of HTTP flows in the trace, we re-
port our false positive results using theefficiencymetric pro-
posed by Stanifordet al. [17]. Efficiency is the ratio of the
number of true positives to the total number of positives, both
false and true. Efficiency is proportional to the number of
false positives, but shows the detail in the false positive trend
when the false positive rate is low.

The graphs in Figure 6 show the sensitivity and the effi-
ciency of the signatures generated by Autograph running on
the full 24-hour ICSI trace for variedm. Here, we present
experimental results fors= 2, but the results for others are
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Figure 6: Sensitivity and Efficiency of Selected Signatures,
ICSI DMZ trace (24 hrs).
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similar. Note that in these experiments, we apply the signa-
tures Autograph generates from the 24-hour trace to thesame
24-hour trace used to generate them.

The x axis variesw. As w increases, the set of signatures
Autograph generates leads to greater sensitivity (fewer false
negatives). This result is expected; greaterwvalues cause Au-
tograph to add content blocks to the signature set for an ever-
greater fraction of the suspicious flow pool. Thus, if a worm
appears rarely in the suspicious flow pool, and thus generates
non-prevalent content blocks, those blocks will eventually be
included in the signature set, for sufficiently largew.

However, recall from Figure 5 that about 5% of the suspi-
cious flows are innocuous flows that are misclassified by the
port-scanner heuristic as suspicious. As a result, forw> 95%,
COPP risks generating a less specific signature set, as COPP
begins to select content blocks from the innocuous flows.
Those content blocks are most often HTTP trailers, found in
common across misclassified innocuous flows.

For this trace, COPP withw∈ [90%,94.8%] produces a set
of signatures that isperfect: it causes 0 false negatives and 0
false positives. Our claim isnot that thisw parameter value is
valid for traces at different sites, or even at different times; on
the contrary, we expect that the range in which no false posi-
tives and no false negatives occurs is sensitive to the details of
the suspicious flow population. Note, however, that the exis-
tence of a range ofw values for which perfect sensitivity and
specificity are possible serves as a very preliminary valida-
tion of the COPP approach—if no such range existed for this
trace, COPP would always be forced to trade false negatives
for false positives, or vice-versa, forany wparameter setting.
Further evaluation of COPP on a more diverse and numerous
set of traffic traces is clearly required to determine whether
such a range exists for a wider range of workloads.

During examination of the false positive cases found by
Autograph-generated signatures whenw > 94.8%, we noted
with interest that Autograph’s signatures detected Nimda
sourcesnotdetected by Bro’s stock signatures. There are only
three stock signatures used by Bro to spot a Nimda source,
and the Nimda sources in the ICSI trace did not transmit those
particular payloads. We removed these few cases from the
count of false positives, as Autograph’s signaturescorrectly
identified them as worm flows, and thus we haderroneously
flagged them as false positives by assuming that any flow not
caught by Bro’s stock signatures is not a worm.

We now turn to the effect of content block size on the
specificity and the number of signatures Autograph generates.
Even in the presence of innocuous flows misclassified as sus-
picious, the largest average and minimum content block sizes
(such as 64 and 128 bytes) avoid most false positives; effi-
ciency remains close to 1. We expect this result because in-
creased block size lowers the probability of finding common
content across misclassified flows during the signature gen-
eration process. Moreover, as signature length increases,the
number of innocuous flows that match a signature decreases.

Thus, choosing largera and m values will help Autograph
avoid generating signatures that cause false positives.

Note, however, there is a trade-off between content block
length and the number of signatures Autograph generates,
too. For largea and m, it is more difficult for COPP to
detect commonality across worm flows unless the flows
are identical. So asa and m increase, COPP must se-
lect more signatures to match any group of variants of a
worm that contain some common content. The graphs in
Figure 7 present the size of the signature set Autograph
generates as a function ofw. For smallera and m, Au-
tograph needs fewer content blocks to coverw percent of
the suspicious flows. In this trace, for example, COPP
can select a short byte sequence in common across dif-
ferent Nimda payload variants (e.g., cmd.exe?c+dir
HTTP/1.0..Host:www..Connection:
close.... ) when we use smalla and m, such as 16.
The size of the signature set becomes a particular concern
when worms aggressively vary their content across infection
attempts, as we discuss in the next section. Before continuing
on, we note that results obtained running Autograph on the
IRP and ICSI2 traces are quite similar to those reported
above, and are therefore elided in the interest of brevity.

4.2 Polymorphic and Metamorphic Worms

100 random payloads
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Figure 8: Content block sizevs.number of signatures.

We expect short content blocks to be most robust against
worms that vary their content, such as polymorphic worms,
which encrypt their content differently on each connection,
and metamorphic worms, which obfuscate their instruction
sequences on each connection. Unfortunately (fortunately?)
no such Internet worm has yet been reported in the wild. To
test Autograph’s robustness against these varying worms, we
generate a synthetic polymorphic worm based on the Code-
RedII payload. A Code-RedII worm payload consists of a
regular HTTP GET header, more than 220 filler characters,
a sequence of Unicode, and the main worm executable code.
The Unicode sequence causes a buffer overflow and transfers
execution flow to the subsequent worm binary. We useran-
dom valuesfor all filler bytes, and even for the worm code,



but leave the HTTP GET command and 56-byte Unicode se-
quence fixed. This degree of variation in content is more
severe than that introduced by the various obfuscation tech-
niques discussed by Christodorescuet al. [2]. As shown in
Figure 8, when a relatively short, invariant string is present in
a polymorphic or metamorphic worm, Autograph can find a
short signature that matches it, when run with small average
and minimum content block sizes. However, such short con-
tent block sizes may be unspecific, and thus yield signatures
that cause false positives.

5 Evaluation: Distributed Signature Detection

Our evaluation of Autograph in the preceding section focused
chiefly on the behavior of a single monitor’s content-based
approach to signature generation. That evaluation consid-
ered the case of offline signature detection on a DMZ trace
24 hours in length. We now turn to an examination of Au-
tograph’s speed in detecting a signature for anewworm af-
ter the worm’s release, and demonstrate that operating mul-
tiple, distributed instances of Autograph significantly speeds
this process,vs. running a single instance of Autograph on
a single edge network. We use a combination of simula-
tion of a worm’s propagation and DMZ-trace-driven simu-
lation to evaluate the system in the online setting; our sense
of ethics restrains us from experimentally measuring Auto-
graph’s speed at detecting a novel wormin vivo.

Measuring how quickly Autograph detects and generates
a signature for a newly released worm is important because
it has been shown in the literature that successfully contain-
ing a worm requires early intervention. Recall that Provos’
results [12] show that reversing an epidemic such that fewer
than 50% of vulnerable hosts ever become infected can re-
quire intervening in the worm’s propagation before 5% of
vulnerable hosts are infected. Two delays contribute to the
total delay of signature generation:

• How long must an Autograph monitor wait until it accu-
mulates enough worm payloads to generate a signature
for that worm?

• Once an Autograph monitor receives sufficient worm
payloads, how long will it take to generate a signature
for the worm, given the background “noise” (innocuous
flows misclassified as suspicious) in the trace?

We proceed now to measure these two delays.

5.1 Singlevs. Multiple Monitors

Let us now measure the time required for an Autograph mon-
itor to accumulate worm payloads after a worm is released.
We first describe our simulation methodology for simulat-
ing a Code-RedI-v2-like worm, which is after that of Moore
et al. [9]. We simulate a vulnerable population of 338,652
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Figure 9: Infection progress for a simulated Code-RedI-v2-
like worm.

hosts, the number of infected source IPs observed in [8] that
are uniquely assignable to a single Autonomous System (AS)
in the BGP table data (obtained from RouteViews [20]) of
the 19th of July, 2001, the date of the Code-Red outbreak.
There are 6378 ASes that contain at least one such vulnera-
ble host in the simulation. Unlike Mooreet al., we do not
simulate the reachability among ASes in that BGP table; we
make the simplifying assumption that all ASes may reach all
other ASes. This assumption may cause the worm to spread
somewhat faster in our simulation than in Mooreet al.’s. We
assign actual IP address ranges for real ASes from the BGP
table snapshot to each AS in the simulation, according to a
truncated distribution of the per-AS IP address space sizes
from the entire BGP table snapshot. The distribution of ad-
dress ranges we assign is truncated in that we avoid assigning
any address blocks larger than /16s to any AS in the simu-
lation. We avoid large address blocks for two reasons: first,
few such monitoring points exist, so it may be unreasonable
to assume that Autograph will be deployed at one, and sec-
ond, a worm programmer may trivially code a worm to avoid
scanning addresses within a /8 known to harbor an Autograph
monitor. Our avoidance of large address blocks only length-
ens the time it will take Autograph to generate a worm sig-
nature after a novel worm’s release. We assume 50% of the
address space within the vulnerable ASes is populated with
reachable hosts, that 25% of these reachable hosts run web
servers, and we fix the 338,652 vulnerable web servers uni-
formly at random among the total population of web servers
in the simulation. Finally, the simulated worm propagates us-
ing random IP address scanning over the entire 228 non-class-
D IP address space, and a probe rate of 10 probes per sec-
ond. We simulate network and processing delays, randomly
chosen in[0.5,1.5] seconds, between a victim’s receipt of an
infecting connection and its initiation of outgoing infection
attempts. We begin the epidemic by infecting 25 vulnerable
hosts at time zero. Figure 9 shows the growth of the epidemic
within the vulnerable host population over time.
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Figure 10: Payloads observed over time: single, isolated
monitors.

In these first simulations, we place Autograph monitors at
a randomly selected 1% of the ASes that include vulnerable
hosts (63 monitors). Figure 10 shows the maximum and me-
dian numbers of payloads detected over time across all mon-
itors; note that they axis is log-scaled. First, let us consider
the case where only a single site on the Internet deploys Au-
tograph on its network. In this case, it is the median time
required by all 63 monitors to detect a given number of flows
that approximates the expected time for a singleton monitor
to do the same. When monitors identify port scanners aggres-
sively, after a single failed connection from a source address
(s= 1), the median monitor accumulates 5 worm payloads af-
ter over 9000 seconds. Using the more conservative port-scan
thresholds= 4, the median monitor accumulatesnopayloads
within 10000 seconds. These results are not encouraging—
from Figure 9, we know that after 9000 seconds (150 min-
utes), over 25% of vulnerable hosts have been infected.

Now let us consider the case where 63 monitors are all in
active use simultaneously and distributedly. If we presume
that the first monitor to generate a signature for the worm
may (nearly) instantly disseminate that signature to all who
wish to filter worm traffic, by application-level multicast [1]
or other means, the earliest Autograph can possibly find the
worm’s signature is governed by the “luckiest” monitor in
the system—the first one to accumulate the required number
θ of worm payloads. The “luckiest” monitor in this simu-
lated distributed deployment detects 5 worm payloads shortly
before 4000 seconds have elapsed. This result is far more
encouraging—after 4000 seconds (66 minutes), fewer than
1% of vulnerable hosts have been infected. Thus, provided
that all Autograph monitors disseminate the worm signatures
they detect in a timely fashion, there is immense benefit in
the speed of detection of a signature for a novel worm when
Autograph is deployed distributedly, even at as few as 1% of
ASes that contain vulnerable hosts.

Using the more conservative port-scan thresholds= 4, the
monitor in the distributed system to have accumulated the

most worm payloads after 10000 seconds has still only col-
lected 4. Here, again, we observe that targeting increased
specificity (by identifying suspicious flows more conserva-
tively) comes at a cost of reduced sensitivity; in this case,
sensitivity may be seen as the number of worm flows matched
over time.

Running multiple independent Autograph monitors clearly
pays a dividend in faster worm signature detection. A natural
question that follows is whether detection speed might be im-
proved further if the Autograph monitors shared information
with one another in some way.

5.2 tattler: Distributed Gathering of Suspect
IP Addresses

At the start of a worm’s propagation, the aggregate rate at
which all infected hosts scan the IP address space is quite low.
Because Autograph relies on overhearing unsuccessful scans
to identify suspicious source IP addresses, early in an epi-
demic an Autograph monitor will be slow to accumulate sus-
picious addresses, and in turn slow to accumulate worm pay-
loads. We now introduce an extension to Autograph named
tattler that, as its name suggests, shares suspicious source ad-
dresses among all monitors, toward the goal of accelerating
the accumulation of worm payloads.

We assume in the design of tattler that a multicast facility
is available to all Autograph monitors, and that they all join
a single multicast group. While IP multicast is not a broadly
deployed service on today’s Internet, there are many viable
end-system-oriented multicast systems that could providethis
functionality, such as Scribe [1]. In brief, Autograph moni-
tor instances could form a Pastry overlay, and use Scribe to
multicast to the set of all monitors. We further assume that
users are willing to publish the IP addresses that have been
port scanning them.8

The tattler protocol is essentially an application of the RTP
Control Protocol (RTCP) [14], originally used to control mul-
ticast multimedia conferencing sessions, slightly extended for
use in the Autograph context. The chief goal of RTCP is to
allow a set of senders who all subscribe to the same mul-
ticast group to share a capped quantity of bandwidth fairly.
In Autograph, we seek to allow monitors to announce to
others the(IP-addr, dst-port) pairs they have ob-
served port scanning themselves, to limit the total bandwidth
of announcements sent to the multicast group within a pre-
determined cap, and to allocate announcement bandwidth rel-
atively fairly among monitors. We recount the salient features
of RTCP briefly:

• A population of senders all joins the same multicast
group. Each is configured to respect the same total band-
width limit, B, for the aggregate traffic sent to the group.

• Each sender maintains an interval valueI it uses between
its announcements. Transmissions are jittered uniformly



at random within[0.5,1.5] times this timer value.

• Each sender stores a list of the unique source IP ad-
dresses from which it has received announcement pack-
ets. By counting these, each sender learns an estimate
of the total number of senders,N. Entries in the list ex-
pire if their sources are not heard from within a timeout
interval.

• Each sender computesI = N/B. Senders keep a run-
ning average of the sizes of all announcement packets
received, and scaleI according to the size of the an-
nouncement they wish to send next.

• When too many senders join in a brief period, the aggre-
gate sending rate may exceedC. RTCP uses areconsid-
erationprocedure to combat this effect, whereby senders
lengthenI probabilistically.

• Senders which depart may optionally send a BYE packet
in compliance with theI inter-announcement interval, to
speed other senders’ learning of the decrease in the total
group membership.

• RTCP has been shown to scale to thousands of senders.

In the tattler protocol, each announcement a monitor makes
contains between one and 100 port-scanner reports of the
form (src-IP, dst-port) . Monitors only announce
scanners they’ve heardthemselves.Hearing a report from
another monitor for a scanner suppresses announcement of
that scanner for arefresh interval. After a timeout interval,a
monitor expires a scanner entry if that scanner has not directly
scanned it and no other monitor has announced that scanner.
Announcement packets are sent in accordance with RTCP.
Every time the intervalI expires, a monitor sends any an-
nouncements it has accumulated that haven’t been suppressed
by other monitors’ announcements. If the monitor has no port
scans to report, it instead sends a BYE, to relinquish its share
of the total report channel bandwidth to other monitors.

Figure 11 shows the bandwidth consumed by the tat-
tler protocol during a simulated Code-RedI-v2 epidemic, for
three deployed monitor populations (6, 63, and 630 moni-
tors). We use an aggregate bandwidth capC of 512 Kbps
in this simulation. Note that the peak bandwidth consumed
across all deployments is a mere 15Kbps. Thus, sharing port
scanner information among monitors is quite tractable. While
we’ve not yet explicitly explored dissemination of signatures
in our work thus far, we expect a similar protocol to tattler
will be useful and scalable for advertising signatures, both to
Autograph monitors and to other boxes that may wish to filter
using Autograph-generated signatures.

Note well that “background” port scanning activities un-
related to the release of a new worm are prevalent on
the Internet, and tattler must tolerate the load caused by
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Figure 11: Bandwidth consumed by tattler during a Code-
RedI v2 epidemic, for varying numbers of deployed monitors.

such background port scanning.dshield.org [4] re-
ports daily measurements of port scanning activities, as
measured by monitors that cover approximately 219 IP ad-
dresses. Thedshield.org statistics from December 2003
and January 2004 suggest that approximately 600,000 unique
(source-IP, dst-port) pairs occur in a 24-hour pe-
riod. If we conservatively double that figure, tattler would
have to deliver 1.2M reports per day. A simple back-of-the-
envelope calculation reveals that tattler would consume 570
bits/second to deliver that report volume, assuming one an-
nouncement packet per(source-IP, dst-port) pair.
Thus, background port scanning as it exists in today’s Internet
represents insignificant load to tattler.

We now measure the effect of running tattler on the time
required for Autograph to accumulate worm flow payloads in
a distributed deployment. Figure 12 shows the time required
to accumulate payloads in a deployment of 63 monitors that
use tattler. Note that for a port scanner detection threshold
s = 1, the shortest time required to accumulate 5 payloads
across monitors has been reduced to approximately 1500 sec-
onds, from nearly 4000 seconds without tattler (as shown in
Figure 10). Thus, sharing scanner address information among
monitors with tattler speeds worm signature detection.

In sum, running a distributed population of Autograph
monitors holds promise for speeding worm signature detec-
tion in two ways: it allows the “luckiest” monitor thatfirst ac-
cumulates sufficient worm payloads determine the delay until
signature detection, and it allows monitors to chatter about
port-scanning source addresses, and thusall monitors clas-
sify worm flows as suspicious earlier.

5.3 Online, Distributed, DMZ-Trace-Driven
Evaluation

The simulation results presented thus far have quantified the
time required for Autograph to accumulate worm payloads
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Figure 12: Payloads observed over time: tattler among dis-
tributed monitors.

after a worm’s release. We now use DMZ-trace-driven sim-
ulation on the one-day ICSI trace to measure how long it
takes Autograph to identify a newly released wormamong
the background noise of flows that are not worms,but have
been categorized by the flow classifier as suspicious after
port scanning the monitor. We are particularly interested in
the trade-off between early signature generation (sensitivity
across time, in a sense) and specificity of the generated sig-
natures. We measure the speed of signature generation by
the fraction of vulnerable hosts infected when Autograph first
detects the worm’s signature, and the specificity of the gener-
ated signatures by counting thenumberof signatures gener-
ated that cause false positives. We introduce this latter metric
for specificity because raw specificity is difficult to interpret:
if a signature based on non-worm-flow content (from a mis-
classified innocuous flow) is generated, the number of false
positives it causes depends strongly on the traffic mix at that
particular site. Furthermore, an unspecific signature may be
relatively straightforward to identify as such with “signature
blacklists” (disallowed signatures that should not be usedfor
filtering traffic) provided by a system operator.9

We simulate an online deployment of Autograph as fol-
lows. We run a single Autograph monitor on the ICSI trace.
To initialize the list of suspicious IP addresses known to
the monitor, we run Bro on theentire 24-hour trace using
all known worm signatures, and exclude worm flows from
the trace. We then scan theentire resulting worm-free 24-
hour trace for port scan activity, and record the list of port
scanners detected with thresholds ofs∈ {1,2,4}. To emu-
late the steady-state operation of Autograph, we populate the
monitor’s suspicious IP address list with thefull set of port
scanners from one of these lists, so that all flows from these
sources will be classified as suspicious. We can then generate
a background noisetrace, which consists of only non-worm
flows from port scanners, as would be detected by a running
Autograph monitor for each ofs∈ {1,2,4}. Figure 13 shows
the quantity of non-worm noise flows in Autograph’s suspi-
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Figure 13: Background “noise” flows classified as suspicious
vs. time, with varying port-scanner thresholds; ICSI DMZ
trace.

cious traffic pool over the trace’s full 24 hours.

We simulate the release of a novel worm at a time of our
choosing within the 24-hour trace as follows. We config-
ure Autograph with a signature generation periodicityr of
10 minutes, and a holding periodt for the suspicious flow
pool of 30 minutes. Using the simulation results from Sec-
tion 5.2, we count the number of worm flowsexpectedto
have been accumulated by the “luckiest” monitor among the
63 deployed during each 30-minute period, at intervals of 10
minutes. We then add that number of complete Code-RedI-
v2 flows (available from the pristine, unfiltered trace) to the
suspicious traffic pool from the corresponding 30-minute por-
tion of the ICSI trace, to produce a realistic mix of DMZ-trace
noise and the expected volume of worm traffic (as predicted
by the worm propagation simulation). In these simulations,
we varyθ, the total number of flows that must be found in
the suspicious traffic pool to cause signature generation tobe
triggered. All simulations usew = 95%. Because the quan-
tity of noise varies over time, we uniformly randomly choose
the time of the worm’s introduction, and take means over ten
simulations.

Figure 14 shows the fraction of the vulnerable host popu-
lation that is infected when Autograph detects the newly re-
leased worm as a function ofθ, for varying port scanner de-
tection sensitivities/specificities (s∈ {1,2,4}). Note the log-
scaling of thex axis. These results demonstrate that for a
very sensitive/unspecific flow classifier (s= 1), across a wide
range ofθs (between 1 and 40), Autograph generates a sig-
nature for the worm before the worm spreads to even 1% of
vulnerable hosts. As the flow classifier improves in specificity
but becomes less sensitive (s= {2,4}), Autograph’s genera-
tion of the worm’s signature is delayed, as expected.

Figure 15 shows the number of unspecific (false-positive-
inducing) signatures generated by Autograph, as a functionof
θ, for different sensitivities/specificities of flow classifier. The
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Figure 14: Fraction of vulnerable hosts uninfected when
worm signature detectedvs. θ, number of suspicious flows
required to trigger signature detection.
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Figure 15: Number of unspecific signatures generatedvs.θ,
number of suspicious flows required to trigger signature de-
tection.

goal, of course, is for the system to generate zero unspecific
signatures, but to generate a worm signature before the worm
spreads too far. Our results show that fors= 2 andθ = 15,
Autograph generates signatures that cause no false positives,
yet generates the signature for the novel worm before 2% of
vulnerable hosts become infected. Our point isnot to argue
for these particular parameter values, but rather to show that
there exists a region of operation where the system meets our
stated design goals. More importantly, though, these results
show that an improved flow classifier improves Autograph—
as flow classifiers benefit from further research and improve,
Autograph can adopt these improvements to offer faster worm
signature generation with lower false positive rates.

6 Attacks and Limitations

We briefly catalog a few attacks that one might mount against
Autograph, and limitations of the current system.

Overload. Autograph reassembles suspicious TCP flows.
Flow reassembly is costly in state in comparison with pro-
cessing packets individually, but defeats the subterfuge of
fragmenting a worm’s payload across many small pack-
ets [11]. We note that the number of inbound flows a moni-
tor observes may be large, in particular after a worm spreads
successfully. If Autograph tries to reassemble every incom-
ing suspicious flow, it may be susceptible to DoS attack. We
note that Autograph treats all destination ports separately, and
thus parallelizes well across ports; a site could run multiple
instances of Autograph on separate hardware, and thus in-
crease its aggregate processing power, for flow reassembly
and all other processing. Autograph may also sample suspi-
cious flows when the number of suspicious flows to process
exceeds some threshold; we intend to investigate this heuris-
tic in future.

Source-address-spoofed port scans.Port scans from
spoofed IP source addresses are a peril for most IDSes. The
chief reason for monitoring port scans is to limit the damage
their originators can inflict, most often by filtering packets
that originate from known port scanners. Such filtering in-
vites attackers to spoof port scans from the IP addresses of
those whose traffic they would like to block [11, 5]. Source-
spoofed port scans can be used to mount different attacks,
more specific to Autograph: the tattler mechanism must carry
report traffic proportional to the number of port scanners. An
attacker could attempt to saturate tattler’s bandwidth limit
with spoofed scanner source addresses, and thus render tat-
tler useless in disseminating addresses oftrue port scanners.
A source-spoofing attacker could also cause a remote source’s
traffic to be included by Autograph in signature generation.

Fortunately, a simple mechanism holds promise for ren-
dering both these attacks ineffective. Autograph classifies an
inbound SYN destined for an unpopulated IP address or port
with no listening process as a port scan. To identify TCP port
scans from spoofed IP source addresses, an Autograph mon-
itor could respond to such inbound SYNs with a SYN/ACK,
provided the router and/or firewall on the monitored network
can be configured not to respond with an ICMP host or port
unreachable. If the originator of the connection responds with
an ACK with the appropriate sequence number, the source ad-
dress on the SYN could not have been spoofed. The monitor
may thus safely view all source addresses that send proper
ACK responses to SYN/ACKs as port scanners. Non-ACK
responses to these SYN/ACKs (RSTs or silence) can then be
ignored; i.e., the source address of the SYN is not recorded
as a port scanner. Note that while a non-source-spoofing port
scanner maychoosenot to respond with an ACK, any source
that hopes to complete a connection and successfully trans-
fer an infecting payloadmustrespond with an ACK, and thus
identify itself as a port scanner. Junget al. independently
propose this same technique in [5].



Hit-list scanning. If a worm propagates using a hit list [18],
rather than by scanning IP addresses that may or may not
correspond to listening servers, Autograph’s port-scan-based
suspicious flow classifier will fail utterly to include that
worm’s payloads in signature generation. Identifying worm
flows that propagate by hit lists is beyond the scope of this
paper. We are unaware at this writing of any published sys-
tem that detects such flows; state-of-the-art malicious payload
gathering methods, such as honeypots, are similarly stymied
by hit-list propagation. Nevertheless, any future innovation
in the detection of flows generated by hit-list-using worms
may be incorporated into Autograph, to augment or replace
the naive port-scan-based heuristic used in our prototype.

7 Related Work

Singhet al.[15] generate signatures for novel worms by mea-
suring packet content prevalence and address dispersion at
a single monitoring point. Their system, EarlyBird, avoids
the computational cost of flow reassembly, but is suscepti-
ble to attacks that spread worm-specific byte patterns over
a sequence of short packets. Autograph instead incurs the
expense of flow reassembly, but mitigates that expense by
first identifying suspicious flows, andthereafterperforming
flow reassembly and content analysis only on those flows.
EarlyBird reverses these stages; it finds sub-packet content
strings first, and applies techniques to filter out innocuous
content strings second. Autograph and EarlyBird both make
use of Rabin fingerprints, though in different ways: Auto-
graph’s COPP technique uses them as did LBFS, to break
flow payloads into non-overlapping, variable-length chunks
efficiently, based on payload content. EarlyBird uses them to
generate hashes of overlapping, fixed-length chunks at every
byte offset in a packet efficiently. Singhet al. independently
describe using a white-list to disallow signatures that cause
false positives (described herein as a blacklist for signatures,
rather than a white-list for traffic), and report examples of
false positives that are prevented with such a white-list [16].

Kreibich and Crowcroft [6] describe Honeycomb, a system
that gathers suspicious traffic using a honeypot, and searches
for least common substrings in that traffic to generate worm
signatures. Honeycomb relies on the inherent suspiciousness
of traffic received by a honeypot to limit the traffic consid-
ered for signature generation to truly suspicious flows. This
approach to gathering suspicious traffic is complementary to
that adopted in Autograph; we intend to investigate acquir-
ing suspicious flows using honeypots for signature genera-
tion by Autograph in future. The evaluation of Honeycomb
assumes all traffic received by a honeypot is suspicious; that
assumption may not always hold, in particular if attackers de-
liberately submit innocuous traffic to the system. Autograph,
Honeycomb, and EarlyBird will face that threat as knowledge
of their deployment spreads; we believe vetting candidate sig-
natures for false positives among many distributed monitors

may help to combat it.
Provos [12] observes the complementary nature of honey-

pots and content-based signature generation; he suggests pro-
viding payloads gathered byhoneyd to Honeycomb. We ob-
serve that Autograph would similarly benefit fromhoneyd ’s
captured payloads. Furthermore, ifhoneyd participated
in tattler, Autograph’s detection of suspicious IP addresses
would be sped, with less communication than that required
to transfer complete captured payloads from instances of
honeyd to instances of Autograph.

Yegneswaranet al. [23] corroborate the benefit of dis-
tributed monitoring, both in speeding the accurate accumu-
lation of port scanners’ source IP addresses, and in speeding
the accurate determination of port scanning volume. Their
DOMINO system detects port scanners using active-sinks
(honeypots), both to generate source IP address blacklistsfor
use in address-based traffic filtering, and to detect an increase
in port scanning activity on a port with high confidence. The
evaluation of DOMINO focuses on speed and accuracy in de-
termining port scan volume and port scanners’ IP addresses,
whereas our evaluation of Autograph focuses on speed and
accuracy in generating worm signatures, as influenced by the
speed and accuracy of worm payload accumulation.

Our work is the first we know to evaluate the tradeoff be-
tween earliness of detection of a novel worm and generation
of signatures that cause false positives in content-based sig-
nature detection.

8 Conclusion and Future Work

In this paper, we present design criteria for an automated
worm signature detection system, and the design and eval-
uation of Autograph, a DMZ monitoring system that is a first
step toward realizing them. Autograph uses a naive, port-
scan-based flow classifier to reduce the volume of traffic on
which it performs content-prevalence analysis to generatesig-
natures. The system ranks content according to its preva-
lence, and only generates signatures as needed to cover its
pool of suspicious flows; it therefore is designed to minimize
the number of signatures it generates. Our offline evaluation
of Autograph on real DMZ traces reveals that the system can
be tuned to generatesensitiveandspecificsignature sets, that
exhibit high true positives, and low false positives. Our sim-
ulations of the propagation of a Code-RedI-v2 worm demon-
strate that by tattling to one another about port scanners they
overhear, distributed Autograph monitors can detect worms
earlier than isolated, individual Autograph monitors, andthat
the bandwidth required to achieve this sharing of state is min-
imal. DMZ-trace-driven simulations of the introduction ofa
novel worm show that a distributed deployment of 63 Auto-
graph monitors, despite using a naive flow classifier to iden-
tify suspicious traffic, can detect a newly released Code-RedI-
v2-like worm’s signature before 2% of the vulnerable host
population becomes infected. Our collected results illuminate



the inherent tension between early generation of a worm’s
signature and generation of specific signatures.

Autograph is a young system. Several avenues bear further
investigation. We are currently evaluating a single Autograph
monitor’s performance in anonline setting, where the sys-
tem generates signatures periodically using the most recent
suspicious flow pool. Early results indicate that in a single
signature generation interval, this online system can produce
signatures for common HTTP worms, including Code-RedII
and Nimda, and that using a minimal blacklist, the generated
signatures can incur zero false positives. We will continue
this evaluation using more diverse traces and protocol (port)
workloads, to further validate these initial results. We look
forward to deploying Autograph distributedly, including tat-
tler, which has so far only been evaluated in simulation. Fi-
nally, we are keen to explore sharing information beyond port
scanners’ source IP addresses among monitors, in the interest
of ever-faster and ever-higher-quality signature generation.
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Notes

1Signatures may employ more complicated payload patterns, such as reg-
ular expressions. We restrict our attention to fixed byte sequences.

2We include both poly- and metamorphism here; see Section 4.2.
3In future, worms may be designed to minimize the overlap in their suc-

cessive infection payloads; we consider such worms in Section 4.2.
4Note that an IP address may have sent traffic before being identified as a

scanner; such traffic will stored in the non-suspicious flow pool. We include
only subsequentlyarriving traffic in the suspicious flow pool, in the interest
of simplicity, at the expense of potentially missing worm traffic sent by the
scanner before our having detected it as such.

5Worms that propagate very slowly may only accumulate in sufficient
volume to be detected by Autograph for long values oft.

6Note that each Autograph monitor may independently choose itsbreak-
mark. Were the breakmark universal and well-known, worm authors might
try to tailor payloads to force COPP to choose block boundaries that mix
invariant payload bytes with changing payload bytes withina content block.

7We have since adopted a 16-byte COPP window in our implementation,
to make it harder for worm authors to construct payloads so as to force par-
ticular content block boundaries; results are quite similarfor k = 16.

8In cases where a source address owner complains that his address is
advertised, the administrator of an Autograph monitor could configure Auto-
graph not to report addresses from the uncooperative address block.

9We have implemented blacklists at this writing, but omit a full evaluation
of them in the interest of brevity. Our experience has shown that blacklists
of even 2 to 6 disallowed signatures can significantly reducefalse positives
caused by misclassified innocuous flows, for HTTP traffic.
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