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Abstract: 
Intrusion Detection Systems (IDS) have become important and widely-used tools for ensuring netwrok security. 
Since the amount of audit data that an IDS needs to examine is very large even for a small network, audit data 
reduction is often a necessary task. To maximize the time performance, scalabilit y, and fast re-training or tuning of  
an IDS, irrelevant features in audit data must be identified and eliminated from examination by the IDS. 
 
This paper concerns ranking the importance of input features for IDS. We use the DARPA data initially provided for 
the KDD’99 competition and perform experiments using neural networks (NN) and support vector machines (SVM). 
To rank the significance of the 41 input features in the data, we first build  NN and SVM that achieve a high-level of 
accuracy. Next, input features are deleted, one at a time, and NN and SVM are trained based on the reduced input. 
The performance of the NN and SVM are then compared with the original NN and SVM to determine the 
significance of the deleted feature. 
 
A number of simulation results are presented, including binary classifications (normal and attack) and five-class 
classifications (normal, and four classes of attacks). It is demonstrated that a large number of the (41) input features 
are unimportant and may be eliminated, without significantly lowering the performance of the IDS [17]. 
 
 
1. THE DATA 
In the 1998 DARPA intrusion detection evaluation 
program, an environment was set up to acquire raw 
TCP/IP dump data for a network by simulating a 
typical U.S. Air Force LAN.  The LAN was operated 
like a true environment, but being blasted with 
multiple attacks. For each TCP/IP connection, 41 
various quantitative and qualitative features were 
extracted. Of this database a subset of 494021 data 
were used, of which 20% represent normal patterns. 

 
Attack types fall i nto four main categories: 
1. DOS: denial of service 
2. R2L: unauthorized access from a remote 

machine 
3. U2R: unauthorized access to local super user 

(root) privileges 
4. Probing: surveill ance and other probing 

Table 1 below shows 22 different exploits that were 
used in the intrusion detection evaluation. 

Table 1: Attacks in the DARPA evaluation. 
Attack 
Class 

OS: 
Solaris 

OS: 
SunOS 

OS: 
Linux 

Denial 
of 
Service 
 
 
Denial 
of 
Service 
(cont.) 

Apache2 
Back 
Mail 
bomb 
Neptune 
Ping of 
death 

Apache2 
Back 
Mail 
bomb 
Neptune 
Ping of 
death 

Apache2 
Back 
Mail 
bomb 
Neptune 
Ping of 
death 

(cont.) Process 
table 
Smurf 
Syslogd 
UDP 
storm 

Process 
table 
Smurf 
Syslogd 
UDP 
storm 

Process 
table 
Smurf 
Syslogd 
UDP 
storm 

Remote 
to User 

Dictionary 
Ftp-write 
Guest 
Phf 
Xlock 
Xnsnoop 
 

Dictionary 
Ftp-write 
Guest 
Phf 
Xlock 
Xnsnoop 
 

Dictionary 
Ftp-write 
Guest 
Imap 
Named 
Phf 
Sendmail 
Xlock 
Xnsnoop 

User to 
Super-
user 

Eject 
Ffbconfig 
Fdformat 
Ps 

Load 
module 
Ps 

Perl 
Xterm 

Probing Ip sweep 
Mscan 
Nmap 
Saint 
Satan 

Ip sweep 
Mscan 
Nmap 
Saint 
Satan 

Ip sweep 
Mscan 
Nmap 
Saint 
Satan 

 
2. SVM BASED TRAINNING 
In our first set of experiments, the data consists of 
14000 randomly generated points, with a number of 
data from each class in proportion to its size. We 



used a training set of 7000 data points with, 
respectively, 41 features and 13 features [16] each. 
The results are summarized in the following table. 
In our second set of experiments, we perform 5-class 
classification. The (training and testing) data set 
contains 4562 randomly generated points from the 
five classes, with the number of data from each class 
proportional to its size, except that the smallest class 
is completely included. The normal data belongs to 
class1 (C1), denial of service belongs to C2, probe 
belongs to C3, remote to user belongs to C4, user to 
super user belongs to class C5. We used a training set 
of 2282 data points with 41 features for five class 
classification as described in section 3. 
 
The results are summarized in the following table 
[17]. As can be seen, SVMs demonstrate higher 
performance than neural networks, in terms of 
training time (SVM trains at a speed that is an order 
of magnitude faster than that for neural networks), 
running time (running 5 SVMs, even serially, for 5-
class identification, takes less time than running a 
single neural network for making the same 5-class 
identification), and scalability (SVMs can train with 
larger data sets). 
 
Table 2: SVM training results. 
Training results Experiment 1 Experiment 2 
Data set 14000 14000 
Training set 7000 7000 
# of features 41 13 
Kernel RBF RBF 
Gamma value 0.000001 0.000001 
C value 1000 1000 
CPU run time 52.02 sec 108.62 sec 
# of 
misclassifications 

15 22 

# of iterations 11605 23766 
Max difference 0.00099 0.00095 
# of Support 
vectors 

209 (53 at 
upper bound) 

163 (92 at 
upper bound) 

Liner loss 40.45970 65.25182 
Normalization of 
weight vector 

159.75859 203.82591 

# of kernel 
evaluations 

3798517 4358680 

Training results Experiment 3 Experiment 4 
Data set 4562 4562 
Training set 2282 2282 
# of features 41 41 
Kernel RBF RBF 
Gamma value 0.000006 0.000006 
C value 1000 1000 
CPU run time sec 7.51 sec 13.36 sec 

# of 
misclassifications 

0 23 

# of iterations 1338 23766 
Max difference 0.00995 0.00100 
# of Support 
vectors 

174 (5 at 
upper bound) 

157 (132 at 
upper bound) 

Liner loss 0.90083 66.79142 
Normalization of 
weight vector 

93.79964 371.32366 
 
 

# of kernel 
evaluations 

891776 1066511 

Training results Experiment 5 Experiment 6 
Data set 4562 4562 
Training set 2282 2282 
# of features 41 41 
Kernel RBF RBF 
Gamma value 0.000006 0.000006 
C value 1000 1000 
CPU run time 14.39 sec 7.22 sec 
# of 
misclassifications 

39 1 

# of iterations 11063 2263 
Max difference 0.00097 0.00095 
# of Support 
vectors 

272 (163 at 
upper bound) 

112 (8 at 
upper bound) 

Liner loss 96.14469 2.86755 
Normalization of 
weight vector 

273.28483 117.93924 

# of kernel 
evaluations 

1208449 881258 

Training results Experiment 7  
Data set 4562  
Training set 2282  
# of features 41  
Kernel RBF  
Gamma value 0.000006  
C value 1000  
CPU run time 1.96 sec  
# of 
misclassifications 

0  

# of iterations 576  
Max difference 0.00079  
# of Support 
vectors 

36 (2 at upper 
bound) 

 

Liner loss 0.54599  
Normalization of 
weight vector 

73.38302  

# of kernel 
evaluations 

301750  

 
2.1 Testing 
In our first set of experiments, the test set consists of 
7000 data points with 41 features and 13 features. In 



our second set of experiments five-class classification 
as described in section 3 the test set consists of 2800 
data points. Results are given in table4. 
Table 3: SVM testing results. 
Testing Exp 1 Exp 2 Exp 3 Exp 4 
Test data set 7000 7000 2200 2200 
# of features 41 13 41 41 
Accuracy % 99.53 99.52 98.99 99.08 
CPU run 
time sec 

1.60 1.06 0.29  0.23 

# of mis-
classifications 

33 35 42 20 

Testing Exp 5 Exp 6 Exp 7  
Test data set 2200 2200 2200  
# of features 41 41 41  
Accuracy % 98.55 98.46 99.65  
CPU run 
time sec 

0.70 0.36 1.96  

# of mis-
classifications 

33 35 8  

 

Table 5: Results of the second test set with 41 
features and 2200 data points for five-class 
classification. 
 C1 C2 C3 C4 C5 % 
C1 536 16 9 1 0 95 
C2 2 539 20 0 0 96 
C3 4 1 521 42 0 91.7 
C4 2 1 0 556 4 98.7 
C5 4 2 1 0 19 76 
% 97.8 99.6 97 93.9 92  

The top-left entry of Table 6 shows that 536 of the 
actual “normal” [C1] test set were detected to be 
normal; the last column indicates that 95 % of the 
actual “normal” data points were detected correctly. 
In the same way, for the class 1 [C2] 539 of the 
actual “attack” test set were correctly detected; the 
last column indicates that 96% of the actual “C2” 
data points were detected correctly. The bottom row 
shows that 97.8% of the test set said to be “normal” 
indeed were “normal” and 99.6% of the tests set 
classified, as “C2” indeed belong to C2. 
 
3. NEURAL NETWORK TRAINING 
In our experiments, we use a dataset consisting of 
14000 randomly generated data points from the 2 
classes of attack and normal. From this dataset, we 
then randomly select a subset of 7000 data for 
training; and prepare two training sets, with 41 
features and 13 features each, respectively. A multi -
layer, feed forward network was trained using the 

scaled conjugate gradient decent algorithm with 
convergence criterion set to be MSE (mean square 
error) of 0.001. During the training process of using 
41features, the goal was met in 538 epochs with 
MSE=0.000999; Using 13 features, the goal was 
reached in 608 epochs with MSE=0.000638. In our 
other set of experiments, the data consists of 4562 
randomly generated points, with a number of data 
from each class in proportion to its size and the least 
class completely included. We used a training set of 
2282 data points with, 41 features for five class 
classification as described in section 3. The results 
are summarized in the following table [17]. 

Table 6: Neural network training. 
Training  Experiment 1 Experiment 2 
# of features 41 13 
# of data points 7000 7000 
Architecture [41,50,40,1] [13,40,40,1] 
Performance 0.000999 0.00638 
Epochs 538 608 
CPU time 30 min  38 min 
Training  Experiment 3 
# of features 41 
# of data points 2282 
Architecture [41,15,10,1] 
Performance 0.000864 
Epochs 3118 
CPU time 1hr5min 
 
3.1 Testing the Neural Network 
The test set consisting of 7000 data points with 41 
features and 13 features. The one with 41 features 
received 99.48% accuracy and the one with 13 
features received 99.41%. The following table gives a 
comparison of the neural network detection 
performance using 41 and 13 features [17]. In our 
experiment number 3 for five-class classification as 
described in section 3 the test set consists of 2800 
data points. Results are given in the following table. 

Table 7 Neural network testing binary 
classification. 

Training  Experiment 1 Experiment 2 
# of features 41 13 
# of data points 7000 7000 
Architecture [41,50,40,1] [13,40,40,1] 
Performance 99.48% 99.41% 
Training  Experiment 3 
# of features 41 
# of data points 2200 
Architecture [41,15,10,1] 
Performance 92.6% 



Table 8 Neural network testing for five 
class classification 
 C1 C2 C3 C4 C5 % 
C1 547 17 0 0 0 97 
C2 20 528 8 1 4 94.1 
C3 0 5 476 17 73 83.8 
C4 1 10 0 552 0 98.4 
C5 0 0 6 6 12 48 
% 99.2 99.8 86.2 97.5 28  

4. FEATURE RANKING 
We used the method of deleting one feature at a time 
to rank the importance of each feature towards the 
over all efficiency and effectiveness, this was done in 
order to develop an cost effective and efficient 
intrusion detection system. 
 
4.1 Experiments  
We used neural networks for ranking the 
effectiveness. Here the same architecture [41,15,10,1] 
was used; and depending on the accuracy achieved 
on the test sets, unequal weighted effectiveness (C1-
5%, C2-20%, C3-10%, C4-35%, C5-30%) and 
equally weighted effectiveness (each class 20%) of 
classification was determined. Using the unequal 
weighted effectiveness and equal weighted 
effectiveness as the basis, the features were ranked. 
After the features are ranked, we performed 
experiments by deleting the least significant features 
and then compared the unequal weighted 
effectiveness and equal weighted effectiveness to the 
experiment using all the 41 features. The table below 
shows the performance achieved by deleting that 
particular feature, based on the performance metrics 
importance of a particular feature can be derived. 
Table 9 Performance of the neural networks 
after deleting a particular feature 

# Feature 
deleted 

Unequally 
Weighted 
Effectiveness
  

Equally 
Weighted 
Effectivenes
s 

1 duration ��������� �
	���
��

2 protocol type �
��� � �
�
3 service �
����� �
�����
4 flag ���! �" �
�� �#
5 src_bytes $&%(' ) *
+�,�*
6 dst_bytes -
.�/ 0 1
2�/ 0
7 land 1
2�/�- 1
-�/�2

8 wrong_fragme
nt 

1
3�/ 4 1
1�/�3

9 urgent .
.�/�2 1�5�/�2
10 hot .
2�/�2�4 1�5�/ 0
11 num_failed_lo

gins 
1607/ 0 1
.�/ 4

12 logged in .
2�/�5 .
8�/�8
13 num_compro

mised 
-
3�/�2 .
.�/�5

14 root_shell -
3�/�8 .
1�/�-
15 su_attempted -
.�/ 0 .
.�/�1
16 num_root -
-�/�9 .
.�/�1
17 num_file_creat

ions 
-
-�/�- .
1�/�5

18 num_shells .
-�/�8 1607/�.
19 num_access_fi

les 
.
2�/�1 .
-�/�-

20 num_outbound
_cmds

-
3�/�3 .
.�/�8

21 is_host_login -
3�/�3 .
.�/�8
22 is_guest_logn -
.�/�1 .
.�/�8
23 count 64.4 .
.�/�5
24 srv_count 65.3 77.1 
25 serror_rate 1
2�/�5 1
3�/�5
26 srv_serror_rate 69.0 78.8 
27 rerror_rate 1
2�/ 0 1
3�/�5
28 srv_rerror_rate

 
-�4!/�9 .
-�/ 4

29 same_srv_rate .
.�/�3 1607/�1
30 diff_srv_rate -
.�/�9 .
1�/�9
31 srv_diff_host_

rate 
.
.�/�5 1�4!/�3

32 dst_host_count 84.4 87.7 
33 dst_host_srv_c

ount 
70.3 80.4 

34 dst_host_same
_srv_rate 

81.7 84.4 

35 dst_host_diff_sr
v_rate 

85.4 87.5 

36 dst_host_same
_src_port_rate 

63.5 75.9 

37 dst_host_srv_d
iff_host_rate 

63.2 75 

38 dst_host_serro
r_rate 

66.7 78 

39 dst_host_srv_s
error_rate 

64.1 76.7 



40 dst_host_rerro
r_rate 

65.1 75.8 

41 dst_host_srv_r
error_rate 

72.1 82.1 

Considering performance as the basis we found that 
feature numbers 
2,6,13,14,15,16,17,21,22,23,24,26,28,30,36,37,38,39,
40 were important for detecting the attack and normal 
patters for five-class classification. Tables below 
show the experimental results on the reduced features 
and on the one with all the 41 features. 
Table 10 Performance matrix with all 41 
features 
 C1 C2 C3 C4 C5 % 
C1 523 40 0 0 0 92.9 
C2 19 529 7 2 4 94.3 
C3 0 4 472 13 79 83.1 
C4 1 3 14 545 0 96.8 

C5 0 0 2 6 17 68 
% 96.3 91.8 95.4 96.3 17  

 
Table 11 Performance matrix with 19 most 
important features 
 C1 C2 C3 C4 C5 % 
C1 434 129 0 0 0 77.1 
C2 6 491 17 26 21 87.5 
C3 50 32 461 15 10 81.2 
C4 2 13 4 534 10 94.8 
C5 0 6 0 0 19 76 
% 88.2 73.2 95.6 92.9 31.7  

The weighted effectiveness improved when the least 
significant features were removed, but there was a 
decrease in un-weighted effectiveness. 
Effectiveness  41features 19features 
Weighted 
effectiveness 

67.9 69.8 

Unweighted 
effectiveness 

79.4 76.3 

5. CONCLUSIONS 
We have performed a number of experiments to 
measure the performance of support vector machines 
and neural networks in intrusion detection, using the 
DARPA data for intrusion evaluation.  Classifications 
were performed on the binary (attack / normal), as 
well as five-class classifications. 

Both SVMs and neural networks deliver highly 
accurate (99% and higher) performance, with SVMs 
showing slightly better results. Further, when a 
reduction is performed to reduce the 41 features to 
the 13 most significant, both SVMs and neural 
networks again were able to train to deliver accurate 
results for binary classification. In terms of the five-
class classification, we found using only 19 most 
important (of the 41) features, the change in accuracy 
was statistically insignificant. But the reduction in 
features can be expected to reduce the cost of 
detection and the overhead of the intrusion detection 
as a whole. 
Our ongoing experiments include making 23-class 
(22 specific attacks and normal) feature identification 
using SVMs and neural networks, for designing an 
cost-effective and real time intrusion detection tool.  
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