
Audit Data Reduction for Intrusion Detection

S. Mukkamala, G. R. Tadiparthi, N. Tummala, G. Janoski
{srinivas, gopal, ntummala, silfalco}@cs.nmt.edu

Department of Computer Science
New Mexico Institute of Mining and Technology

Socorro, New Mexico 87801, USA

Abstract:
Intrusion Detection Systems (IDS) have become important and widely-used tools for ensuring netwrok security.
Since the amount of audit data that an IDS needs to examine is very large even for a small network, audit data
reduction is often a necessary task. To maximize the time performance, scalabilit y, and fast re-training or tuning of
an IDS, irrelevant features in audit data must be identified and eliminated from examination by the IDS.

This paper concerns ranking the importance of input features for IDS. We use the DARPA data initially provided for
the KDD’99 competition and perform experiments using neural networks (NN) and support vector machines (SVM).
To rank the significance of the 41 input features in the data, we first build NN and SVM that achieve a high-level of
accuracy. Next, input features are deleted, one at a time, and NN and SVM are trained based on the reduced input.
The performance of the NN and SVM are then compared with the original NN and SVM to determine the
significance of the deleted feature.

A number of simulation results are presented, including binary classifications (normal and attack) and five-class
classifications (normal, and four classes of attacks). It is demonstrated that a large number of the (41) input features
are unimportant and may be eliminated, without significantly lowering the performance of the IDS [17].

1. THE DATA
In the 1998 DARPA intrusion detection evaluation
program, an environment was set up to acquire raw
TCP/IP dump data for a network by simulating a
typical U.S. Air Force LAN. The LAN was operated
like a true environment, but being blasted with
multiple attacks. For each TCP/IP connection, 41
various quantitative and qualitative features were
extracted. Of this database a subset of 494021 data
were used, of which 20% represent normal patterns.

Attack types fall i nto four main categories:
1. DOS: denial of service
2. R2L: unauthorized access from a remote

machine
3. U2R: unauthorized access to local super user

(root) privileges
4. Probing: surveill ance and other probing

Table 1 below shows 22 different exploits that were
used in the intrusion detection evaluation.

Table 1: Attacks in the DARPA evaluation.
Attack
Class

OS:
Solaris

OS:
SunOS

OS:
Linux

Denial
of
Service

Denial
of
Service
(cont.)

Apache2
Back
Mail
bomb
Neptune
Ping of
death

Apache2
Back
Mail
bomb
Neptune
Ping of
death

Apache2
Back
Mail
bomb
Neptune
Ping of
death

(cont.) Process
table
Smurf
Syslogd
UDP
storm

Process
table
Smurf
Syslogd
UDP
storm

Process
table
Smurf
Syslogd
UDP
storm

Remote
to User

Dictionary
Ftp-write
Guest
Phf
Xlock
Xnsnoop

Dictionary
Ftp-write
Guest
Phf
Xlock
Xnsnoop

Dictionary
Ftp-write
Guest
Imap
Named
Phf
Sendmail
Xlock
Xnsnoop

User to
Super-
user

Eject
Ffbconfig
Fdformat
Ps

Load
module
Ps

Perl
Xterm

Probing Ip sweep
Mscan
Nmap
Saint
Satan

Ip sweep
Mscan
Nmap
Saint
Satan

Ip sweep
Mscan
Nmap
Saint
Satan

2. SVM BASED TRAINNING
In our first set of experiments, the data consists of
14000 randomly generated points, with a number of
data from each class in proportion to its size. We

used a training set of 7000 data points with,
respectively, 41 features and 13 features [16] each.
The results are summarized in the following table.
In our second set of experiments, we perform 5-class
classification. The (training and testing) data set
contains 4562 randomly generated points from the
five classes, with the number of data from each class
proportional to its size, except that the smallest class
is completely included. The normal data belongs to
class1 (C1), denial of service belongs to C2, probe
belongs to C3, remote to user belongs to C4, user to
super user belongs to class C5. We used a training set
of 2282 data points with 41 features for five class
classification as described in section 3.

The results are summarized in the following table
[17]. As can be seen, SVMs demonstrate higher
performance than neural networks, in terms of
training time (SVM trains at a speed that is an order
of magnitude faster than that for neural networks),
running time (running 5 SVMs, even serially, for 5-
class identification, takes less time than running a
single neural network for making the same 5-class
identification), and scalability (SVMs can train with
larger data sets).

Table 2: SVM training results.
Training results Experiment 1 Experiment 2
Data set 14000 14000
Training set 7000 7000
of features 41 13
Kernel RBF RBF
Gamma value 0.000001 0.000001
C value 1000 1000
CPU run time 52.02 sec 108.62 sec
of
misclassifications

15 22

of iterations 11605 23766
Max difference 0.00099 0.00095
of Support
vectors

209 (53 at
upper bound)

163 (92 at
upper bound)

Liner loss 40.45970 65.25182
Normalization of
weight vector

159.75859 203.82591

of kernel
evaluations

3798517 4358680

Training results Experiment 3 Experiment 4
Data set 4562 4562
Training set 2282 2282
of features 41 41
Kernel RBF RBF
Gamma value 0.000006 0.000006
C value 1000 1000
CPU run time sec 7.51 sec 13.36 sec

of
misclassifications

0 23

of iterations 1338 23766
Max difference 0.00995 0.00100
of Support
vectors

174 (5 at
upper bound)

157 (132 at
upper bound)

Liner loss 0.90083 66.79142
Normalization of
weight vector

93.79964 371.32366

of kernel
evaluations

891776 1066511

Training results Experiment 5 Experiment 6
Data set 4562 4562
Training set 2282 2282
of features 41 41
Kernel RBF RBF
Gamma value 0.000006 0.000006
C value 1000 1000
CPU run time 14.39 sec 7.22 sec
of
misclassifications

39 1

of iterations 11063 2263
Max difference 0.00097 0.00095
of Support
vectors

272 (163 at
upper bound)

112 (8 at
upper bound)

Liner loss 96.14469 2.86755
Normalization of
weight vector

273.28483 117.93924

of kernel
evaluations

1208449 881258

Training results Experiment 7
Data set 4562
Training set 2282
of features 41
Kernel RBF
Gamma value 0.000006
C value 1000
CPU run time 1.96 sec
of
misclassifications

0

of iterations 576
Max difference 0.00079
of Support
vectors

36 (2 at upper
bound)

Liner loss 0.54599
Normalization of
weight vector

73.38302

of kernel
evaluations

301750

2.1 Testing
In our first set of experiments, the test set consists of
7000 data points with 41 features and 13 features. In

our second set of experiments five-class classification
as described in section 3 the test set consists of 2800
data points. Results are given in table4.
Table 3: SVM testing results.
Testing Exp 1 Exp 2 Exp 3 Exp 4
Test data set 7000 7000 2200 2200
of features 41 13 41 41
Accuracy % 99.53 99.52 98.99 99.08
CPU run
time sec

1.60 1.06 0.29 0.23

of mis-
classifications

33 35 42 20

Testing Exp 5 Exp 6 Exp 7
Test data set 2200 2200 2200
of features 41 41 41
Accuracy % 98.55 98.46 99.65
CPU run
time sec

0.70 0.36 1.96

of mis-
classifications

33 35 8

Table 5: Results of the second test set with 41
features and 2200 data points for five-class
classification.
 C1 C2 C3 C4 C5 %
C1 536 16 9 1 0 95
C2 2 539 20 0 0 96
C3 4 1 521 42 0 91.7
C4 2 1 0 556 4 98.7
C5 4 2 1 0 19 76
% 97.8 99.6 97 93.9 92

The top-left entry of Table 6 shows that 536 of the
actual “normal” [C1] test set were detected to be
normal; the last column indicates that 95 % of the
actual “normal” data points were detected correctly.
In the same way, for the class 1 [C2] 539 of the
actual “attack” test set were correctly detected; the
last column indicates that 96% of the actual “C2”
data points were detected correctly. The bottom row
shows that 97.8% of the test set said to be “normal”
indeed were “normal” and 99.6% of the tests set
classified, as “C2” indeed belong to C2.

3. NEURAL NETWORK TRAINING
In our experiments, we use a dataset consisting of
14000 randomly generated data points from the 2
classes of attack and normal. From this dataset, we
then randomly select a subset of 7000 data for
training; and prepare two training sets, with 41
features and 13 features each, respectively. A multi -
layer, feed forward network was trained using the

scaled conjugate gradient decent algorithm with
convergence criterion set to be MSE (mean square
error) of 0.001. During the training process of using
41features, the goal was met in 538 epochs with
MSE=0.000999; Using 13 features, the goal was
reached in 608 epochs with MSE=0.000638. In our
other set of experiments, the data consists of 4562
randomly generated points, with a number of data
from each class in proportion to its size and the least
class completely included. We used a training set of
2282 data points with, 41 features for five class
classification as described in section 3. The results
are summarized in the following table [17].

Table 6: Neural network training.
Training Experiment 1 Experiment 2
of features 41 13
of data points 7000 7000
Architecture [41,50,40,1] [13,40,40,1]
Performance 0.000999 0.00638
Epochs 538 608
CPU time 30 min 38 min
Training Experiment 3
of features 41
of data points 2282
Architecture [41,15,10,1]
Performance 0.000864
Epochs 3118
CPU time 1hr5min

3.1 Testing the Neural Network
The test set consisting of 7000 data points with 41
features and 13 features. The one with 41 features
received 99.48% accuracy and the one with 13
features received 99.41%. The following table gives a
comparison of the neural network detection
performance using 41 and 13 features [17]. In our
experiment number 3 for five-class classification as
described in section 3 the test set consists of 2800
data points. Results are given in the following table.

Table 7 Neural network testing binary
classification.

Training Experiment 1 Experiment 2
of features 41 13
of data points 7000 7000
Architecture [41,50,40,1] [13,40,40,1]
Performance 99.48% 99.41%
Training Experiment 3
of features 41
of data points 2200
Architecture [41,15,10,1]
Performance 92.6%

Table 8 Neural network testing for five
class classification
 C1 C2 C3 C4 C5 %
C1 547 17 0 0 0 97
C2 20 528 8 1 4 94.1
C3 0 5 476 17 73 83.8
C4 1 10 0 552 0 98.4
C5 0 0 6 6 12 48
% 99.2 99.8 86.2 97.5 28

4. FEATURE RANKING
We used the method of deleting one feature at a time
to rank the importance of each feature towards the
over all efficiency and effectiveness, this was done in
order to develop an cost effective and efficient
intrusion detection system.

4.1 Experiments
We used neural networks for ranking the
effectiveness. Here the same architecture [41,15,10,1]
was used; and depending on the accuracy achieved
on the test sets, unequal weighted effectiveness (C1-
5%, C2-20%, C3-10%, C4-35%, C5-30%) and
equally weighted effectiveness (each class 20%) of
classification was determined. Using the unequal
weighted effectiveness and equal weighted
effectiveness as the basis, the features were ranked.
After the features are ranked, we performed
experiments by deleting the least significant features
and then compared the unequal weighted
effectiveness and equal weighted effectiveness to the
experiment using all the 41 features. The table below
shows the performance achieved by deleting that
particular feature, based on the performance metrics
importance of a particular feature can be derived.
Table 9 Performance of the neural networks
after deleting a particular feature

Feature
deleted

Unequally
Weighted
Effectiveness

Equally
Weighted
Effectivenes
s

1 duration ��������� �
	���
��

2 protocol type �
��� � �
�
3 service �
����� �
�����
4 flag ���! �" �
�� �#
5 src_bytes $&%(') *
+�,�*
6 dst_bytes -
.�/ 0 1
2�/ 0
7 land 1
2�/�- 1
-�/�2

8 wrong_fragme
nt

1
3�/ 4 1
1�/�3

9 urgent .
.�/�2 1�5�/�2
10 hot .
2�/�2�4 1�5�/ 0
11 num_failed_lo

gins
1607/ 0 1
.�/ 4

12 logged in .
2�/�5 .
8�/�8
13 num_compro

mised
-
3�/�2 .
.�/�5

14 root_shell -
3�/�8 .
1�/�-
15 su_attempted -
.�/ 0 .
.�/�1
16 num_root -
-�/�9 .
.�/�1
17 num_file_creat

ions
-
-�/�- .
1�/�5

18 num_shells .
-�/�8 1607/�.
19 num_access_fi

les
.
2�/�1 .
-�/�-

20 num_outbound
_cmds

-
3�/�3 .
.�/�8

21 is_host_login -
3�/�3 .
.�/�8
22 is_guest_logn -
.�/�1 .
.�/�8
23 count 64.4 .
.�/�5
24 srv_count 65.3 77.1
25 serror_rate 1
2�/�5 1
3�/�5
26 srv_serror_rate 69.0 78.8
27 rerror_rate 1
2�/ 0 1
3�/�5
28 srv_rerror_rate

-�4!/�9 .
-�/ 4

29 same_srv_rate .
.�/�3 1607/�1
30 diff_srv_rate -
.�/�9 .
1�/�9
31 srv_diff_host_

rate
.
.�/�5 1�4!/�3

32 dst_host_count 84.4 87.7
33 dst_host_srv_c

ount
70.3 80.4

34 dst_host_same
_srv_rate

81.7 84.4

35 dst_host_diff_sr
v_rate

85.4 87.5

36 dst_host_same
_src_port_rate

63.5 75.9

37 dst_host_srv_d
iff_host_rate

63.2 75

38 dst_host_serro
r_rate

66.7 78

39 dst_host_srv_s
error_rate

64.1 76.7

40 dst_host_rerro
r_rate

65.1 75.8

41 dst_host_srv_r
error_rate

72.1 82.1

Considering performance as the basis we found that
feature numbers
2,6,13,14,15,16,17,21,22,23,24,26,28,30,36,37,38,39,
40 were important for detecting the attack and normal
patters for five-class classification. Tables below
show the experimental results on the reduced features
and on the one with all the 41 features.
Table 10 Performance matrix with all 41
features
 C1 C2 C3 C4 C5 %
C1 523 40 0 0 0 92.9
C2 19 529 7 2 4 94.3
C3 0 4 472 13 79 83.1
C4 1 3 14 545 0 96.8

C5 0 0 2 6 17 68
% 96.3 91.8 95.4 96.3 17

Table 11 Performance matrix with 19 most
important features
 C1 C2 C3 C4 C5 %
C1 434 129 0 0 0 77.1
C2 6 491 17 26 21 87.5
C3 50 32 461 15 10 81.2
C4 2 13 4 534 10 94.8
C5 0 6 0 0 19 76
% 88.2 73.2 95.6 92.9 31.7

The weighted effectiveness improved when the least
significant features were removed, but there was a
decrease in un-weighted effectiveness.
Effectiveness 41features 19features
Weighted
effectiveness

67.9 69.8

Unweighted
effectiveness

79.4 76.3

5. CONCLUSIONS
We have performed a number of experiments to
measure the performance of support vector machines
and neural networks in intrusion detection, using the
DARPA data for intrusion evaluation. Classifications
were performed on the binary (attack / normal), as
well as five-class classifications.

Both SVMs and neural networks deliver highly
accurate (99% and higher) performance, with SVMs
showing slightly better results. Further, when a
reduction is performed to reduce the 41 features to
the 13 most significant, both SVMs and neural
networks again were able to train to deliver accurate
results for binary classification. In terms of the five-
class classification, we found using only 19 most
important (of the 41) features, the change in accuracy
was statistically insignificant. But the reduction in
features can be expected to reduce the cost of
detection and the overhead of the intrusion detection
as a whole.
Our ongoing experiments include making 23-class
(22 specific attacks and normal) feature identification
using SVMs and neural networks, for designing an
cost-effective and real time intrusion detection tool.

ACKNOWLEDGEMENTS
Partial support for this research received from
ICASA (Institute for Complex Additive Systems
Analysis, a division of New Mexico Tech) is
gratefully acknowledged. The fourth author also
acknowledges her partial support received from
Sandia National Laboratories under the Rio Grande
Educational Initiative. We also would like to thank
Dr. Jean-Louis Lassez, David Duggan, and Bob
Hutchinson for insightful conversations regarding
this research.

REFERENCES
[1] Ryan J., Lin M-J., Miikkulainen R. (1998)

Intrusion Detection with Neural Networks,
Advances in Neural Information Processing
Systems 10, Cambridge, MA: MIT Press.

[2] Kumar S., Spafford E.H. (1994) An
Application of Pattern Matching in Intrusion
Detection, Technical Report CSD-TR-94-
013, Purdue University.

[3] Luo J., Bridges S.M. (2000) Mining Fuzzy
Association Rules and Fuzzy Frequency
Episodes for Intrusion Detection,
International Journal of Intelligent Systems,
John Wiley & Sons, pp. 15:687-703.

[4] Demuth H., Beale M. (2000) Neural
Network Toolbox User’s Guide, Math
Works, Inc. Natick, MA.

[5] Sung A.H. (1998) Ranking Importance of
Input Parameters Of Neural Networks,
Expert Systems with Applications, pp.
15:405-411.

[6] Cramer M., et al. (1995) New Methods of
Intrusion Detection using Control-Loop
Measurement, Proceedings of the
Technology in Information Security
Conference (TISC) ’95, pp. 1-10.

[7] Debar H., Becke M., Siboni D. (1992) A
Neural Network Component for an Intrusion
Detection System, Proceedings of the IEEE
Computer Society Symposium on Research
in Security and Privacy.

[8] Debar H., Dorizzi B. (1992) An Application
of a Recurrent Network to an Intrusion
Detection System, Proceedings of the
International Joint Conference on Neural
Networks. pp. 78-483.

[9] Denning D. (1987) An Intrusion-Detection
Model, IEEE Transactions on Software
Engineering, Vol SE-13, No 2.

[10]Ghosh A.K. (1999). Learning Program
Behavior Profiles for Intrusion Detection,
USENIX.

[11]Cannady J. (1998) Artificial Neural
Networks for Misuse Detection, National
Information Systems Security Conference.

[12]Vladimir V.N. (1995) The Nature of
Statistical Learning Theory, Springer.

[13]Joachims T. (2000) SVMlight is an
implementation of Support Vector Machines
(SVMs) in C,

 http://ais.gmd.de/~thorsten/svm_light/.
University of Dortmund, Collaborative
Research Center on Complexity Reduction
in Multivariate Data (SFB475).

[14]Joachims T. (1998) Making Large-Scale
SVM Learning Practical. LS8-Report,
University of Dortmund, LS VIII -Report.

[15]Joachims T. (2000) Estimating the
Generalization Performance of a SVM
Efficiently, Proceedings of the International
Conference on Machine Learning, Morgan
Kaufman.

[16]http://kdd.ics.uci.edu/databases/kddcup99/ta
sk.htm.

[17] S. Mukkamala, G.Kakarla, A.H. Sung,
S.Veeramachaneni (2002) Intrusion
Detection: Comparison of Support Vector
Machines and Neural Networks, IASTED
Artificial Intelli gence and Soft Computing
conference (submitted).

