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Abstract:

Intrusion Detedion Systems (IDS) have bemme important and widely-used todls for ensuring retwrok seaurity.
Since the anount of audit data that an IDS neels to examine is very large even for a small network, audit data
reduction is often a necessary task. To maximize the time performance, scdability, and fast re-training or tuning of
an IDS, irrelevant feduresin audit data must be identified and eli minated from examination by the IDS.

This paper concerns ranking the importance of input feaures for IDS. We use the DARPA data initially provided for
the KDD’ 99 competition and perform experiments using reural networks (NN) and suppat vedor madines (SVM).
To rank the significance of the 41 input feauresin the data, we first build NN and SVM that achieve ahigh-level of
acaracy. Next, input feaures are deleted, one & atime, and NN and SVM are trained based on the reduced inpuit.
The performance of the NN and SVM are then compared with the origind NN and SVM to determine the
significance of the deleted feaure.

A number of simulation results are presented, including binary classficaions (norma and attadk) and five-class
classficaions (normal, and four classes of attads). It is demonstrated that a large number of the (41) input fegures
are unimportant and may be di minated, without significantly lowering the performance of the IDS[17].

1. THE DATA

In the 1998 DARPA intrusion detedion evaluation
program, an environment was %t up to acuire raw
TCP/IP dump data for a network by simulating a
typicd U.S. Air Force LAN. The LAN was operated
like a true ewironment, but being blasted with
multiple dtacks. For eacn TCP/IP conredion, 41
various quantitative and qualitative fedures were
extraded. Of this database asubset of 494021 dita

were used, of which 20% represent normal patterns.

Attad typesfall into four main caegories:
1. DOS: denial of service
2. R2L: unauthorized access from a remote
machine
3. U2R: unauthorized accessto locd super user
(roat) privileges
4. Probing: surveill ance and ather probing
Table 1 below shows 22 dfferent exploits that were
used in the intrusion detedion evaluation.

Table 1: Attadksin the DARPA evaluation.

(cont.) | Process Process Process
table table table
Smurf Smurf Smurf
Syslogd Syslogd Syslogd
UDP UDP UDP
storm storm storm
Remote | Dictionary | Dictionary | Dictionary
toUser | Ftp-write | Ftp-write | Ftp-write
Guest Guest Guest
Phf Phf Imap
Xlock Xlock Named
Xnsnoop | Xnsnoop | Phf
Sendmail
Xlock
Xnsnoop
User to | Eject Load Perl
Super- | Ffbconfig | module Xterm
user Fdformat | Ps
Ps
Probing | Ipsweep | Ipsweep | Ip sweep
Mscan Mscan Mscan
Nmap Nmap Nmap
Saint Saint Saint
Satan Satan Satan

Attack | OS: (OFS; (OFS;
Class Solaris SunOS Linux
Denial | Apache2 | Apache2 | Apache2
of Back Back Back
Service | Mail Mail Mail
bomb bomb bomb

. Neptune Neptune Neptune
gfen'al Ping of | Ping of | Ping of
Service | death death death

2. SVM BASED TRAINNING

In our first set of experiments, the data consists of
14000 randomly generated points, with a number of
data from each class in proportion to its size. We



used a training set of 7000 data points with, # of 0 23

respectively, 41 features and 13 features [16] each. misclassifications

The results are summarized in the following table. # of iterations 1338 23766

In our second set of experiments, we perform 5-class Max difference 0.00995 0.00100

classification. The (training and testing) data set # of Support 174 (5a 157 (132 at

contains 4562 randomly generated points from the vectors upper bound) | upper bound)

five classes, with the number of data from each class Liner loss 0.90083 66.79142

proportional to its size, except that the smallest class Normalization of 93.79964 371.32366

is completely included. The norma data belongs to weight vector

classl (C1), denia of service belongs to C2, probe

belongs to C3, remote to user belongs to C4, user to # of kernel 891776 1066511

super user belongs to class C5. We used atraining set evaluations

of 2282 data points with 41 features for five class Training results Experiment 5 | Experiment 6

classification as described in section 3. Data set 4562 4562
Training set 2282 2282

The results are summarized in the following table # of features 41 41

[17]. As can be seen, SVMs demonstrate higher Kernel RBF RBF

performance than neural networks, in terms of Gamma value 0.000006 0.000006

training time (SVM trains at a speed that is an order C value 1000 1000

of magnitude faster than that for neural networks), CPU run time 14.39 sec 7.22 soC

running time (running 5 SVMs, even serially, for 5- #of 39 1

class identification, takes less time than running a misclassifications

single neural network for making the same 5-class #of iterations 11063 2263

identification), and scalability (SVMs can train with Max difference 0.00097 0.00095

larger data sets). # of Support 272 (163a | 112 (8a
vectors upper bound) | upper bound)

Table2: SVM training results. Liner loss 96.14469 2.86755

Training results Experiment 1 | Experiment 2 Normalization of 273.28483 117.93924

Data set 14000 14000 weight vector

Training set 7000 7000 # of kernel 1208449 881258

# of features 41 13 evaluations

Kernel RBF RBF Training results Experiment 7

Gammavalue 0.000001 0.000001 Data set 4562

Cvaue 1000 1000 Training set 2282

CPU run time 52.02 sec 108.62 sec # of features 41

# of 15 22 Kernel RBF

misclassifications Gammavalue 0.000006

# of iterations 11605 23766 Cvaue 1000

Max difference 0.00099 0.00095 CPU run time 1.96 sec

# of Support 209 (53 at 163 (92 at # of 0

vectors upper bound) | upper bound) misclassifications

Liner loss 40.45970 65.25182 # of iterations 576

Normalization of 159.75859 203.82591 Max difference 0.00079

weight vector # of Support 36 (2 at upper

# of kernel 3798517 4358680 Vectors bound)

evaluations Liner loss 0.54599

Training results Experiment 3 | Experiment 4 Normalization of 73.38302

Data set 4562 4562 weight vector

Training set 2282 2282 # of kernel 301750

# of features 41 41 evaluations

Kernel RBF RBF

Gamma value 0.000006 0.000006 21 Tedti ng

Cvaue 1000 1000 In our first set of experiments, the test set consists of

CPUruntimesec | 7.51 sec 13.36 sec 7000 data points with 41 features and 13 features. In




our second set of experiments five-classclassfication
as described in sedion 3 the test set consists of 2800
data paints. Results are given in table4.

Table 3: SVM testing results.

Testing Expl |Exp2 | Exp3 Exp 4
Test dataset | 7000 7000 | 2200 2200
# of fedures | 41 13 41 41
Acauragy % | 99.53 | 99.52| 98.99 | 99.08

CPU run 1.60 1.06 | 0.29 0.23
time sec

# of mis- 33 35 42 20
classficaions
Testing Exp5 |Exp6 | Exp7

Testdataset | 2200 2200 | 2200

scded conjugate gradient decent algorithm with
convergence citerion set to be MSE (mean sgquare
error) of 0.001 During the training process of using
41fedures, the goa was met in 538 epochs with
MSE=0.000999 Using 13 fedaures, the goal was
readed in 608 epochs with MSE=0.000638 In our
other set of experiments, the data @nsists of 4562
randomly generated padnts, with a number of data
from ead classin propartion to its sze ad the least
class completely included. We used a training set of
2282 dita points with, 41 feaures for five dass
clasgficdion as described in sedion 3. The results
are summarized in the following table [17].

# of feaures | 41 41 41

Accuracy % | 98.55 | 98.46| 99.65
CPU run 0.70 0.36 | 1.96
time sec

# o mis- 33 35 8
classfications

Table 5: Results of the secondtest set with 41
feaures and 2200 dta pointsfor five-class

clasgfication.
0 95
0 96
0 91.7
4 98.7
19 | 76
92

The top-left entry of Table 6 shows that 536 d the
adua “normal” [C1] test set were deteded to be
normal; the last column indicates that 95 % of the
adua “norma” data points were deteded corredly.
In the same way, for the dass 1 [C2] 539 d the
adua “attack” test set were rrectly deteded; the
last column indicaes that 96% of the adua “C2”
data points were deteded corredly. The bottom row
shows that 97.8% of the test set said to be “normal”
indeed were “normal” and 996% of the tests st
clasgfied, as“C2” indeed belongto C2.

3. NEURAL NETWORK TRAINING

In our experiments, we use a dataset consisting of
14000 randomly generated data points from the 2
classes of attadk and normal. From this dataset, we
then randomly seled a subset of 7000 dita for
training, and prepare two training sets, with 41
fedures and 13 feaures ead, respedively. A multi-
layer, fead forward network was trained using the

Table 6: Neural network training.

Training Experiment 1  |[Experiment 2
# of fedures |41 13

# of data points|7000 7000
Architedure [41,50,40,1 |[13,40,40,1
Performance |0.000999 0.00638
Epochs 538 608

CPU time 30min 38 min
Training Experiment 3

# of fedures |41

# of datapoints|2282

Architedure [41,15,10,1

Performance |0.000864

Epochs 3118

CPU time 1hr5min

3.1 Testing the Neural Network

The test set consisting of 7000 dita points with 41
fedures and 13 feaures. The one with 41 feaures
receved 9948% acaracy and the one with 13
feaures receved 9941%. The following table gives a
comparison of the neural network detedion
performance using 41 and 13 feaures [17]. In our
experiment number 3 for five-class clasdficaion as
described in sedion 3 the test set consists of 2800
data points. Results are given in the foll owing table.

Table 7 Neura network testing binary
clasgficaion.

Training Experiment 1|Experiment 2
# of fedures 41 13

# of data points |[7000 7000
Architedure  |[41,50,40,] [13,40,40,1
Performance  [99.48% 99.41%%
Training Experiment 3

# of feaures |41

# of datapoints |2200
Architedure  |[41,15,10,1
Performance [92.6%




Table 8 Neura network testing for five
class classification

0 0 0 97
8 1 4 94.1
476 |17 |73 |83.8
0 552 | 0 98.4
6 6 12 |48
86.2 975 28

4. FEATURE RANKING

We used the method of deleting one feature at atime
to rank the importance of each feature towards the
over all efficiency and effectiveness, this was done in
order to develop an cost effective and efficient
intrusion detection system.

4.1 Experiments

We wused neurad networks for ranking the
effectiveness. Here the same architecture [41,15,10,1]
was used; and depending on the accuracy achieved
on the test sets, unequal weighted effectiveness (C1-
5%, C2-20%, C3-10%, C4-35%, C5-30%) and
equally weighted effectiveness (each class 20%) of
classification was determined. Using the unequal
weighted effectiveness and equal weighted
effectiveness as the basis, the features were ranked.
After the features are ranked, we performed
experiments by deleting the least significant features
and then compared the wunequa weighted
effectiveness and equal weighted effectiveness to the
experiment using all the 41 features. The table below
shows the performance achieved by deleting that
particular feature, based on the performance metrics
importance of a particular feature can be derived.
Table 9 Performance of the neural networks

after deleting a particular feature

wrong_fragme

# | Feature Unequally Equally
Aeleret Weighted Weighted
Effectiveness | Effectivenes
S

1| duration 71.7 % 80.1%
2 protocol type | g5 4 78

3 | savice 78.9 85.6

4 | flag 84.3 88.0

5 src_bytes 864 89.8

6 | dst_bytes 67.2 80.2

7 | land 80.6 86.0

85.4 88.5

nt

9 | urgent 77.0 81.0

10 | hot 70.04 81.2

11 | num_failed_lo | go o 87.4
gins

12 | loggedin 70.1 79.9

13 | num_compro 65.0 771
mised

14 | root_shell 65.9 78.6

15 | su_attempted 67.2 77.8

16 | num_root 66.3 77.8

17 | num_file creat | g5 6 78.1
ions

18 | num shells 76.9 82.7

19 | num_access fi | 70 g 76.6
les

20 | num_outbound | g5 5 77.9
_cmds

21 | is_host_login | g5 5 77.9

22 | is guest_logn | g7 8 77.9

23 | count 64.4 771

24 | srv_count 65.3 77.1

25 | serror_rate 80.1 85.1

26 | srv_serror_rate | 69.0 78.8

27 | rerror_rate 80.2 85.1

28 | srv_rerror_rate | gq 3 76.4

29 | same sv_rate | 77 5 82.8

30 | diff_srv_rate 67.3 78.3

31 | srv_diff_host_ | 77 4 84.5
rate

32 | dst_host count | 84.4 87.7

33 | dst_host sv_c | 70.3 80.4
ount

34 | dst_host same | 81.7 84.4
_Srv_rate

35 | dst_host_diff_sr | 85.4 87.5
v_rate

36 | dst_host_same | 63.5 75.9
_src_port_rate

37 | dst_host_srv_d | 63.2 75
iff_host rate

38 | dst_host_serro | 66.7 78
r_rate

39 | dst_host sv_s | 64.1 76.7

error_rate




40 | dst_host rerro | 65.1 75.8
r_rate
41 | dst host srv r | 72.1 82.1
error_rate
Considering performance as the basis we found that
feature numbers

2,6,13,14,15,16,17,21,22,23,24,26,28,30,36,37,38,39,
40 were important for detecting the attack and normal
patters for five-class classification. Tables below
show the experimental results on the reduced features
and on the one with all the 41 features.

Table 10 Performance matrix with all 41

features

0 0 0 |929

7 2 4 943

472 |13 |79 | 831

14 | 545 |0 |96.8

2 6 17 | 68

954 1963 | 17

Table 11 Performance matrix with 19 most
important features

434 1129 | 0 0 0 77.1
6 401 |17 |26 |21 |875
50 |32 |461 |15 |10 |812
2 13 |4 534 |10 | 9458
0 6 0 0 19 |76
88.2 732|956 929|317

The weighted effectiveness improved when the least
significant features were removed, but there was a

decrease in un-weighted effectiveness.

Effectiveness A1features | 19features
Weighted 67.9 69.8
effectiveness

Unweighted 79.4 76.3
effectiveness

5. CONCLUSIONS

We have performed a number of experiments to
measure the performance of support vector machines
and neural networks in intrusion detection, using the
DARPA datafor intrusion evaluation. Classifications
were performed on the binary (attack / normal), as
well as five-class classifications.

Both SVMs and neura networks deliver highly
accurate (99% and higher) performance, with SVMs
showing dlightly better results. Further, when a
reduction is performed to reduce the 41 features to
the 13 most significant, both SVMs and neural
networks again were able to train to deliver accurate
results for binary classification. In terms of the five-
class classification, we found using only 19 most
important (of the 41) features, the change in accuracy
was datisticaly insignificant. But the reduction in
features can be expected to reduce the cost of
detection and the overhead of the intrusion detection
asawhole.

Our ongoing experiments include making 23-class
(22 specific attacks and normal) feature identification
using SYMs and neural networks, for designing an
cost-effective and real time intrusion detection tool.

ACKNOWLEDGEMENTS

Partial support for this research received from
ICASA (Institute for Complex Additive Systems
Analysis, a divison of New Mexico Tech) is
gratefully acknowledged. The fourth author also
acknowledges her partial support received from
Sandia National Laboratories under the Rio Grande
Educational Initiative. We also would like to thank
Dr. Jean-Louis Lassez, David Duggan, and Bob
Hutchinson for insightful conversations regarding
this research.

REFERENCES

[1] Ryan J, Lin M-J., Miikkulainen R. (1998)
Intrusion Detedion with Neural Networks,
Advances in Neural Information Processing
Systems 10, Cambridge, MA: MIT Press.

[2] Kumar S., Spafford EH. (1994) An
Application d Pattern Matchingin Intrusion
Detection, Technical Report CSD-TR-94-
013, Purdue University.

[3] Luo J., Bridges S.M. (2000) Mining Fuzz
Asociation Rules and Fuzzyy Frequency
Episodes  for Intrusion  Detedion,
International Journal of Intelligent Systems,
John Wiley & Sons, pp. 15:687-703.

[4] Demuth H., Beale M. (2000) Neural
Network Toodbox User's Guide, Math
Works, Inc. Natick, MA.

[5] Sung A.H. (1998) Ranking Importance of
Inpu Parameters Of Neural Networks,
Expert Systems with Applications, pp.
15:405-411.



[6] Cramer M., et a. (1995 New Methods of
Intrusion Detection using Control-Loop
Measurement, Procealings of the
Techndogy in Information  Seaurity
Conference (TISC) '95, pp. 110.

[7] Debar H., Beckke M., Sibon D. (1992 A
Neural Network Component for an Intrusion
Detection System, Proceadings of the IEEE
Computer Society Symposium on Reseach
in Seaurity and Privagy.

[8] Debar H., Dorizzi B. (1992 An Application
of a Recurrent Network to an Intrusion
Detection System, Procealings of the
International Joint Conference on Neural
Networks. pp. 78483.

[9] Denning D. (1987 An Intrusion-Detection
Model, IEEE Transadions on Software
Engineaing, Vol SE-13,No 2.

[10]Ghosh A.K. (1999. Learning Program
Behavior Profiles for Intrusion Detection,
USENIX.

[1]Cannady J. (1998 Artificial Neural
Networks for Misuse Detection, National
Information Systems Seaurity Conference.

[12]VIadimir V.N. (1995 The Nature of
Satistical Learning Theory, Springer.

[13lJoachims T. (2000 SVMIlight is an
implementation of Support Vector Machines
(SVMs) in C,
htp://ais.gmd.de/~thorsten/svm_light/.
University of Dortmund, Collaborative
Reseach Center on Complexity Reduction
in Multivariate Data (SFB475).

[14]Joachims T. (1998 Making Large-Scale
SYM Learning Practical. LS8-Report,
University of Dortmund,LS VIl -Report.

[15]Joachims T. (2000 Estimating the
Generalization Performance of a SVM
Efficiently, Proceeadings of the International
Conference on Machine Leaning, Morgan
Kaufman.

[16]http://kddics.uci.edu/databases’kddcup99ta
sk.htm.

[17] S. Mukkamala, G.Kakarla, A.H. Sung,
S.Veaamadaneni (2002 Intrusion
Detection: Comparison of Support Vector
Machines and Neural Networks, IASTED
Artificia Intelligence and Soft Computing
conference (submitted).



