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Abstract 

  Misuse detection is the process of attempting to identify instances of network attacks by 
comparing current activity against the expected actions of an intruder.  Most current approaches 
to misuse detection involve the use of rule-based expert systems to identify indications of known 
attacks.  However, these techniques are less successful in identifying attacks which vary from 
expected patterns.  Artificial neural networks provide the potential to identify and classify 
network activity based on limited, incomplete, and nonlinear data sources.  We present the 
results of our ongoing research efforts into the application of neural network technology for 
misuse detection.  
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1. Introduction 

  Because of the increasing dependence that companies and government agencies have on their 
computer networks the importance of protecting these systems from attack is critical.  A single intrusion 
of a computer network can result in the loss or unauthorized utilization or modification of large amounts 
of data and cause users to question the reliability of all of the information on the network.  There are 
numerous methods of responding to a network intrusion, but they all require the accurate and timely 
identification of the attack.   
 
  This paper presents an analysis of the applicability of neural networks in the identification of instances 
of misuse against a network.  The results of tests conducted on a neural network-based proof-of-
concept prototypes are also presented.  Finally, the areas of future research that are being conducted in 
this area are discussed. 
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1.1 Intrusion Detection Systems  

  The timely and accurate detection of computer and network system intrusions has always been an 
elusive goal for system administrators and information security researchers.  The individual creativity of 
attackers, the wide range of computer hardware and operating systems, and the ever-changing nature of 
the overall threat to targetted systems have contributed to the difficulty in effectively identifying 
intrusions.  While the complexities of host computers already made intrusion detection a difficult 
endeavor, the increasing prevalence of distributed network-based systems and insecure networks such 
as the Internet has greatly increased the need for intrusion detection [14]. 
 
  Most current approaches to the process of detecting intrusions utilize some form of rule-based 
analysis.  Rule-based analysis relies on sets of predefined rules that are provided by an administrator, 
automatically created by the system, or both.  Expert systems are the most common form of rule-based 
intrusion detection approaches [6, 18]. A number of non-expert system-based approaches to intrusion 
detection have been developed in the past several years [2, 3, 4, 7, 12, 15, 19, 20].  While many of 
these have shown substantial promise, expert systems remain the most commonly accepted approach to 
the detection of attacks.  
  

1.2 Neural Networks 

  An artificial neural network consists of a collection of processing elements that are highly 
interconnected and transform a set of inputs to a set of desired outputs.  Neural networks can be 
generally divided into supervised and unsupervised training algorithms.  In supervised training the 
network is provided data samples during training that include the desired output for each of the samples.  
In this way the network “learns” the desired output for a given input pattern.  An example of this form of 
neural network architecture is the multi-level perceptron (MLP).  The MLP is a highly interconnected 
series of neurons arranged in an input layer, an output layer, and one or more “hidden” layers.  During 
training the neurons each perform a biased weighted sum of their inputs and pass this activation level 
through a transfer function to produce their output in a layered feedforward topology. The network thus 
has a simple interpretation as a form of input-output model, with the weights and thresholds being the 
free parameters of the model. Such networks can model functions of almost arbitrary complexity, with 
the number of layers, and the number of units in each layer, determining the function complexity. 
Important issues in MLP design include specification of the number of hidden layers and the number of 
units in these layers.  During training the MLP progresses iteratively, through a number of epochs. On 
each epoch, the training cases are each resubmitted back through the network, and target and actual 
outputs compared and the error calculated. This error, together with the error surface gradient, is used 
to adjust the weights.  The result of the transformation is determined by the characteristics of the 
elements and the weights associated with the interconnections among them.  By modifying the 
connections between the nodes the network is able to adapt to the desired outputs [7, 10]. 
 
  Unsupervised training architectures learn from the training pattern without being provided with a 
desired output for each set.  Self-Organizing Maps (SOM) are one of the most popular forms of 
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unsupervised training neural network architectures, [13].   SOM’s are competitive networks that 
provide a "topological" mapping from the input space to clusters.  The SOM map is organized into a 
two-dimensional grid of neurons. A SOM tries to find clusters such that any two clusters that are close 
to each other in the grid have codebook vectors close to each other in the input space.   
 
  During training the SOM is presented with a series of data vectors.   The SOM iteratively runs through 
a number of epoches.  During each iteration the SOM selects the “winning” neuron based on the one 
which is nearest to the input vector and then adjust the winning neuron to be more like the input case.  
SOM networks are designed for classification tasks, not pattern recognition problems.    
 
  Unlike expert systems, which can provide the user with a definitive answer if the characteristics which 
are reviewed exactly match those which have been coded in the rulebase, a neural network conducts an 
analysis of the information and provides a probability estimate that the data matches the characteristics 
which it has been trained to recognize.  While the probability estimate determined by a neural network 
can be 100%, the accuracy of its decisions relies totally on the experience the system gains in analyzing 
examples of the stated problem.   
 

1.3 Neural Network Intrusion Detection Systems  

  A limited amount of research has been conducted on the application of neural networks to detecting 
computer intrusions.   Artificial neural networks offer the potential to resolve a number of the problems 
encountered by the other current approaches to intrusion detection.  Artificial neural networks have 
been proposed as alternatives to the statistical analysis component of anomaly detection systems, [3, 4, 
8, 17, 20].  Statistical Analysis involves the statistical comparison of current events to a predetermined 
set of baseline criteria.  The technique is most often employed in the detection of deviations from typical 
behavior and determination of the similarly of events to those which are indicative of an attack [11].  
Neural networks were specifically proposed to identify the typical characteristics of system users and 
identify statistically significant variations from the user's established behavior.     
 
  Artificial neural networks have also been proposed for use in the detection of computer viruses.  In [7] 
and [7] neural networks were proposed as statistical analysis approaches in the detection of viruses and 
malicious software in computer networks.  The neural network architecture that was selected for [7] 
was a SOM that was designed to learn the characteristics of normal system activity and identify 
statistical variations from the norm that may be an indication of a virus.   

2. Initial Analysis of Approach 

  In an effort to determine the applicability of neural networks to the problem of misuse detection we 
conducted a series of experiments utilizing simulated network traffic in increasingly complex prototypes.  
The experiments were designed to determine if indications of attacks could be identified from typical 
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network traffic, but they were not intended to completely resolve the many issues involved in effectively 
applying neural networks to misuse detection.  

2.1 Neural Network IDS Prototypes   

  The prototype development processes consisted of designing the neural networks and preparing 
network data for use in the training and testing of the neural networks.  The prototypes were developed 
using NeuralWorks Professional II/Plus™ from NeuralWare.  
 

2.1.1 MLP Prototype  

    The first prototype neural network was designed to determine if a neural network was capable of 
identifying specific events that are indications of misuse.  Neural networks had been shown to be 
capable of identifying TCP/IP network events in [21], but our prototype was designed to test the ability 
of a neural network to identify indications of misuse.  The prototype utilized a MLP architecture that 
consisted of four fully connected layers with nine input nodes and two output nodes.   The number of 
hidden layers, and the number of nodes in the hidden layers, was determined based on the process of 
trial and error.  Each of the hidden nodes and the output node applied a Sigmoid transfer function (1/(1 
+ exp (-x))) to the various connection weights.  The neural network was designed to provide an output 
value of 0.0 and 1.0 in the two output nodes when the analysis indicated no attack and 1.0 and 0.0 in 
the two output nodes in the event of an attack.  
 
  Data for training and testing the first prototype was generated using the RealSecure™ network monitor 
from Internet Security Systems, Inc.  The RealSecure™ monitor was configured to capture the data for 
each event that would be consistent with a network packet frame, (e.g., source address, destination 
address, packet data, etc.). The results of the RealSecure™ analysis on each event were also collected.  
These analyses classified the events as Low, Medium, or High, based on the threat to the target system 
posed by the event, (i.e., a high priority event is one which typically constitutes an alert).  Approximately 
10000 individual events were collected by RealSecure™ and stored in a Microsoft Access™ database, 
of which approximately 3000 were simulated attacks.  
 
  Three levels of preprocessing of the data were conducted to prepare the data for use in the training 
and testing of the neural network.  In the first round of preprocessing nine of the event record data 
elements were selected from the available set, (e.g., protocol ID, source port, destination port, source 
address, destination address, ICMP type, ICMP code, raw data length, raw data). The nine elements 
were selected because they are typically present in network data packets and they provide a thorough 
description of the information transmitted by the packet. 
 
  The second part of the preprocessing phrase consisted of converting three of the nine data elements 
(ICMP type, ICMP code and raw data) into a standardized numeric representation, (the other six 
components were already in a numerical format that could be input into a MLP).  The process involved 
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the creation of relational tables for each of the data types and assigning sequential numbers to each 
unique type of element.  This involved creating queries for each of the three data types and loading those 
results into tables that assigned a unique integer to each entry.  These three tables were then joined to 
the table that contained the event records.  A query was then used to select the remaining six of the nine 
original elements (ProtocolID, Source Port, Destination Port, Source Address, Destination Address, 
and Raw Data Length) and the unique identifiers that pertain to the three processed elements (ICMP 
Type ID, ICMP Code ID, and Raw Data ID).  Two additional elements, (0.0, 1.0 for an attack and 
1.0,0.0 for a non-attack event), were added to each record based on a determination of whether this 
event represented part of an attack on a network.  These elements were used during training as the 
target output of the neural network for each record.  The third round of data preprocessing involved the 
conversion of the results of the query into an ASCII comma delimited normalized format that could be 
used by the neural network.  
 
  The training of the MLP was conducted using a backpropagation algorithm for 10,000 iterations of the 
selected training data.  Like the feed-forward architecture of the neural network, the use of a 
backpropagation algorithm for training was based on the proven record of this approach in the 
development of neural networks for a variety of applications [10].  Of the 9,462 records which were 
preprocessed for use in the prototype, 1000 were randomly selected for testing and the remaining were 
used to train the system.  At the conclusion of the training the following results were obtained: 
 

• Training data root mean square error = 0.058298 
• Test data root mean square error = 0.069929 
• Training data correlation = 0.982333 
• Test data correlation = 0.975569 

 

2.1.2 MLP Prototype Results 

  After the completion of the training and testing of the MLP neural network the various connection 
weights were frozen and the network was interrogated.  Three sample patterns containing “normal” 
network events and a single simulated attack event (e.g., ISS scans, Satan scans, SYNFlood, etc.) 
were used to test the neural network.  The MLP was able to correctly identify each of the imbedded 
attacks in the test data, (Figures 1-3).   
  
  While this prototype was not designed to be a complete intrusion detection system, the results clearly 
demonstrate the potential of a neural network to detect individual instances of possible misuse from a 
representative network data stream.   
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Figure 1 : SYNFlood Attack Test 

 

Figure 2 : SATAN Attack Test 
 

Figure 3 : ISS Scan Attack Test 
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2.1.3 Hybrid MLP/SOM Prototype 

  While the first prototype demonstrated the ability of a neural network to identify specific events that 
may be a part of an intrusion, most attacks are characterized by a series of events.  Each of these events 
reviewed individually may appear normal, but when analyzed as a subtle probing, spread out over the 
time-development of the network traffic, an evolving pattern can be recognized imbedded in ordinary 
traffic.   
 
  The second prototype neural network approach to misuse detection was designed to address the need 
to identify these temporally dispersed and possibly collaborative attacks in a simulated data stream.  
Temporally dispersed attacks are those conducted by a single attacker over an extended period of time.  
Collaborative attacks are conducted by multiple attackers working in concert to achieve a single 
intrusion.  Each of the attackers actions taken individually may appear innocuous with the attack 
becoming apparent only if all of the events are viewed together.  Both of these types of attack may be 
very complex.  As a result an enhanced pattern recognition approach was designed and tested to 
identify series of events that constitute an attack.     
 
  The problem was modeled by building two sets of network-traffic data.  The first set contains 
randomly imbedded simulated attacks, and the second set is normal traffic.  The data streams were 
divided into frames of 180 events each, or 3 minutes of simulated events if the traffic rate is one event 
per second, so that units of one data-frame could be evaluated for the presence of attack evidence.  
Each event was defined as the first 50 characters of a network contact, converted to ASCII equivalent 
normalized numbers, plus a normalized representation of the destination port.  The first 50 characters of 
the raw data were used because most of the raw data field in the collected network data contained ≤ 50 
characters.  In addition, the use of 50 characters provided a consistent data set length for the prototype.  
A similar method of analyzing raw data was described in [9].  The destination port was utilized to clarify 
whether an even is telnet, ftp, etc.  Each of the two network-traffic sets consisted of 50 frames. 
 
  Nine different attack patterns were formulated and imbedded in the first traffic set.  An example of an 
attack pattern is a brute-force attack on an FTP server, beginning with the use of a username followed 
by three password attempts.  Most servers will disconnect after three attempts, so the username is 
required again.  Nine failed attempts to log in under the same user name within three minutes are clearly 
an indication of a problem.  The nine events characterizing this type of attack would be: 

  FTP Username 
  FTP password attempt 
  FTP password attempt 
  FTP password attempt 
  Same FTP Username 
  FTP password attempt 
  FTP password attempt 
  FTP password attempt 
  Same FTP Username 
  FTP password attempt 
  FTP password attempt 
  FTP password attempt 
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  No single event looks suspicious.  Similarly, even two or three events may not appear unusual.  
However, taken together, in sequence, the collection of nine events is an indication of a problem.  A 
further complication is that these events, though in sequence, can be interspersed among other, normal 
events.  The series of events constituting an attack can be widely dispersed within the network stream. 
 

2.1.4 Hybrid Neural Network Design 

 
  A feed-forward network with back-propagation learning was built to distinguish normal 3-minute 
(180-event) traffic frames from 3-minute traffic frames containing attacks.  Two outputs were used; one 
for attacked frame, one for normal frame.  So an output vector of 1.0,0.0 indicates an attack, 0.0,1.0 
indicates no attack.  
 
  Each event in a 180-event frame consisted of a number-coded sequence of 50 characters plus a 
destination code, and these data had to be processed down into 180 numbers, in which each number 
coded a 50-character event into a type, or a into some category consistent with similar events.  For this 
purpose, a pre-loader was built, using a self-organizing map (SOM).  With some experimentation a 
25x20 SOM was built to sort the 50-character events into a 500-node matrix, in which events of similar 
numeric character would be clustered.  X and Y values on the matrix were then coded into one number 
per event using the formula: 
 

z = ((#columns * column value) + (#rows + row value))/#nodes 
 
  Each resulting node-number was normalized between -1.0 and 1.0.  The validity of the SOM was 
tested by knowledge of where attack files occurred in the training files, so that it could be seen easily 
where on the matrix attacks clustered. 
 
 

2.1.5 Hybrid MLP/SOM Results  

 
  The 180-input feed-forward network was trained using the event-data preprocessed by the SOM.  
The 50 cases containing one attack (a series of nine or more FTP login attempts with the same userID) 
per set was interleaved with the 50 cases of normal traffic containing no attacks, then this combined set 
was divided into two similar sets of 50 cases each.  One case-set was used for active training, the other 
as a test set. 
 
  This configuration trained rapidly and without ambiguity to an insignificant root-mean-squared (RMS) 
error, indicating the possibility of finding seemingly subtle, time-evolving attack patterns interspersed 
randomly in ordinary Internet traffic. 
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2.1.6 Hybrid SOM/MLP Tests 

  After completing the training and initial tests of the hybrid neural network architecture four tests were 
conducted to evaluate the ability of the design to identify patterns in a simulated data stream.  Since the 
hybrid neural network was trained to recognize patterns of nine or more unsuccessful FTP login 
attempts the tests were conducted using data sets containing 6, 12, 18, and 0 FTP attempts respectively 
from a total of 180 event classifications per data set.  The FTP events were widely dispersed throughout 
the data sets in an effort to thoroughly test the capability of the neural network to correctly identify FTP 
attacks. 
 
  The hybrid neural network was able to correctly classify each of the test cases.  The prototype 
calculated the values for the test cases between .02/.98 when no FTP patterns were included in the data 
set to .972/.028 when eighteen FTP events were included in the data set, (Figure 5).  These results 
provide a positive demonstration of the ability of the hybrid neural network architecture to detect 
complex instances of misuse. 
 
     
 
 

Figure 5 : Hybrid MLP/SOM Tests 
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3. Conclusions  

  Research and development of intrusion detection systems has been ongoing since the early 1980's and 
the challenges faced by designers increase as the targeted systems because more diverse and complex.  
Misuse detection is a particularly difficult problem because of the extensive number of vulnerabilities in 
computer systems and the creativity of the attackers.  Neural networks provide a number of advantages 
in the detection of these attacks.  The early results of our tests of these technologies show significant 
promise, and our future work will address the remaining issues in the development of a complete neural 
network-based intrusion detection system.  
 

4. Further Work 

  The preliminary results from our proof-of-concept prototypes give a positive indication of the potential 
offered by this approach, but a significant amount of research remains before these technologies can 
demonstrate all of the required capabilities of an effective intrusion detection system. The most effective 
neural network architecture is an issue that must be addressed.  The multi-level perceptron and the self-
organizing map components of our prototypes offer a number of advantages in this type of problem, but 
there are several other neural network architectures that may better suited to detecting misuse. 
 
  In addition, an effective neural network-based approach to misuse detection must be highly adaptive.  
Most neural network architectures must be retrained if the system is to be capable of improving its 
analysis in response to changes in the input patterns, (e.g., “new” events are recognized with a consistent 
probability of being an attack until the network is retrained to improve the recognition of these events).  
Several approaches are being investigated for possible use in an intrusion detection system.  
 
  Finally, regardless of the initial implementation of a neural network-based intrusion detection system for 
misuse detection it will be essential for the approach to be thoroughly tested in order to gain acceptance 
as a viable alternative to expert systems.  Work has been conducted on taxonomies for testing intrusion 
detection systems ([1, 16]) that offer a standardized method of validating new technologies.  Because of 
the questions that are certain to arise from the application of neural networks to intrusion detection, the 
use of these standardized methods is especially important.   
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