Anomalous Payload-based Network Intrusion Detectioh
Ke Wang Salvatore J. Stolfo
Computer Science Department, Columbia University
500 West 120" Street, New York, NY, 10027
{kewang, sal} @cs.columbia.edu

Abstract

We present a payload-based anomaly detector, wePéadL, for intrusion detection. PAYL models the maeal
application payload of network traffic in a fullptmatic, unsupervised fashion. The method we aéh@sery efficient;
our goal is to deploy the detector in high bandigitvironments either on a firewall, a network &ppie, a proxy server
or on the target hosts. We first compute duringaiing phase a profilbyte frequency distribution and their standard
deviation of the application payload flowing to iagte host and port. We then use Mahalanobis distaturing the
detection phase to calculate the similarity of ngata against the pre-computed profile. The detectonpares this
measure against a threshold and generates amvakmtthe distance of the new input exceeds théshuld.

The model is host- and port-specific and is cooidéd on the payload length. Thus, a set of msfdre computed for
every possible length payload. A second phase ethisthe profiles to increase accuracy and decreaseurce
consumption. The method has the advantage of lveirygfast to compute, is state-less and does neehe input stream,
generates a small model, and can be easily modifieah incremental online learning algorithm sot tthee model is
continuously updated to maintain an accurate nomaalel in real-time. The modeling method is con®dletinsupervised,
and is tolerant to noise in the training data. femnore, the method is also resistant to mimictgest attackers would
need to model the site’s normal payload distrimgion order to pad their poisoned payload to gootined by the
detector.

We demonstrate the surprising effectiveness ofntie¢hod on the 1999 DARPA IDS dataset and a livasgdtwe
collected on the Columbia CS department networlonice case nearly 100% accuracy is achieved withfalse positive
rate for port 80 traffic. The payload anomaly d&ieds designed to be a component in an integratetl correlated
detection system including other detectors to mfégfalse positives, and to enrich the informatimailable from all
detectors to defend against zero-day worms andatiaaks exploits.

Keywords: Content, Payload, Anomaly Detection.

1. Introduction

Intrusion detection systems (IDS) have been awvaetiea of research for quite some time, and awelydeveloped
commercial technology. There are many IDS systevadladle that are primarily signature-based detsctélthough
these are effective at detecting known intrusidenapts and exploits, they fail to recognize nevacks and carefully
crafted variants of old exploits. A new generatarsystems is how appearing based upon anomalgtaete Anomaly
Detection systems model normal or expected behéviarsystem, and detect deviations of interest ity indicate a
security breach or an attempted attack.

Some attacks exploit the vulnerabilities of a pcol, other attacks seek to survey a site by sognand probing.
These attacks can often be detected by analyzengatwork packet headers, or monitoring the netwiaffic connection
attempts and session behavior. Other attacks, augforms, involve the delivery of bad payload (inogherwise normal
connection) to a vulnerable service or applicatibhese may be detected by inspecting the packdbamhyor the ill-
effects of the worm payload execution on the sewen it is too late after successful penetrati@tate of the art
systems designed to detect and defend systemstfrese malicious and intrusive events depend upigmégires” or
“thumbprints” that are developed by human expertsyosemi-automated means from known prior bad vgoomviruses.
They do not solve the “zero-day” worm problem, heere the first occurrence of a new unleashed warexploit.

Systems are protected after a worm has been deétectd a signature has been developed and digimibotsignature-
based detectors, such as a virus scanner or afirade. Many well known examples of worms havemeescribed that

! This work has been partially supported by a cantndth the Defense Advanced Research Projects @gemtitled
“Application-level IDS”, DARPA contract No. F306022-2-0209.

Payload AD 1

propagate rapidly on the internet and infect anstrdg systems at very high speeds. These are sy te notice by
analyzing the rate of scanning and probing froneeel sources which would indicate a worm propageais underway.
Unfortunately, this approach detects the early boka propagation, but the worm has already sfoly penetrated a
number of victims, infected it and started its dgeand its propagation. (It should be evident $hat and stealthy worm
propagations may go unnoticed if one depends &ntirethe detection of rapid or bursty changedaws$ or probes.)

Our work aims to detect the first occurrences abam at a network system gateway and to prevdmiit entering in
the first place, and thus preventing its destrectictions and nullifying its propagation. Althougle cast the payload
anomaly detection problem in terms of worms, thehoe is useful for a wide range of exploit attemggginst many if
not all services and ports.

In this paper, the method we propose is based apatyzing and modeling normal payloads that areeeteal to be
delivered to the network service or applicatione3dé normal payloads are specific to the site irchitlhe detector is
placed. The system first learns a model or prafflthe expected payload delivered to a servicendunormal operation
of a system. Each payload is analyzed to produmgedrequency distribution of those payloads, which serves as a model
for normal payloads. After thisentroid model is computed during the learning phase, amaly detection phase begins.
The anomaly detector captures incoming payloadshéo network service/application, and tests the qeaylIfor its
consistency (or distance) from the centroid modéis is accomplished by comparing two statistidatributions. The
distance metric used is the Mahalanobis distanceiandere applied to a finite discrete histografmbgte value (or
character) frequencies computed in the trainingsph&ny new test payload found to be too distaminfthe normal
expected payload is deemed anomalous and ansigeherated. The alert may thencberelated with other sensor data
and a decision process may respond with severaltpesctions. Depending upon the security policthe protected site,
one may filter, reroute or otherwise trap the nekwmonnection from being allowed to send the poipagload to the
service/application avoiding a worm infestation.

There are numerous engineering choices possibfepgiement the technique in a system and to integitz¢ detector
with standard firewall technology to prevent thastfioccurrence of a worm from entering a securedork system. We
do not address the correlation function and thdgatibn strategies in this paper; rather we focostlte method of
detection for anomalous payload.

This approach can be applied to any network syssemvice or port for that site to compute its ovgiteé-specific”
payload anomaly detector, rather than being depegngmon others deploying a specific signature forealy detected
worm or exploit that has already damaged othes.sita an added benefit of the approach describetisnpaper, the
method may also be used to detect encrypted cteamméth may indicate an unofficial secure tunnedpgrating against
policy.

This work is an extension of our earlier work ore thlalicious Email Filter [21] designed to detectliciaus
attachments in email flows but there using a supedvtraining approach and a probabilistic modgilieg to binary
sequence data. The MEF system operates with aseraiér or client to parse and extract attachmetat fba testing. The
detector described in this paper treats payloadsasiple byte stream and requires no parsing oftheam.

The rest of the paper is organized as follows. i®ec2 discusses related work in network intrusiatedtion. In
Section 3 we describe the model and the anomagctieh technique. Section 4 presents the resutteaaluations of the
method applied to different sets of data and itis time performance. One of the datasets is pybdichilable for other
researchers to verify our results. Section 5 dsesighe problem in more detail and extensions pluim our ongoing
research, while Section 6 concludes the paper.

2. Related Work

Intrusion detection techniques can be classifigd fwo approaches: misuse detection and anomadygtiten. Misuse
detection systems rely upon signatures of knowackst or pre-defined rules to match and identifyvkmattacks but
suffer high false negative rates, the root caussecirity breaches. Anomaly detection systems lyseatablish the
normal usage profiles of a system which is a mofi¢he expected observable behavior, and any (Jatgeation will be
identified as a possible attack. Anomaly detectiechniques aim to detect unknown or novel attabks, may suffer
higher false positive rates.

There are two types of systems that are calledhahpodetectors: those based upon a specification gzt of rules) of
what is regarded as “good/normal” behavior, ancicthihat learn the behavior of a system under Hooperation. The
first type relies upon human expertise and mayel@anded as a straightforward extension of typidalise detection IDS
systems. In this paper we regard the latter tyfperevthe behavior of a system is automaticallyniedy as a true anomaly
detection system.

Payload AD 2

Rule-based network intrusion detection systems ascBnort and Bro use hand-crafted rules to idektibwn attacks,
for example, virus signatures in the applicatioglpad, and requests to nonexistent services osh8siomaly detection
systems such as SPADE [5], NIDES [6], PHAD [13],A4D [12] compute (statistical) models for normalwetk traffic
and generate alarms when there is a large deviidomthe normal model. These systems differ infdsgures extracted
from available audit data and the particular akipons they use to compute the normal models. Masfemstures extracted
from the packet headers. SPADE, ALAD and NIDES nhdbe distribution of the source and destinationaliRl port
addresses and the TCP connection state. PHAD uaeg more attributes, a total of 34, which are etad from the
packet header fields of Ethernet, IP, TCP, UDPI&MP packets.

Some systems use some payload features but irydimded way. NATE is similar to PHAD; it treatsaeh of the first
48 bytes as a statistical feature starting fromlEhdeader, which means it can include at mosffitee8 bytes of the
payload of each network packet. ALAD models theming TCP request and includes as a feature thiewiord or token
of each input line out of the first 1000 applicatipayloads, restricted only to the header partstome protocols like
HTTP and SMTP.

The work of Kruegel et al [8] describes a servipeedfic intrusion detection system that is mostilsinto our work.
They combine the type, length and payload distisoubf the request as features in a statistical eh¢al compute an
anomaly score of a service request. However, theat the payload in a very coarse way. They griwp256 ASCII
characters into only 6 segments: 0, 1-3, 4-6, 712115, and 16-255, and compute one single uniftigtiibution model
of these 6 segments for all requests to one seovieeall possible length payloads. They use asghiare test against this
model to calculate the anomaly score of new requéistcontrast, we model the full byte distributioonditioned on the
length of payloads and use Mahalanobis distandellgsiescribed in the following discussion. Funtm®re, the modeling
we introduce includes automatic clustering of agids that is shown to increase accuracy and draailgtireduce
resource consumption. The method is fully genanal does not require any parsing, discretizatiotokenizing of the
input stream (eg, [14])

Network intrusion detection systems can also bssifiad according to the semantic level of the dh# is analyzed
and modeled. Some of the systems reconstruct ttveorie packets and extract features that describehigher level
interactions between end hosts like MADAMID [9],d8[15], EMERALD [18], STAT [26], ALAD [13], etc. Foexample,
session duration time, service type, bytes traresfieland so forth are regarded as higher levehoeatly ordered features
not discernible by inspecting only the packet cont®ther systems are purely packet-based like PHIM), NATED
[12], NATE [25]. They detect anomalies in networkckets directly without reconstruction. This apptodas the
important advantage of being simple and fast topuds and they are generally quite good at detgthinse attacks that
do not result in valid connections or sessionsef@mple, scanning and probing attacks.

The payload-based anomaly detection we describéearorrelated with these other detectors depenafog what
one wishes to model and where the sensor or detewy be placed in a network system. If one is eomed with
anomalous session payload, the entire applicatata dowing in both directions may be used as thged that is
statistically modeled. (That is to say, one may jgot@ the byte distribution of the entire sessiotadahich may span
megabytes of data in one session.) Alternativelghgpacket may be modeled directly to compute >atatagram byte
distribution model; in which case, packets aresgedndividually at detection time. In either cabes method described in
this paper can be applied to any of these objewsaishes to model.

3. Payload Modeling and Anomaly Detection
There are many design choices in modeling payloadetwork flows. The primary design criteria andeigiing
objectives of any anomaly detection system entalils:
 automatic “hands-free” deployment requiring littleno human intervention,
* generality for broad application to any serviceystem,
« incremental update to accommodate changing oirdyi&nvironments,
* accuracy in detecting truly anomalous events, hammalous payload, with low (or controllable) fajsesitive
rates,
* resistance to mimicry attack and
« efficiency to operate in high bandwidth environnsantth little or no impact on throughput or latency
These are difficult objectives to meet concurrengigt they do suggest an approach that may baldrese competing
criteria for payload anomaly detection.
We chose to consider “language-independent” stalistnodeling of sampled data streams best exeeglfy well
known n-gram analysis. Many have explored the dse-grams in a variety of tasks. The method is weltlerstood,
efficient and effective. The simplest model one campose is the 1-gram model. A 1-gram model itagdy efficient

Payload AD 3

(requiring a linear time scan of the data streathamupdate of a small 256-element histogram) thather it is accurate
requires analysis and experimentation. To our septhis technique has worked surprisingly welbur experiments as
we shall describe in Section 4.

3.1. Length Conditioned n-gram Payload Model

Network payload is just a stream of bytes. Unlike hetwork packet headers, payload doesn't haveed format,
small set of keywords or expected tokens, or atdidhrange of values. Any character or byte valug amgpear at any
position of the datagram stream. To model the aljlave need to divide the stream into smaller ehssbr groups
according to some criteria to associate similagastrs for modeling. The port number and the lengtht@o obvious
choices. We may also condition the models on thection of the stream, thus producing separate fmddethe inbound
traffic and outbound responses.

Usually the standard network services have a fipwedassigned port number: 20 for FTP data trangmis21 for
FTP commands, 22 for SSH, 23 for Telnet, 25 for $MB0 for Web, etc. Each such application hagwe special
protocol and thus has its own payload type. Eaehranning these services would have its own “@gppayload” flowing
over these services. Payload to port 22 shouldnbeypted and appear as uniform distribution of byakies, while the
payload to port 21 should be primarily printableuccters entered by a user and a keyboard.

Within one port, the payload length also variesroadarge range. The most common TCP packets haylgil
lengths from O to 1460. Different length rangesehdifferent types of payload. The larger payloadsraore likely to
have non-printable characters indicative of medianfts and binary representations (pictures, vidigs or executable
files etc.). Thus, we compute a payload model fachedifferent length range for each port and serdgnd for each
direction of payload flow. This produces a far maoeurate characterization of the normal payloat thould otherwise
be possible by computing a single model for affitayoing to the host. However, many centroids Imilge computed for
each possible length payload creating a detectbraviarge resource consumption..

To keep our model simple and quick to compute, welehthe payload using n-gram analysis, and iniqudatr the
byte value distribution, exactly when n=1. An n+grés the sequence of n adjacent bytes in a pawmétd A sliding
window with width n is passed over the whole pagllaad the occurrence of each n-gram is countedalr@nalysis was
first introduced by [2] and exploited in many laage analysis tasks, as well as security tasks.s€h@nal work of
Forrest [3] on system call traces uses a form gfam analysis (without the frequency distributiord aallowing for
“wildcards” in the gram) to detect malware execut&s uncharacteristic sequences of system callse@iier work on
virus detection in the Malicious Email Filter syst¢21] employed n-gram features within a Naive Bapeobabilistic
model to detect likely malicious attachments. Heesuse n-gram analysis for payload anomaly detectio

For a payload, the feature vector is the relatregdency count of each n-gram which is calculatedlibiding the
number of occurrences of each n-gram by the tatatber of n-grams. The simplest case of a 1-grampates the
average frequency of each ASCII character 0-25%neSetable character frequencies and some veryntasfearacter
frequencies can result in the same average fregubotthey should be characterized very diffesemmtlthe model. Thus,
we compute in addition to the mean value, the nagaand standard deviation of each frequency athanoharacterizing
feature.. So for the payload of a fixed length @ine port, we treat each character’s relative fraques a variable and
compute its mean and standard deviatierthe payload model.

Figure 1 provides an example showing how the paylmde distributions vary from port to port, andrfr source and
destination flows. Each plot represents the charitic profile for that port and flow directiomnbound/outbound).
Notice also that the distributions for ports 22b6and and outbound) show no discernible patterth h@mce the statistical
distribution for such encrypted channels would érgamore uniform frequency distribution across @aflithe 256 byte
values, each with low variance. Hence, encryptethills are fairly easy to spot.

Payload AD 4

wd VRIS

Dest Port 22 Dest Port 25 Dest Port 80

wdl THEN

!
Src Port 22 Src Port 25 Src Port 80

Figure 1. Example byte distributiong for different ports. For each plot, the X-axis isthe ASCII byte 0-255, and the
Y-axis is the average byte frequency.

Figure 2 displays the variability of the frequendistributions among different length payloads. Tta® plots
characterize two different distributions from tineaming traffic to the same web server, port 80tfar different lengths,
here payloads of 200 bytes, the other 1,460 b@k=arly, a single monolithic model for both lengifitegories will not
represent the distributions accurately.

0.06

Length =200
> 0.04F
(5]
g
s 002F
[=
o
L .
) O 250
>
)
o 0.015
o
g ength 1460
§ . ‘ ‘ ‘

100 150
ASCII Character 0- 255

Figure 2. Example byte distribution for different payload lengths of port 80 on the same host server.

Given a training data set, we compute a set of isddg For each specific observed lengthf each porj, M;; stores
the average byte frequency and the standard daviafieach byte’s frequency. The combination ofrtfe&n and variance
of each byte’s frequency can characterize the palyleithin some range of payload lengths. So ifaheme 5 ports, and
each port's payload has 10 different lengths, theitebe in total 50 centroid models computed afteining. As an
example, we show the model computed for the paytfdength 185 for port 80 in figure 3, which isriked from a
dataset described in Section 4. (We also providauomated means of reducing the number of celstnaa clustering
as described in section 3.4.)

% Data used in this plot are from a third party campand analysis of distributions of these paylomas performed in
April, 2003.

Payload AD 5

0.07 0.014

i
o
¥

o
o

0.008

0.006

Average Frequency

0.004

Standard Deviation of Frequency

o
o
=1
N

(=]

o 100 200

o

100 200
Char 0-255 Char 0-255

Figure 3. The average relative frequency of each by, and the standard deviation of the frequency ofach byte, for
payload length 185 of port 80.

PAYL operates as follows. We first observe manyngpdar payloads during a training phase and comghgemean
and variance of the byte value distribution prodganodelM;. During detection, each incoming payload is scerared
its byte value distribution is computed. This neaylpad distribution is then compared against maddg] if the
distribution of the new payload is significantlyffdrent from the norm, the detector flags the pa@sanomalous and
generates an alert.

The means to compare the two distributions, theghadd the new payload, is described next.

3.2. Simplified Mahalanobis Distance

Mahalanobis distance is a standard distance ntetrdompare two statistical distributions. It is eryw useful way to
measure the similarity between the (unknown) neylgaal sample and the previously computed modele Mer compute
the distance between the byte distributions ofhsly observed payload against the profile fromrttzaelel computed for
the corresponding length range. The higher theuwdist score, the more likely this payload is abnbrma

The formula for the Mahalanobis distance is:

2 U\ — NT -1 N

d*(x,y) =(x-y) C7(x-y)
where Xand Y are two feature vectors, and each element of ¢otov is a variableX is the feature vector of the new
observation, an& is the averaged feature vector computed from thi@ifrg examples, each of which is a vector. And

Cis the inverse covariance matrix 6}‘1 =Cov(y, yj) - Y;, Y are theith andjth elements of the training vector.

The advantage of Mahalanobis distance is thaké@s@nto account not only the average value buat igdsvariance and
the covariance of the variables measured. Instéaanply computing the distance from the mean wglieweights each
variable by its standard deviation and covariasoethe computed value gives a statistical measurew well the new
example matches (or is consisteuith) the training samples.

In our problem, we use the “naive” assumption thatbytes are statistically independent. Thuscthariance matrix
C becomes diagonal and the elements along the dibgmnpust the variance of each byte.

Notice, when computing the Mahalanobis distance pase the price of having to compute multiplicaticarsd square
roots after summing the differences across the \ghige frequencies. To further speed up the conipatawe derive the
simplified Mahalanobis distance:

_ -1 -
dx,y) = (% -yl o)

where the variance is replaced by #andard deviation. Heren is fixed to 256 under the 1-gram model (sincedlae

only 256 possible byte values). Thus, we avoidtilme-consuming square and square-root computationfavor of a

single division operation) and now the whole coratian time is linear in the length of the payloaithva small constant

to compute the measure. This produces an excepjidaat detector (recall our objective to operateéhigh-bandwidth
environments).

For the simplified Mahalanobis distance, therehis possibility that the standard deviatiEﬂ equals zero and the

distance will become infinite. This will happen wha character or byte value never appears in #ieing samples or,
oddly enough, it appears with exactly the sameueaqgy in each sample. To avoid this situation, we @ smoothing
factora to the standard deviation similar to the prior ataton:

Payload AD 6

— el -
d(x,y) =2, (1%~ /(o +a))

The smoothing factor & reflects the statistical confidence of the sampitathing data. The larger the valuedf the
less the confidence the samples are truly reprasemtof the actual distribution, and thus the bgistribution can be
more variable. Over time, as more samples are wbdeén training,@ may be decremented automatically.

The formula for the simplified Mahalanobis distaradgo suggests how to set the threshold to detexnalies. If we
set the threshold to 256, this means we allow ehahacter to have a fluctuation range of one stahdaviation from its
mean. Thus, logically we may adjust the threshold value in increments of 128 or 256, which maynglemented as
an automatic self-calibration process.

3.3. Incremental Learning

The 1-gram model with Mahalanobis distance is veagy to implement as an incremental version witly slightly
more information stored in each model. An increrakwersion of this method is particularly useful éveral reasons. A
model may be computed on the fly in a “hands-fraetomatic fashion. That model will improve in acey as time
moves forward and more data is sampled. Furthermaorancremental online version may also “age old"data from the
model keeping a more accurate view of the mostntgeayloads flowing to or from a service. This ftin environment”
can be solved via incremental or online learning.

To age out older examples used in training the mosdle can specify a decay parameter of the oldedehand
emphasize the frequency distributions appearintdpennew samples. This provides the means of autcaligitupdating
the model to maintain an accurate view of normglqads seen most recently.

To compute the incremental version of the Mahalandlistance, we need to compute the mean and &melastd
deviation of each ASCII character seen for each seewple observed. For the mean frequency of a ciesrave compute

v N .
X= Zizlxi /N from the training examples. If we also store thmhbear of samples processé,we can update the mean

__XXN+XN+1:;(+XN+1_X

when we see a new examplg,,, a clever update technique described by Knuth
N+1 N+1

[7].
Since the standard deviation is the square rodh@fvariance, the variance computation can be tenriusing the
expected valu& as:

Var(X)=E(X - EX)2 = E(XZ) - (EX)2
We can update the standard deviation in a simitgr fwe also store the average of t)q%in the model.

This requires maintaining only one more 256-elenagray in each model that stores the average oﬁzthed the total

number of observatiors. Thus, the n-gram byte distribution model canrbplémented as an incremental learning system
easily and very efficiently. Maintaining this extirformation can also be used in clustering samptesdescribed in the
next section.

3.4. Reduced Model Size by Clustering
When we described our model, we said we computermuel Mij for each observed length himf payloads sent to

portj. Such fine-grained modeling might introduce selvprablems. First, the total size of the model t&come very
large. (The payload lengths are associated witharfdds that may be measured in gigabytes and ntemgth bins may
be defined causing a large number of centroidstodmputed.) Further, the byte distribution forlpags of length bin
can be very similar to that of payloads of lengtislp-1 andi+1; after all they vary by one byte. Storing a modaeldach
length may therefore be obviously redundant andefals

Another problem is that for some length bins, thm@y not be enough training samples. Sparsenedeintpe data
will generate an empirical distribution that wile an inaccurate estimate of the true distribute@ding to a faulty
detector.

There are two possible solutions to these prohl€ng solution for the sparseness problem is negathie models by
assigning a higher smoothing factor to the standardations which allows higher variability of tipayloads. The other
solution is to “borrow” data from neighboring bitsincrease the number of samples; i.e. we usefdataneighboring
bins used to compute other “similar” models.

Payload AD 7

We compare two neighboring models using the sinidmhattan distance to measure the similarity ofr theerage
byte frequency distributions. If their distancesisaller than some threshdldve merge those two models. This clustering
technique is repeated it until no more neighborimgdels can be merged. This merging is easily coaetpusing the
incremental algorithm described in Section 3.3;update the means and variances of the two modegisotiuce a new
updated distribution.

Now for a new observed test data with lenigdient to porj, we use the modédl;, or the model it was merged with.
But there is still the possibility that the lengththe test data is outside the range of all thmmaed models. For such
test data, we use the model whose length rangearest to that of the test data. In these casesn#re fact that the
payload has such an unusual length unobservedgdingiming may itself be cause to generate an.alert

The reader should note that the modeling algoriimeh the model merging process are each lineardongutations,
and hence the modeling technique is very fast amdbe performed in real time. The online learnifgp@hm also
assures us that models will improve over time, thiedt accuracy will be maintained even when ses/ime changed and
new payloads are observed.

3.5. Unsupervised Learning

Our model together with Mahalanobis distance cawo dle applied as an unsupervised learning algoritfims,
training the models is possible even if noise isspnt in the training data (for example, if trajnisamples include
payloads from past worm propagations still propagabn the internet.) This is based on the assumpthat the
anomalous payload is a minority of the trainingadand their payload distribution is different frahe normal payload.
These abnormal payloads can be identified in thmitrg set and their distributions removed from thedel. This is
accomplished by applying the learned models totthiming dataset to detect outliers. Those anonsafmyloads will
have a much larger distance to the profile than“dwerage” normal samples and thus will likely appas statistical
outliers. After identifying these anomalous tramisamples, we can either remove the outliers aindimethe models, or
update the frequency distributions of the computedels by removing the counts of the byte frequesappearing in the
anomalous training data. We demonstrate the effsntiss of these techniques in the evaluation sect{an alternative
strategy is to cluster the training data to producétiple centroids.)

3.6. Z-String

Consider the string of bytes corresponding to tréedl, rank ordered byte frequency of a model. feigudisplays a
view of this process. The frequency distributionpaf/loads of lengths within the range of 150-15%lted in the top
graph. The lower graph represents the same infaymaly the plot is reordered to the rank orderifighe distribution.
Here, the first bar in the lower plot is the freqog of the most frequently appearing ASCII chamactée second bar is
likewise the second most frequent, and so on. fidnik ordered distribution surprisingly follows gpEiike distribution
(an exponential function or a power law where themee few values appearing many times, and a langebar of values
appearing very infrequently.)

The rank order distribution also defines what wé &édZ-string”. The byte values ordered from mégiquent to least
frequent serves as a representative of the engitgbdition. Figure 5 displays the Z-String for thket in Figure 4. Notice
that for this distribution there are only 83 distibyte values appearing in the distribution. Thhs,Z-string has length 83.

Furthermore, as we shall see later, this rank edibyte value distribution of the new payload deg@ygomalous also
may serve as a simple representation of a “new veigmature” that may be rapidly deployed to othiterssto better detect
the appearance of a new worm at those sites; drmmalous payload appears at those sites andnitsoraered byte
distribution matches a Z-string provided from amothite, the evidence is very good that a worm dseared. This
distribution mechanism is part of an ongoing projealled “Worminator” [11, 24] that implements aoflaborative
security” system on the internet. A full treatmehthis work is beyond the scope of this papet,the interested reader is
encouraged to vishittp://worminator.cs.columbia.edfdr details.

Payload AD 8

o
=3
&

Ordered
& 0.06 by byte
c
S 004 value
3 0,1,...
= 002
o 0 50 100 150 200 250
© ASCII Char 0-255
5 oos 1
:'f’ 0.06 Re-ordered by
& i frequency
< (Zipf-like)
0.02 83 distinct char
100 150 200 750

Sipnature Character ordered by frequency count

Z-string

Figure 4. Payload distribution appears in the top fpot, re-ordered to the rank-ordered count frequeng
distribution in the bottom plot. Notice there are aly 83 distinct characters used in the average payad for this
service (port 80, http) for this length distribution of payloads (all payloads with length 185 bytes).

eto .c/aaf3 Isrw:imnTupgbhH]-
0AdXEPUCG3*VF@_fyR,~24RzMk9=();SDW
IjL6B7Z8%?VQ[JONK+IX&

a : LF - Line feed

[: CR — Carriage return

Figure 5. The signature “Z-string” for the average payload displayed in Figure 4. “e” is the most frquent byte
value, followed by “t” and so on. Notice how balaned characters appear adjacent to each other, for eaxple “()”
and “[]” since these tend to appear with equal fregency.

4. Evaluation of the 1-gram models

We conducted two sets of experiments to test tleetdfeness of the 1-gram models. The first expeninwas applied
to the 1999 DARPA IDS Data Set which is the moshplete dataset with full payload publicly availabde experimental
use. The experiment here can be repeated by anyging this data set to verify the results we repdhe second
experiment used the CUCS dataset which is the mihmetwork traffic to the web server of the compueience
department of Columbia University. Unfortunatelyistdataset cannot be shared with other researdberso the privacy
policies of the university. (In fact, the datases lbeen erased to avoid a breach of anyone’s prjvac

4.1. Experiments with 1999 DARPA IDS Data Set

The 1999 DARPA IDS data set was collected at MIfcbin Labs to evaluate intrusion detection systeftisthe
network traffic including the entire payload of bgmacket was recorded in tcpdump format and pralvide evaluation.
In addition, there are also audit logs, daily Blestem dumps, and BSM (Solaris system call) logee data consists of
three weeks of training data and two weeks ofdat. In the training data there are two weekgtatk-free data and one
week of data with labeled attacks.

The attacks can be classified into five main catego

» Scans and Probes. For example ipsweep, portsweep, e

» DoS: denial of service attacks. For example, SYadd| ping-of-death, crashiis, etc.

» R2L: remote to local attacks, which gain unautredizaccess from a remote machine. For example, iggess

password, ftpwrite, guest, or exploiting buffer digv in network server software like sendmail.

« UZ2R: user to root attacks. Normal users gain rgoess by exploit some vulnerability of the syst&r. example,

various buffer overflow attacks.

» Data: some action that user cannot do accordirggsite security policy. For example, transferriogne data files

to some place they shouldn't be. The attacks irchetret and framespoofer.

Payload AD 9

This dataset has been used in many research effiodtsesults of tests against this data have begorted in many
publications. Although there are problems dueh® niature of the simulation environment that ciebdle data, it still
remains a useful set of data to compare technidiescopy the top results reported by [10] here @bl& 1 for later
comparison.

Table 1. Top result of 1999 DARPA IDS evaluation.

System Detection
Expert 1 85/169 (50%)
Expert 2 81/173 (47%)
Domine 41/102 (40%)
Forensics 15/27 (55%)

In our experiment on payload anomaly detection wly aised the inside network traffic data which veaptured
between the router and the victims. Because mdsicpapplications on the Internet use TCP (web, ikr@net, and ftp),
and to reduce the complexity of the experimentpnlg examined the inbound TCP traffic to the p&$023 of the hosts
172.016.xxx.xxx which contains most of the victiragd ports 0-1023 which covers the majority of nleéwork services.
For the DARPA 99 data, we conducted experimentgyusach packet as the data unit and each connetithe data unit.
We used tcptrace to reconstruct the TCP connecfions the network packets in the tcpdump files.urggl illustrates
plots generated from a dataset using only the SiBsbytes of the payload in each network packeticdddhat that there is
a very clear byte distribution pattern for eachtpmith only partial payload. Hence, we also experted using the
technique on “truncated payload”, both for eachkpa@nd each connection. For truncated packetdriae the first N
bytes and the tail N bytes separately, where N parameter. Using truncated payload saves consigecamputation
time and space. We report the results for eacheset models.

We trained the payload distribution model on theRB¥A dataset using week 1 (5 days, attack freewaek 3 (7 days,
attack free), then evaluate the detector on weeksd4s, which contain 201 instances of 58 diffeadtaicks, 177 of which
are visible in the inside tcpdump data. Becauseestrict the victims’ IP and port range, there heothers we ignore in
this test.

In this experiment, we focus on TCP traffic onlg,tee attacks using UDP, ICMP, ARP (address reisolyirotocol)
and IP only cannot be detected. They include: sifi@%P echo-reply flood), ping-of-death (over-sizpihg packets),
UDPstorm, arppoison (corrupts ARP cache entrieshefvictim), selfping, ipsweep, teardrop (mis-fragmied UDP
packets). Also because our payload model is cordfuwen only the payload part of the network packetse attacks that
do not contain any payload are impossible to detébtthe proposed anomaly detector. Thus, thezdratotal 97 attacks
to be detected by our payload model in weeks 45ag¢hluation data.

After filtering there are in total 2,444,591 packednd 49556 connections, with non-zero lengthqzaid to evaluate.
We build a model for each payload length obserwvethé training data for each port between 0-1028fan every host
machine. The smoothing factor is set to 0.001 {sealiscussion in Section 3.2). This helps avoierdiiting and reduces
the false positive rate. Also due to having an @agte number of training examples in the DARPA&fadwe apply
clustering to the models as described previouslyst€ring the models of neighboring length bins msethat similar
models can provide more training data for a modese training data is too sparse thus making st $essitive and more
accurate. But there is also the risk that the dieteadate will be lower when the model allows mataiance in the
frequency distributions. Based on the models fahgaayload length, we did clustering with a thréghaf 0.5, which
means if the two neighboring model’'s byte frequedistribution has less than 0.5 Manhattan distameamerge their
models. We experimented with both unclustered dnstared models. The results indicate that thetelad model is
always better than the unclustered model. So snghper, we will only show the results of the @dustl models.

Different port traffic has different byte varialyli For example, the payload to port 80 (HTTP retgleare usually less
variable than that of port 25 (email). Hence, wedsiéerent thresholds for each port and checkdétctor’'s performance
for each port. The attacks used in the evaluatiay farget one or more ports. Hence, we calibratistinct threshold for
each port and generate the ROC curves includingpgliopriate attacks as ground truth. The packisdistance scores
higher than the threshold are detected as anomalies

Figure 6 shows the ROC curves for the four mostrmonly attacked ports: 21, 23, 25, and 80. For thergports, eg.
53, 143, 513 etc., the DARPA99 data doesn’t progidarge enough training and testing sample, soabaglts for those
ports are not very meaningful.

For each port, we used five different data unis,bioth training and testing. The legend in thegpbnd their meaning
are:

Payload AD 10

1) Per Packet Model, which uses the whole payldaghoh network packet;

2) First 100 Packet Model, which uses the first h@tes of each network packet;
3) Tail 100 Packet Model, which uses the last 1{#@dof each network packet;
4) Per Conn Model, which uses the whole payloagloh connection;

5) Truncated Conn Model, which uses the first 1b@@s of each connection.

100 T T T T T T a0

80 r

g0r

0r

[ss]
et

BOF
50+

I
=1
T

40+

Detection Rate (%)

[
[t
T

—t+— Per Packet Model

First 100 Packet Model ||
—»— Tail 100 Packet Model
I —— Per Conn Model .
—%— Truncated Conn Model —#— Truncated Conn Model
04 06 08 1 12 5] 10 15
Port 21 - False Positive Rate (%) Port 25 - False Positive Rate (%)

Detection Rate (%)
(8]
[a)

30 —— Per Packet Model i
First 100 Packet Model ||
—— Tail 100 Packet Model

—&— Per Conn Model

=]
=
T

20r

—

—+— Per Packet Model

T First 100 Packet Model
+ —#— Tail 100 Packet Model
—&— Per Conn Model

—#— Truncated Conn Model

70

Is
o

Detection Rate (%)
o
(=]

—+— Per Packet Model
First 100 Packet Model ||

—— Tail 100 Packet Model

—&— Per Conn Model

—4— Truncated Conn Model

4 G 8 10 02 04 06 08] 12 14
Port 23 - False Positive Rate (%) Port 80 - False Positive Rate (%)

Detection Rate (%)

Figure 6. ROC curves for ports 21, 23, 25, 80 fohe five different models. Notice the x-axis does hepan to 100%,
but limited to the worst false positive rate for eah plot.

From Figure 6 we can see that the payload-base@In®dery good at detecting the attacks to pora2d port 80. For
port 21, the attackers often first upload some ci@is code onto the victim machine and then logiorash the machine
or get root access, like casesen and sechole. eghaata also includes attacks that upload/downibeghl copies of
software, like warezmaster and warezclient. Thétseles were detected easily because of their contieich were rarely
seen executable code and quite different from trencon files going through FTP. For port 80, thiacks are often
malformed HTTP requests and are very different fraammal requests. For instance, crashiis sendsestdGET ../..";
apache2 sends request with a lot of repeated “Algent:sioux\r\n”, etc. Using payload to detect thestacks is a more
reliable means than detecting anomalous heademyshlmcause their packet headers are all normaktablish a good
connection to deliver their poison payload. Conioecbased detection has a better result than ttieepased models for
port 21 and 80. It's also important to notice ttiat truncated payload models achieve results nearlyood as the full
payload models, but are much more efficient in tand space.

For port 23 and port 25 the result is not as gaotha models for port 21 and 80. That's because toatent are quite
free style and some of the attacks are well hid&en.example, the framespoofer attack is a fakeldman the attacker
that misdirects the victim to a malicious web sitée website URL looks entirely normal. Malformeahal and telnet
sessions are successfully detected, like the petlawhich runs some bad perl commands in teked, the sendmail
attack which is a carefully crafted email messagi \&n inappropriately large MIME header that exgla buffer

overflow error in some versions of the sendmailgpao. For these two ports, the packet-based madelbetter than the
connection-based models. This is likely due toftet that the actual exploit is buried within ttader context of the

Payload AD 11

entire connection data, and its particular anonglcharacter distribution is swamped by the stafistf the other data
portions of the connection. The per packet modedale this anomalous payload more easily.

There are many attacks that involve multiple siipged at multiple ports. If we can detect one efsteps at any one
port, then the attack can be detected successfillys we correlate the detector alerts from all gbets and plot the
overall performance. When we restrict the falsetmesrate of each port (during calibration of titeeeshold) to be lower
than 1%, we achieve about a 60% detection ratechasi pretty high for the DARPA99 dataset. The itssior each
model are displayed in the Table 2:

Table 2. Overall detection rate of each model wherestricting each port’s false positive rate to bedwer than 1%.

Per Packet Model 57/97 (58.8%)
First 100 Packet Model 55/97 (56.7%)
Tail 100 Packet Model 46/97 (47.4%)
Per Conn Model 55/97 (56.7%)
Truncated Conn Model 51/97 (52.6%)

Modeling the payload to detect anomalies is us&uprotect servers against new attacks. Furthermoaeeful
inspection of the detected attacks in the tablesfeom other sources reveals that correlating plaigload detector with
other detectors increases the coverage of thekastaace. There is large non-overlap between tlelattdetected via
payload and other systems that have reported sefrltthis same dataset, for example PHAD [13].sTisi obvious
because the data sources and modeling used ally thteerent. PHAD models packet header data, whsrpayload
content is modeled here.

Our payload-based model has small memory consumgia is very efficient to compute. Table 3 displdie
measurements of the speed and the resulting nusfilsentroids for each of the models for both cafasclustered and
clustered. The results were derived from measuPAYL on a 3GHz P4 Linux machine with 2G memory gsimon-
optimized Java code. These results do not indibat® well a professionally engineered system mayabeh(re-
engineering in C probably would gain a factor obiémore in speed). Rather, these results are prdvid show the
relative efficiency among the alternative modelingthods. The training and test time reported intaide is seconds per
100Mof data, which includes the I/O time. The numbkcentroids computed after training representgjaproximation
of the total amount of memory consumed by each maddetice that each centroid has fixed size: te6-2lement double
arrays, one for storing averages and the othestfwing the standard deviation of the 256 ASCllebytA re-engineered
version of PAYL would not consume as much spacdaes a Java byte stream object. From the tableawesee that
clustering can reduce the number of centroids,aaltd hence total consumed memory is reduced byt abfactors from
2 to 16with little or no hit in computational performancgthe training phase. . Combining Figure 6, Tabknd Table 3,
users can choose the proper model for their agitaccording to their environment and performarempiirements.

Table 3. Speed and Memory measurements of each madeoth unclustered and clustered. The training andest
time is in units of seconds per 100M data, includipthe 1/O time.

Unclustered/ Per First Tall Per Trunc.
Clustered Packet| 100 100 Conn. | Conn.
Train time (uncl) 26.1 21.8 21.8 8.6 4.4
Test time (uncl) 16.1 9.4 9.4 9.6 1.6

No. centroid (uncl) 11583 11583 | 11583 | 16326| 16326
Train time (clust) 26.2 22.0 26.2 8.8 4.6
Test time (clust) 16.1 9.4 9.4 9.6 1.6
No. centroid (clust) | 4065 7218 6126 2219 1065

This result is surprisingly good for such a simpiedeling technique. Most importantly, this anomdgtector can
easily augment existing detection systems. It isimended as a stand alone detection system boingonent in a larger
system aiming for defense in depth. Hence, thecttatevould provide additional and useful alert mf@ation to correlate
with other detectors that in combination may geteeaa alarm and initiate a mitigation process. e DRMRPA 99 dataset
was used here so that others can verify our reddtisvever, we also performed experiments on a diveam that we
describe next.

Payload AD 12

4.2. Experiments with CUCS Dataset

The CUCS dataset denotes Columbia University CS seeber dataset, which are two traces of incomiafii¢ with
full payload to the CS department web server (wswa@umbia.edu). The two traces were collected regglgt, one in
August 2003 for 45 hours with a size of about 2@Bd one in September 2003 for 24 hours with sizB.\MBe denote
the first one as A, the second one as B, and timéim as AB. Because we did not know whether thisskt is attack-free
or not, this experiment represents an unlabeleaisdathat provides the means of testing and evadutie unsupervised
training of the models.

First we display the result of unsupervised leagnimTable 4. We used an unclustered single-lengidel since the
number of training examples is sufficient to adeglyamodel normal traffic. Also the smoothing facte set to 0.001 and
256 as the anomaly threshold. Dataset A has 33In@R&ézero payload packets, and B has 199,881. Aihé ¢olumn
shows the number and percentage of packets thdeammed anomalous packets. Surprisingly, when weiatly checked
the anomalous packets we found Code Red Il att@o#textremely long query string buffer overflonaakts in dataset B.
(“yes” means the attack is successfully detected.)

Table 4. Unsupervised learning result on CUCS datas.

Train | Test| Anomaly # CR-11| buffer
A A 28 (0.0084%)| ---
A B 2601(1.3%)| vyes yes
B A 686 (0.21%)| ----
B B 184 (0.092%) yes Yes
AB AB 211 (0.039%) yes Yes

There is a high anomaly rate when we train on Atastlon B; this is because there are many pdtfileads in B that
did not occur in A. (Notice the dates. A was captuduring the summer; B was captured later durindest application
time.) Because pdf files are encoded with many rintgble characters, these packets are very diftdrem other normal
HTTP request packets. For the rest of those detepte:kets more than 95% are truly anomalous. Tihelde
malformed HTTP headers like “ : " trang with all capital letter’'s, “Weferer” replaainthe standard
Referer tag (apparently a privacy feature of a CQir8duct), extremely long and weird parameters “fange”,
javascripts embedded html files sent to the CSeseetc. These requests might do no harm to thesdsut they are truly
unusual and should be filtered or redirected tachaopossible attack. They do provide importanbinfation as well to
other detectors that may deem their connectionmaltous for other reasons.

Figure 7 displays a plot of the distance valuethefnormal packets against the attacks. For ilitise purposes, we
selected some packets of the Code Red Il attacktenduffer overflow attack, which has length 1460l were detected
to be anomalous, and compare these with the diestasfthe normal packets of the same length. Tieitig and test data
both use data set A for these plots.

400

Normal packets
+ # Aftack packets

Code Red Il

w
o
=]

w
o
o

+
Buffer Overflow

N
3]
=]

Mahalanobis Distance
(3]
(=}
(=]

o
=]

o
=]

4]
o

0 20 40 80 100 120
packets with payload length 1460

Figure 7. The computed Mahalanobis distance of theormal packets and the attacks, at length 1460.

We also tested some other packets collected frdmeosources of virus's as they appeared in thd asld within the
DARPA 99 data set. These were tested against tf@SCdataset. They include Code Red | & I, Nimbdashiis, back,
apache? etc. All of these tcpdump packets contgivius’s were successfully caught by our model.

For illustrative purposes, we also display in Tablthe Z-strings of the Code Red Il and, the buffeerflow attacks
and the centroid Z-string to demonstrate how différeach appears from the norm. Because the fsillig is too long

Payload AD 13

(more than 200 characters) and contains many nuapie characters, we only display the first 20rabgers’ ASCII
value in decimal for illustration. The buffer over packet only has 4 different characters, s@itdring has length 4 and
are all displayed in the table.

Table 5. lllustrations of the partial Z-strings of Code Red II, the buffer overflow attack detected ad displayed in
Figure 7, as well as the centroid model Z-string. fie characters are shown in its ASCII value in deci.

Code Red Il first 20 characters)

88 | 0 255|117 48 | 85 | 116| 37 | 232]| 100
101|106 | 69 | 133|137|80 | 254|1 56 | 51
Buffer Overflow (all)
65 [37 [48] 68 | [| [|
Centroid (first 20 characters)
48 73 146| 36 32 46 61 113 44 101
59 70 45 56 50 97 110115 | 51 53

5. Discussion

Because our payload model is simple and efficiemioimpute, we may add this detector to an exigtiag/all to make
the firewall more intelligent. Alternatively, thessor/detector may be implemented as a LAN apm@iatanding in front
of a critical server, or placed on the server itSEhese design choices are being studied. Eaehsoffifferent advantages
and disadvantages.

The PAYL payload anomaly detector is probably eshed without old exploit and worm traffic andrice after an
IDS system filters the traffic of known attackst#dugh Code Red and Nimbda may be now thought dhaise", we
have noticed that their prevalence is so high they may be considered “normal” network traffic.nde, PAYL may
learn a centroid that models old exploits and woass'normal” traffic. Any new zero-day exploit orown that is a
cleverly crafted variant of an old exploit (not eeted by an IDS signature) will likely be deemednmal by PAYL.
Filtering old exploits reduces the chances of thiisicry attack.

The False Positive rate of Anomaly Detection systane typically regarded as an inhibitor to thedtenspread use. In
this work, for example, 0.1% FP rate means thatgbger thousand packets are flagged as anom&aough. a rate might
be considered untenable, rendering anomaly detestistems unusable. This argument is not quiteecbrr

We shall not argue that the False Negatate of signature-based misuse detection systeusesdar more problems
than a false alarm. Rather, we make the asselti@nit may be better to generate more anomaly titetederts (and
consequently possibly more false alerts) to providee evidence to correlate with other sensorsettebdetect a true
attack. Those anomaly detector alerts that havetimer confirmatory evidence of an attack from amotensor might be
ignored. Those that correlate with other anomaugnts would tend to strengthen the likelihood thaecurity event has
indeed occurred hence generating very interestiagna. This means that one should not view an ahodwetection
system as a singular monolithic detector, but apmmant in a correlated set of detectors, inclugingsibly misuse
detectors.

Our goal is to correlate information from a prolafs detector (such as Antura Recon [19], or Sr#})[and the
PAYL anomalous payload sensor to mitigate agamsefpositives, and to execute a defensive strategill zero-day
worms and attacks before they infect or harm a. host

If a perimeter sensor detects a source of prokgagnat the perimeter prior to that source finding aonnecting with
an internal host that is susceptible to the zegoaloit, this information about that source canused in at least two
ways:blacklisting [16], andevidence sharing for content filtering.

The probing source can be blacklisted at the peenand any future probes from that source woulérigely filtered
protecting all vulnerable hosts within the enclaNesuch a strategy is not implemented, or if blatkilters cannot be
deployed fast enough, then at some point one nmastime the probing source will succeed in conngatiith an internal
vulnerable system and deposit its poisoned paytoatfect that target.

At that point, if PAYL detects the anomalous pagaand its alerts are correlated with alerts from gierimeter
scan/probe detector, it is almost assured thatdn@ection can be terminated to prevent infectiefote it occurs. The
mere fact that a source has both scanned and aliemomalous payload essentially assures usithiag lall traffic from
that source is sensible; the evidence is overwingirthat it is a zero-day attack (especially if thare no IDS alerts
associated with the packets)..

The case that is particularly difficult involvesash worms [23] that pre-scan at a time far eatlan the actual
delivery of the exploit, or the case where proxaes used by the attacker, i.e. probing is perforomdg one source IP

Payload AD 14

but the exploit is launched at the target from stiét source IP for which no scanning/probing basn seen by the
perimeter sensor.

In the latter case the only available evidencehefZero-day attack would be the possibly PAYL degt@nomalous
payload. In this case, the security policy needdetine the mitigation strategy. If high secur#ycalled for, and the site is
willing to filter traffic possibly incorrectly (anthopefully rarely will this occur), then any anomasé payload should be
filtered. Otherwise, other evidence may be needet as the correlation of alerts with host-based@es that may detect
the exploit code during its infection as, for exdenn thed-LADS system [1].

Hence, the FP rate is not indicative of the trudgmmance of an anomaly detection system withost ahalyzing the
overall behavior of a fully correlated system afisa&rs. Part of our work on Worminator [11] is guld®y this principle.

It is especially crucial to design a proper sertkat detects anomalous payloads in authorized ptemtychannels. The
payload anomaly detector clearly would need tharctext to model the traffic appropriately. Thuse tsensor would
require placement at the point of decryption. le tase of a LAN appliance, the system would sesva anan-in-the-
middle” proxy decrypting requests, testing the pagl and re-encrypting normal traffic as may be s&mey to forward the
data on to its intended service.

We suspect that the byte distribution model shdddlifferent for each host. For example, each vezbes contains
different URLs, and the population of requests tisit each of the sites may also differ. Thus HiETP requests are
composed of different URL strings, header valués, Bhe model built from the DARPA data and thanir CUCS data
are quite different. Thus, having the site-spegfigload model, one can avoid or hamper mimicigcis.

Mimicry attacks are possible if the attacker haseas to the same information as the victim. Heitde,possible for
the attacker to replicate normal behavior. In thgecof application payload, attackers (includingmns) would not know
the distribution of the normal flow to their integdivictim The attacker would need to sniff for a long pérad time and
analyze the traffic in the same fashion as theaietelescribed herein, and would also then nedidjtioe out how to pad
their poison payload to mimic the normal model.sTisi a daunting task. The attacker would have toléeer indeed to
guess the exact distribution (the frequency anthmaes) as well as the threshold logic to deliverck data that would go
unnoticed. Attempting to do this via probing, crimglor other means is very likely to be detected.

Another possible useful feature of the payload rhaslehe Z-string computed from the average byex@iency
distribution. First, the Z-string can be used teesp up the distance computation. Usually the batbpd contains some
characters that are very unlikely to appear in @omayload. Hence, we may start computing Mahalesndistance from
the characters with the least frequency. Whiledisgance function is computed, we may track theuaedated distance
values and break out of the computation as sodheathreshold is exceeded. This provides somedspdeantage for
truly anomalous payloads. They will tend to be diste faster requiring fewer than 256 iterationshef inner loop of the
computation.

Secondly the Z-string can help prevent the worracktfrom propagating widely via a collaborative @ty system.
Under a distributed system, the idea is to distalithe Z-strings of the possible worms or bad pagydoto other sites when
one of them detects anomalous payloads in its cafficc Thus, the other sites can use the Z-stiinigelp avoid infection.
When the site sees some anomalous traffic withilligion similar to (if not exactly the same asg t-string it received
from other remote sites, there is much higher damite that confirms the existence of a worm proji@gaEven a
polymorphic worm that automatically morphs its @mtcan be detectable using this Z-string distidsumechanism. It is
likely that some portion of the byte distributiondl be consistent across each variant. As we haeationed, this is a
natural extension of our work on the Worminatorlambrative security system designed to share scah paobe
information among participating sites.

Our ongoing research is extending these resulitutty bigram and higher order n-gram analyses oVar& traffic. In
this paper we only used single byte 1-gram distiging.

We embarked on this study more than a year agaengwether a 1-gram model would have sufficienprimfation to
detect anomalous payloads. Indeed, it was ourdgafst a 1-gram model that led to this study,efy our suspicion.
The first inquiry involved a straightforward analy®f byte value distributions over different poaisone site. Figure 1
displays part of this analysis. In this style ofrlydt is important that data acquisition and dethianalysis be performed
and to let the data speak the truth. For this reasointend to repeat these experiments usingamgrand other higher
order n-gram analyses, for completeness and tefysatur own curiosity. Bi-grams and 3-grams, etogy model and
characterize the continuous adjacent bytes andaaplure perhaps better concealed attacks. We sidgphyot know if
this is true. These models, however, may be mudgetaand they might be very sparse needing mang rs@amples to
train a proper empirical distribution. As it novastls, those alternative models have a tough cotigpeto beat the 1-
gram analysis in efficiency and accuracy.

Indeed, we have not yet explored the optimizatipassible with 1-gram models to increase their samourand to
reduce the false positive rates. For example, aatid-igure 7 there seems to be discernible stredgiuthe "normal” data

Payload AD 15

plotted. There are clearly three bands of pointhiénlower portion of the plot each approximatély same distance from
the centroid model. This suggests that computistpgle centroid for all payloads of the same leng#y not be the best
strategy. Rather, the training data of equal lengtlay first be clustered (by comparing their Zrgtriepresentations for
example) and then computing a set of models fon eat of clustered training data. The outcome wbeldeveral models
per length bin, rather than a single model. Nalyréiis complicates the training phase, introduysetentially many more
models and also requires testing of new data agséveral models, rather than just one. Howeverctist may be worth
the price if the resultant models improve accurang reduce false positives. The experiments ortecing models

suggest this strategy may work well to our advastag

6. Conclusion

In this paper we presented an approach for netimbmission detection based on detecting anomaloyoad. The key
idea is to first compute byte distribution modeds mormal traffic, which is port and length condited. The distributions
are compared using Mahalanobis distance to competeimilarity between the new incoming packet'yipad to its
corresponding model. Any large departure from tbemal model will be flagged as a possible anomAlthough it is
surprisingly simple, the experimental results iatkcthat this method is effective at detectingchiialn the 1999 DARPA
IDS dataset, the best trained model for TCP traféitected 57 attacks out of 97 with every portlsegositive rate lower
than 1%. For port 80, it achieves almost 100% dietecate with around 0.1% false positive ratealto successfully
detected the Code Red Il and a buffer overflowcatfaom the unlabeled CUCS dataset when used assupervised
learning method. The payload model is very simslate-free, and quick to compute in time thatnedrr in the payload
length. It also has the advantage of being impleéeteas an incremental, unsupervised learning metBedause it's
based on payload only, it is a low cost and usefuyplement to other traffic flow or packet headasddl intrusion
detection systems. The payload anomaly deteciatéaded to be correlated with other detectors it@ate against false
alarms, and to increase the coverage of attacksriimabe detected.

The experiment also demonstrated that clusterirgeofroids from neighbors’ length bins dramaticaiguce memory
consumption up a factor of 16. Other performancdmecements are possible and under development.

The Z-string represents the sequence of charadedised by the rank ordered frequency distributidoserved for
some port traffic (from most frequent byte valudhte least frequent). The Z-string derived fromllgte distributions can
be used as a “signature” to characterize payldaatk, the normal ones and those of viruses and wdsash such string
is at most 256 characters, and can be readily dstanel communicated rapidly among sites in a read-tdistributed
detection system. When a new attack is detectedZbtring of the attacking payload can be quiaktributed to other
sites and used as “confirmatory” evidence in degdivhether a worm propagation is ongoing. This lmamccomplished
faster than is otherwise possible by observingeldrgrsts in probing activity among a large segnoérhe internet. This
approach may also have great value in detecting aial stealthy worm propagations that may avoitvities of a bursty
nature!

In our future work, we plan to evaluate the techriin live environments, implement and measurecttsts and speed
of the Z-string distribution mechanism and mosgiastingly whether higher order n-grams provideeadealue or not in
modeling payload. Furthermore, we plan to evaldlge opportunity or difficulty for mimicry attack bgomparing the
payload distributions across different sites. $fwae suspect, each site’s payload distributioncansistently different (in
a statistical sense), then the anomaly detectigmoagh proposed here, based upon site-specifioaayinodels, will
provide protection for all sites.

Acknowledgments
We'd like to thank Nick Edwards, Phil Gross, JadaRarekh, Shlomo Hershkop, Morris Pearl, Wei-Jeor help on
collecting data and the experimental set up, andgeful discussions and helpful comments on taep.

Reference:
[1] D. Armstrong,S. CarterG. Frazier,T. Frazier. A Controller-Based Autonomic Defensst8yn.Proc. of DISCEX,
2003

[2] M. Damashek. Gauging similarity with n-granemguage independent categorization of t8sience,
267(5199):843--848, 1995

[3] S. Forrest, S. A. Hofmeyr, A. Somayaji, andAT Longstaff, A Sense of self for Unix Procesdemmc. of IEEE
Symposium on Computer Security and Privacy, 1996.

Payload AD 16

[4] A. K. Ghosh, A. Schwartzbard, A study in UsiNgural Networks for Anomaly and Misuse DetectiBrc. 8"
USENIX Security Symposium 1999.

[5] J. Hoagland, SPADE, Silican Defense, http://weaillcondefense.com/software/spice, 2000.

[6] H.S. Javits and A. Valdes. The NIDES statidtmamponent: Description and justificatiofechnical report, SRl
International, Computer Science Laboratory, 1993.

[7]1 D. E. Knuth, the Art of Computer Programmingyg\L Fundamental Algorithmé#ddison Wesley, 2nd edition, 1973.

[8] C. Kruegel, T. Toth and E. Kirda, Service Siiechnomaly Detection for Network Intrusion Detemti.
In Symposium on Applied Computing (SAC), Spain, March 2002.

[9] W. Lee and S. Stolfo, A Framework for ConstmgtFeatures and Models for Intrusion Detectiont@ys.ACM
Transactions on Information and System Security, 3(4), November 2000

[10]R. Lippmann, et al. The 1999 DARPA Off-Linerusion Detection EvaluatioiGomputer Networks 34(4) 579-595,
2000.

[11] M. Locasto, J. Parekh, S. Stolfo, A. Keromyfis Malkin and V. Misra, Collaborative Distributéctrusion
Detection,Columbia University Tech Report, CUCS-012-04, 2004.

[12] M. Mahoney. Network Traffic Anomaly Detecti®@ased on Packet ByteRroc. ACM-SAC 2003.

[13]M. Mahoney, P. K. Chan, Learning Nonstationitgdels of Normal Network Traffic for Detecting NelvAttacks,
Proc. SGKDD 2002, 376-385.

[14]1M. Mahoney, P. K. Chan, Learning Models of Wetk Traffic for Detecting Novel Attacks;lorida Tech, Technical
report 2002-08, http://cs.fit.edu/~tr/

[15]M. Mahoney, P. K. Chan: An Analysis of the B9DARPA/Lincoln Laboratory Evaluation Data for Netrk
Anomaly DetectionRAID 2003: 220-237

[16] D. Moore, C. Shannon, G. Voelker and S. Sayadaternet Quarantine: Requirements for Contain8ep-
Propagating CodeProc. Infocom 2003

[17]V. Paxson, Bro: A system for detecting netwitkuders in real-timelJSENIX Security Symposium, 1998.

[18]P. Porras and P. Neumann, EMERALD: Event Manitig Enabled Responses to Anomalous Live Disturesn
National Information Systems Security Conference, 1997.

[19] S. Robertson, E. Siegel, M. Miller, and S.I#toSurveillance Detection in High Bandwidth Eriments)n
Proceedings of the 2003 DARPA DISCEX |11 Conference, 2003

[20] M. Roesch, Snort: Lightweight intrusion detentfor networksJUSENIX LISA Conference, 1999

[21] M. G. Schultz, E. Eskin, S. J. Stolfo. MEF: M#&ous Email Filter - A UNIX Mail Filter that Detets Malicious
Windows Executable$JSENIX Annual Technical Conference - FREENIX Track, Boston, MA, June 2001

[22]R. Sekar, A. Gupta, J. Frullo, T. ShanbhagZigwu, A. Tiwari and H. Yang, Specification Basedofnaly Detection:
A New Approach for Detecting Network Intrusiofsoc ACM CCS, 2002.

[23] S. Staniford, V. Paxson, and N. Weaver, Hov@ten the Internet in Your Spare Tinter,oceedings of the 11th
USENIX Security Symposium, 2002.

[24] S. Stolfo, Worm and Attack Early Warning: Rig Stealthy ReconnaissantBEE Privacy and Security, May/June,
2004 (to appear).

[25]C. Taylor and J. Alves-Foss. NATE — Networkalysis of Anomalous Traffic Events, A Low-Cost apach,New
Security Paradigms Workshop, 2001.

[26] G. Vigna and R. Kemmerer, NetSTAT: A Networ&sied intrusion detection approaClomputer Security
Application Conference, 1998.

Payload AD 17

