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Abstract. Intrusion detection corresponds to a suite of 
techniques that can be used to identify attacks against 
computers and network infrastructures. Anomaly 
detection is a key element of intrusion detection systems 
in which perturbations of normal behavior suggest the 
presence of intentionally or unintentionally induced 
attacks, faults, defects, etc. Several recently developed 
anomaly and outlier detection schemes have been 
proposed for detecting novel attacks whose nature is 
unknown. To benefit the anomaly detection framework, a 
procedure for extracting additional useful features is also 
implemented. In addition, evaluation of anomaly detection 
algorithms is performed using standard metrics as well as 
specific metrics that are especially suitable in detecting 
intrusions that involve multiple network connections. The 
detailed comparison of anomaly detection algorithms 
applied to DARPA 1998 Intrusion Detection Evaluation 
Data demonstrate that depending on the attack type some 
anomaly detection schemes are more successful in 
detecting novel anomalies than others. However, during 
the past few months the most prominent techniques have 
also been applied to real network data, and they have 
been very successful in automatically identifying several 
novel intrusions, which were at the same time reported by 
CERT (Computer Emergency Response 
Team/Coordination Center) for additional investigation, 
since state-of-the-art intrusion detection techniques could 
not detect them. 
 
1. Introduction 
 

As the cost of the information processing and Internet 
accessibility falls, more and more organizations are 
becoming vulnerable to a wide variety of cyber threats. 
According to a recent research survey by CERT/CC [1], 
cyber attacks have rapidly increased over the past decade. 
This indicates that there is an urgent need to expand 
efforts in the battle against cyber terrorism. The most 
widely deployed methods for detecting cyber terrorist 
attacks and protecting against cyber terrorism employ 
signature-based detection techniques. Such methods can 
only detect previously known attacks that have a 
corresponding signature, since the signature database has 
to be manually revised for each new type of attack that is 
discovered. These limitations have led to an increasing 
interest in intrusion detection techniques based on data 
mining [2, 3, 4, 5, 6]. 

Data mining based intrusion detection techniques 
generally fall into one of two categories; namely misuse 
detection and anomaly detection. In misuse detection 
approaches, each instance in a data set is labeled as 
normal or intrusion (attack) and a learning algorithm is 
trained over the labeled data. These approaches are able to 
automatically retrain intrusion detection models on 
different input data that include new types of attacks as 
long as they have been labeled appropriately. The main 
advantage of misuse detection is that it can accurately 
detect known attacks, while its drawback is its inability to 
detect novel, previously unseen attacks. 

Traditional anomaly detection approaches, on the other 
hand, build models of normal data and detect deviations 
from the normal model in observed data. Anomaly 
detection applied to intrusion detection and computer 
security has been an active area of research since it was 
originally proposed by Denning [7]. Anomaly detection 
algorithms have the advantage that they can detect new 
types of intrusions as deviations from normal usage [7, 8]. 
In this problem, given a set of normal data to train from, 
and given a new piece of test data, the goal of the 
intrusion detection algorithm is to determine whether the 
test data belong to “normal” or to an anomalous behavior. 
We refer to this problem as supervised anomaly detection, 
since the models are built only according to the normal 
behavior on the network. In contrast, unsupervised 
anomaly detection attempt to detect anomalous behavior 
without using any knowledge about the training data. 
However, both types of anomaly detection schemes suffer 
from a high rate of false alarms. This occurs primarily 
because previously unseen (yet legitimate) system 
behaviors are also recognized as anomalies, and hence 
flagged as potential intrusions. 

This paper focuses on a detailed comparative study of 
several anomaly detection schemes for identifying 
different network intrusions. Several existing supervised 
and unsupervised anomaly detection schemes and their 
variations are evaluated on the DARPA 1998 data set of 
network connections [9] as well as on real network data 
using existing standard evaluation techniques as well as 
using several specific metrics that are especially 
appropriate when detecting attacks that involve a large 
number of connections. Our experimental results indicate 
that some anomaly detection schemes appear very 
promising when detecting novel intrusions in both 
DARPA’98 data and real network data. 
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2. Evaluation of Intrusion Detection Systems 
 
As interest in intrusion detection has grown, the topic 

of evaluation of intrusion detection systems (IDS) has 
also received great attention [9, 10, 11, 12]. Evaluating 
intrusion detection systems is a difficult task due to 
several reasons. First, it is problematic to get high-quality 
data for performing the evaluation due to privacy and 
competitive issues, since many organizations are not 
willing to share their data with other institutions. Second, 
even if real life data were available, labeling network 
connections as normal or intrusive requires enormous 
amount of time for many human experts. Third, the 
constant change of the network traffic can not only 
introduces new types of intrusions but can also change the 
aspects of the “normal” behavior, thus making 
construction of useful benchmarks even more difficult. 
Finally, when measuring the performance of an IDS, there 
is a need to measure not only detection rate (i.e. how 
many attacks we detected correctly), but also the false 
alarm rate (i.e. how many of normal connections we 
incorrectly detected as attacks) as well as the cost of 
misclassification. The evaluation is further complicated 
by the fact that some of the attacks (e.g. denial of service 
(DoS), probing) may use hundreds of network packets or 
connections, while on the other hand attacks like U2R 
(user to root) and R2L (remote to local) typically use only 
one or a few connections. 
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Standard metrics that were developed for evaluating 
network intrusions usually correspond to detection rate as 
well as false alarm rate (Table 1). Detection rate is 
computed as the ratio between the number of correctly 
detected attacks and the total number of attacks, while 
false alarm (false positive) rate is computed as the ratio 
between the number of normal connections that are 
incorrectly misclassified as attacks (false alarms in Table 
1) and the total number of normal connections. 

 
Table 1. Standard metrics for evaluations of single-
connection intrusions (attacks) 

Predicted connection label 
Standard metrics 

Normal Intrusions 
(Attacks) 

Normal True Negative False Alarm Actual 
connection 

label 
Intrusions 
(Attacks) 

False 
Negative 

Correctly 
detected attacks

 
There are generally two types of attacks in network 

intrusion detection: the attacks that involve single 
connections and the attacks that involve multiple 
connections (bursts of connections). The standard metrics 
treat all types of attacks similarly thus failing to provide 
sufficiently generic and systematic evaluation for the 
attacks that involve many network connections (bursty 
attacks). In particular, they do not capture information 

about the number of network connections associated with 
an attack that have been correctly detected. Therefore, 
depending on the type of the attack, two types of analysis 
may be applied; multi-connection attack analysis for 
bursty attacks and the single-connection attack analysis 
for single connection attacks (Figure 1). However, the 
first step for both analysis types corresponds to computing 
the score value for each network connection. The score 
value represents the likelihood that particular network 
connection is associated with an intrusion (Figure 1). 

 network traffic
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 multiple or single 

connection attack  
 
 
 
 
 
 
 

Figure 1. Multi-step approach for evaluation intrusions in 
the network traffic 
 

Assume that for a given network traffic in some time 
interval, each connection is assigned a score value, 
represented as a vertical line (Figure 2). The dashed line 
in Figure 2 represents the real attack curve that is zero for 
non-intrusive (normal) network connections and one for 
intrusive connections. The full line in Figure 2 
corresponds to the predicted attack curve, and for each 
connection it is equal to its assigned score. These two 
curves allow us to compute the error for every connection 
as the difference between the real connection value (1 for 
connections associated with attacks and 0 for normal 
connections) and the assigned score to the connection, 
and to further derive additional metrics. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Assigning scores in network intrusion detection 
scheme 
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The multi-step approach shown in Figure 1 utilizes 
computed errors for each connection in order to derive 
additional evaluation metrics. The first derived metric 
corresponds to the surface areas between the real attack 
curve and the predicted attack curve (surfaces denoted as 
\\\ in Figure 2). The smaller the surface under the real 
attack curve, the better the intrusion detection algorithm. 
However, the surface area itself is not sufficient to capture 
many relevant aspects of intrusion detection algorithms 
(e.g. how many connections are associated with the 
attack, how fast the intrusion detection algorithm is, etc.). 
Therefore, additional metrics may be used in order to 
support the basic metric of surface area under the attack 
curve. Assume that the total number of network 
connections in considered data set is N. The number N is 
equal to the sum of the total number of normal network 
connections (Nn) and the total number of network 
connections that are associated with the intrusions (Ni). 
The number (nfa) corresponds to the number of the non-
intrusive (normal) network connections (nfa) that have the 
score higher than prespecified threshold (dotted line in 
Figure 3) and therefore misclassified as intrusive ones. 
Now, the additional metrics may be defined as follows: 
 
1. Burst detection rate (bdr) is defined for each burst 

and it represents the ratio between the total number of 
intrusive network connections ndi that have the score 
higher than prespecified threshold within the bursty 
attack (dotted line in Figure 3) and the total number 
of intrusive network connections within attack 
intervals (Nbi) (Figure 3). bdr = ndi / Nbi., 
where = N∑

burstsall
biN

_
i. Similar metric was used in 

DARPA 1998 evaluation [9]. 
 
 
 
 
 
 
 
 
 
 

Metric Definition 
bdr burst detection rate = ndi/Nbi 
ndi number of intrusive connections tha

value higher than threshold 
nbfa number of normal connections 

attack and that are misclassified as in
tresponse response time – time to reach the p

threshold 
Figure 3. The additional metrics releva
evaluation 

2. Response time represents the time elapsed from the 
beginning of the attack till the moment when the first 
network connection has the score value higher than 
prespecified threshold (tresponse in Figure 3). Similar 
metric was used in DARPA 1999 evaluation [11] 
where 60s time interval was allowed to detect the 
bursty attack. 

 
3. Anomaly Detection Techniques 
 
3.1. Related Work 

 
Most research in supervised anomaly detection can be 

considered as performing generative modeling. These 
approaches attempt to build some kind of a model over 
the normal data and then check to see how well new data 
fits into that model. An approach for modeling normal 
sequences using look ahead pairs and contiguous 
sequences is presented in [13]. A statistical method for 
ranking each sequence by comparing how often the 
sequence is known to occur in normal traces with how 
often it is expected to occur in intrusions is presented in 
[14]. One approach uses a prediction model obtained by 
training decision trees over normal data [2], while others 
use neural networks to obtain the model [15] or non-
stationary models [16] to detect novel attacks. Lane and 
Brodley [17] performed anomaly detection on unlabeled 
data by looking at user profiles and comparing the activity 
during an intrusion to the activity during normal use. 
Similar approach of creating user profiles using semi-
incremental techniques was also used in [18]. Barbara 
used pseudo-Bayes estimators to enhance detection of 
novel attacks while reducing the false alarm rate as much 
as possible [5]. A technique developed at SRI in the 
EMERALD system [8] uses historical records as its 
normal training data. It then compares distributions of 
new data to the distributions obtained from those 
historical records and differences between the 
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In this paper our focus is on several outlier detection 
algorithms as well as on unsupervised support vector 
machine algorithms for detecting network intrusions. 

 
3.2. Outlier Detection Schemes for Anomaly 
Detection 

 
Most anomaly detection algorithms require a set of 

purely normal data to train the model, and they implicitly 
assume that anomalies can be treated as patterns not 
observed before. Since an outlier may be defined as a data 
point which is very different from the rest of the data, 
based on some measure, we employ several outlier 
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detection schemes in order to see how efficiently these 
schemes may deal with the problem of anomaly detection.  

The statistics community has studied the concept of 
outliers quite extensively [21]. In these techniques, the 
data points are modeled using a stochastic distribution, 
and points are determined to be outliers depending upon 
their relationship with this model. However, with 
increasing dimensionality, it becomes increasingly 
difficult and inaccurate to estimate the multidimensional 
distributions of the data points [22]. However, recent 
outlier detection algorithms that we utilize in this study 
are based on computing the full dimensional distances of 
the points from one another [23, 24] as well as on 
computing the densities of local neighborhoods [25]. 

 
3.2.1. Mining Outliers Using Distance to the k-th 
Nearest Neighbor [24]. This approach is based on the 
distance of the k-th nearest neighbor from the point O. For 
a given k and a point O, Dk(O) denotes the distance from 
the point O to its k-th nearest neighbor. Therefore, the 
distance Dk(O) may be considered as a measure of the 
outlierness of the example O.  For instance, points with 
larger values Dk(O) for have more sparse neighborhoods 
and they typically represent stronger outliers than points 
belonging to dense clusters that usually tend to have 
lower values for Dk(O). Since generally user is interested 
in top n outliers, this approach defines an outlier as 
follows: Given a k and n, a point O is an outlier if the 
distance to its k-th nearest neighbor is smaller than the 
corresponding value for no more than (n-1) other points. 
In other words, the top n outliers with the maximum 
Dk(O) values are considered as outliers. 

 
3.2.2. Nearest Neighbor (NN) Approach. This method is 
a slight modification of the outlier detection scheme 
presented in previous section 3.2.1., when k = 1. We 
specify an “outlier threshold” that will serve to determine 
whether the point is an outlier or not. The threshold is 
based only on the training data and it is set to 2%. In order 
to compute the threshold, for all data points from training 
data (e.g. “normal behavior” data) distances to their 
nearest neighbors are computed and then sorted. All test 
data points that have distances to their nearest neighbors 
greater than the threshold are detected as outliers. 

 
3.2.3. Mahalanobis-distance Based Outlier Detection. 
Since the training data corresponds to “normal behavior”, 
it is straightforward to compute the mean and the standard 
deviation of the “normal” data. The Mahalanobis distance 
[ref] between the particular point p and the mean µ of the 
normal data is computed as: 

dM = )p()p( T µµ −⋅Σ⋅− −1 , 
where the Σ is the covariance matrix of the “normal” data. 
Similarly to the previous approach, the threshold is 
computed according to the most distant points from the 

mean of the “normal” data and it is set to be 2% of total 
number of points. All test data points that have distances 
to the mean of the training “normal” data greater than the 
threshold are detected as outliers. 
Figure 4. Advantage of Mahalanobis-distance based 
approach when computing distances. 
 

Computing distances using standard Euclidean distance 
metric is not always beneficial, especially when the data 
has a distribution similar to that presented in Figure 4. It 
is obvious that examples p1 and p2 do not have the same 
distance to the mean of the distribution when the 
distances are computed using standard Euclidean metric 
and Mahalanobis metric. When using standard Euclidean 
metric, the distance between p2 and its nearest neighbor is 
greater than the distance from p1 to its nearest neighbor. 
However, when using the Mahalanobis distance metric, 
these two distances are the same. It is apparent that in 
these scenarios, Mahalanobis based approach is beneficial 
compared to the Euclidean metric. 
 
3.2.4. Density Based Local Outliers (LOF approach). 
The main idea of this method [25] is to assign to each data 
example a degree of being outlier. This degree is called 
the local outlier factor (LOF) of a data example. The 
algorithm for computing the LOFs for all data examples 
has several steps: 

1. For each data example O compute k-distance (the 
distance to the k-th nearest neighbor) and k-distance 
neighborhood (all points in a k-distance sphere). 
2. Compute reachability distance for each data 
example O with respect to data example p as:  
reach-dist(O,p) = max{k-distance(p), d(O,p)}, where 
d(O,p) is distance from data example O to data  
example p. 
3. Compute local reachability density of data 
example O as inverse of the average reachabaility 
distance based on the MinPts (minimum number of data 
examples) nearest neighbors of data example O. 
4. Compute LOF of data example O as average of 
the ratios of the local reachability density of data 
example O and local reachability density of O’s MinPts 
nearest neighbors. 
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Figure 5. Advantages of the LOF approach 
 
To illustrate advantages of the LOF approach, consider 

a simple two-dimensional data set given in Figure 5. It is 
apparent that there is much larger number of examples in 
the cluster C1 than in the cluster C2, and that the density of 
the cluster C2 is significantly higher that the density of the 
cluster C1. Due to the low density of the cluster C1 it is 
apparent that for every example q inside the cluster C1, 
the distance between the example q and its nearest 
neighbor is greater than the distance between the example 
p2 and the nearest neighbor from the cluster C2, and the 
example p2 will not be considered as outlier. Therefore, 
the simple nearest neighbor approaches based on 
computing the distances fail in these scenarios. However, 
the example p1 may be detected as outlier using only the 
distances to the nearest neighbor. On the other side, LOF 
is able to capture both outliers (p1 and p2) due to the fact 
that it considers the density around the points. 

 
3.3. Unsupervised Support Vector Machines 
 
Unlike standard supervised support vector machines 
(SVMs) that require labeled training data to create their 
classification rule, in [27], the SVM algorithm was 
adapted into unsupervised learning algorithm. This 
unsupervised modification does not require training data 
to be labeled to determine a decision surface. Whereas the 
supervised SVM algorithm tries to maximally separate 
two classes of data in feature space by a hyperplane, the 
unsupervised algorithm attempts to separate the entire set 
of training data from the origin, i.e. to find a small region 
where most of the data lies and label data points in this 
region as one class. Points in other regions are labeled as 
another class.  

By using different values for SVM parameters 
(variance parameter of radial basis functions (RBFs), 
expected outlier rate), the models with different 
complexity may be built. For RBF kernels with smaller 
variance, the number of support vectors is larger and the 
decision boundaries are more complex, thus resulting in 
very high detection rate but very high false alarm rate too. 
On the other hand, by considering RBF kernels with 

larger variance, the number of support vectors decreases 
while the boundary regions become more general, which 
results in lower detection rate but lower false alarm rate as 
well. 

 
4. Experiments 

 
We applied the proposed anomaly detection schemes 

to 1998 DARPA Intrusion Detection Evaluation Data [9] 
as well as to the real network data from the University of 
Minnesota. 

  p2 
×   p1 

× The DARPA’98 data contains two types: training data 
and test data. The training data consists of 7 weeks of 
network-based attacks inserted in the normal background 
data. Attacks in training data are labeled. The test data 
contained 2 weeks of network-based attacks and normal 
background data. 7 weeks of data resulted in about 5 
million connection records. The data contains four main 
categories of attacks:  

• DoS (Denial of Service), for example, ping-of-death, 
teardrop, smurf, SYN flood, etc., 

• R2L, unauthorized access from a remote machine, for 
example, guessing password, 

• U2R, unauthorized access to local superuser 
privileges by a local unprivileged user, for example, 
various buffer overflow attacks, 

• PROBING, surveillance and probing, for example, 
port-scan, ping-sweep, etc. 

 
Although DARPA’98 evaluation represents a 

significant advance in the field of intrusion detection, 
there are many unresolved issues associated with its de-
sign and execution. In his critique of DARPA evaluation, 
McHugh [28] questioned a number of their results, 
starting from usage of synthetic simulated data for the 
background (normal data) and using attacks implemented 
via scripts and programs collected from a variety of 
sources. In addition, it is known that the background data 
contains none of the background noise (packet storms, 
strange fragments, …) that characterize real data. 
However, in the lack of better benchmarks, vast amount 
of the research is based on the experiments performed on 
this data.  

The evaluation of any intrusion detection algorithm on 
real network data is extremely difficult mainly due to the 
high cost of obtaining proper labeling of network 
connections. However, in order to assess the performance 
of our anomaly detection algorithms in a real setting, we 
also present the evaluation results of applying our 
techniques to real network data from the University of 
Minnesota. 
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Table 2. The extracted “content based” features from raw 
tcpdump data using tcptrace software 

Feature Name Feature description 

num_packets_src_dst 
The number of packets 
flowing from source to 
destination 

num_packets_dst_src 
The number of packets 
flowing from destination to 
source 

num_acks_src_dst 

The number of 
acknowledgement packets 
flowing from source to 
destination 

num_acks_dst_src 

The number of 
acknowledgement packets 
flowing from destination to 
source 

num_bytes_src_dst  
The number of data bytes 
flowing from source to 
destination 

num_bytes_dst_src 
The number of data bytes 
flowing from destination to 
source 

num_retransmit_src_dst 
The number of retransmitted 
packets flowing from source to 
destination 

num_retransmit_dst_src 
The number of retransmitted 
packets flowing from 
destination to source 

num_pushed_src_dst 
The number of pushed packets 
flowing from source to 
destination 

num_pushed_dst_src 
The number of pushed packets 
flowing from destination to 
source 

num_SYNs_src_dst 
The number of SYN packets 
flowing from source to 
destination 

num_FINs_src_dst 
The number of FIN packets 
flowing from source to 
destination 

num_SYNs_dst_src 
The number of SYN packets 
flowing from destination to 
source 

num_FINs_dst_src 
The number of FIN packets 
flowing from destination to 
source 

connection_status 
(discrete) 

Status of the connection  
(0 – Completed; 1 - Not 
completed; 2 – Reset) 

  
4.1. Feature construction 

 
We used tcptrace utility software [29] as the packet 

filtering tool in order to extract information about packets 

from TCP connections and to construct new features. The 
DARPA98 training data includes “list files” that identify 
the time stamps (start time and duration), service type, 
source IP address and source port, destination IP address 
and destination port, as well as the type of each attack. 
We used this information to map the connection records 
from “list files” to the connections obtained using 
tcptrace utility software and to correctly label each 
connection record with “normal” or an attack type. The 
same technique was used to construct KDDCup’99 data 
set [2], but this data set did not keep the time information 
about the attacks. Therefore, we constructed our own 
features that were similar in nature. 

The main reason for this procedure is to associate new 
constructed features with the connection records from 
“list files” and to create more informative data set for 
learning. However, this procedure was applied only to 
TCP connection records, since tcptrace software utility 
was not able to handle ICMP and UDP packets. For these 
connection records, in addition to the features provided by 
DARPA, we used the features that represented the 
number of packets that flowed from source to destination. 
The list of the features extracted from “raw tcpdump” 
data using tcptrace software is shown in Table 2. 

Since majority of the DoS and probing attacks may use 
hundreds of packets or connections, we have constructed 
time-based features that attempt to capture previous 
recent connections with similar characteristics. The 
similar approach was used for constructing features in 
KDDCup’99 data [2], but our own features examine only 
the connection records in the past 5 seconds. Table 3 
summarizes these derived time-windows features. 

 
Table 3. The extracted “time-based” features 

Feature Name Feature description 
count_src Number of connections made by the 

same source as the current record in the 
last 5 seconds  

count_dest Number of connections made to the 
same destination as the current record in 
the last 5 seconds  

count_serv_src Number of different services from the 
same source as the current record in the 
last 5 seconds 

count_serv_dest Number of different services to the 
same destination as the current record in 
the last 5 seconds 

 
There are, however, several “slow” probing attacks 

that scan the hosts (or ports) using a much larger interval 
than 5 seconds (e.g. one scan per minute or even one scan 
per hour). As a consequence, these attacks cannot be 
detected using derived “time based” features. In order to 
capture these types of the attacks, we also derived 
“connection based” features that capture similar 
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characteristics of the connection records in the last 100 
connections. These features are reviewed in Table 4. 

It is well known that constructed features from the data 
content of the connections are more important when 
detecting R2L and U2R attack types, while “time-based’ 
and “connection-based” features were more important for 
detection DoS and probing attack types [2]. 
 

Table 4. The extracted “connection-based” features 
Feature Name Feature description 

count_src1 
Number of connections made by the same 
source as the current record in the last 
100 connections 

count_dest1 
Number of connections made to the same 
destination as the current record in the last 
100 connections 

count_serv_src1 
Number of connections with the same 
service made by the same source as the 
current record in the last 100 connections

sount_serv_dst1 

Number of connections with the same 
service made to the same destination as 
the current record in the last 100 
connections 

 
4.2. Experimental Results on DARPA’98 Data 

 
Since the amount of available data is huge (e.g. some 

days have several million connection records), we 
sampled sequences of normal connection records in order 
to create the normal data set that had the same distribution 
as the original data set of normal connections. We used 
this normal data set for training our anomaly detection 
schemes, and then examined how well the attacks may be 
detected using the proposed schemes. 

We used only the TCP connections from 5 weeks of 
training data (499,467 connection records), where we 
sampled 5,000 data records that correspond to the normal 
connections, and used them for the training phase. For 
testing purposes, we used the connections associated with 
all the attacks from the first 5 weeks of data in order to 
determine detection rate. Also we considered a random 
sample of 1,000 connection records that correspond to 
normal data in order to determine the false alarm rate. It is 
important to note that this sample used for testing 
purposes had the same distribution as the original set of 
normal connections. We could not use the last two weeks 
of test data, since access to their labels was granted when 
time to include them in results was not sufficient.  

First, features from Table 2 are extracted using the 
tcptrace software utility and then connection based and 
time based features are constructed. The next step 
involved standard normalization of obtained features and 
the final step was to identify bursts of attacks in the data. 
The performance of anomaly detection schemes was 

tested separately for the attack bursts, mixed bursty 
attacks and non-bursty attacks.  

Experiments were performed using the nearest 
neighbor approach (section 3.2.2), the Mahalanobis-
based approach (section 3.2.3) the local outlier factor 
(LOF) scheme (section 3.2.4) as well as the unsupervised 
SVM approach (section 3.2.5). 

In all the experiments, the percentage of the outliers in 
the training data (allowed false alarm rate) is set to be 
approximately 2%. It is interesting to note that the 
maximum allowed false alarm (false positive) rate of 2% 
was also maintained when detecting normal connections 
from test data for all anomaly detection schemes except 
for the unsupervised SVM approach, where the false 
alarm rate was 4% in the best case. Therefore, the 
parameters of the remaining three outlier detection 
schemes are set such that the false alarm rate is 2%. 

 
4.2.1. Evaluation of Bursty Attacks. Our experiments 
were first performed on the attack bursts, and the obtained 
burst detection rates (bdr) for all four anomaly detection 
schemes are reported in Table 5. We consider a burst to 
be detected if the corresponding burst detection rate is 
greater than 50%. Since we have a total of 19 bursty 
attacks, overall detection rate in Table 5 was computed 
using this rule. Experimental results from Table 5 show 
that the two most successful outlier detection schemes 
were nearest neighbor (NN) and LOF, where the NN 
approach was able to detect 14 attack bursts and the LOF 
approach was able to detect 13 attack bursts. The 
Mahalanobis-based approach was consistently inferior to 
the NN approach and was able to detect only 11 multiple-
connection attacks. This poor performance of 
Mahalanobis-based scheme was probably due to the fact 
that the normal behavior may have several types and 
cannot be characterized with a single distribution. In order 
to alleviate this problem, there is a need to partition the 
normal behavior into several more similar distributions 
and identify the anomalies according to the Mahalanobis 
distances to each of the distributions. 

Although the detection rate when using unsupervised 
SVMs looks very good, the comparison is not fair, since 
the false alarm rate in this case is 4%. While the false 
alarm rate for training data was fixed to 2%, the false 
alarm for test data could not be maintained at that rate, 
and it increased to 4%. Figure 6 illustrates the ROC 
curves of all proposed algorithms and show how the 
detection rate and false alarm rate vary when different 
thresholds are used. Since the unsupervised SVM 
approach was not able to achieve a false alarm rate of 1% 
and 2%, these results were omitted from the figure. It is 
apparent form Figure 6 that the most consistent anomaly 
detection scheme is the LOF approach, since it is only 
slightly worse than the NN approach for low false alarm 
rates (1% and 2%), but significantly better than all other 
techniques for higher false alarm rates (greater than 2%). 
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Table 5. Burst detection rates (bdr) for all the burst from 5 weeks of data are given in parentheses, while the number of 
connections from the attack burst that are successfully associated with the attacks are given outside the parentheses. 
Burst position burst length (# 

of connections) 
Attack type  
and category 

LOF 
approach NN approach Mahalanobis-

based approach 
Unsupervised 

SVM approach*
Week1, burst1 15 neptune (DOS) 15 (100%) 15 (100%) 4 (26.7%) 15 (100%) 
Week2, burst1 50 guest (U2R) 49 (98%) 49 (98%) 49 (98%) 48 (96%) 
Week2, burst2 102 portsweep (probe) 31 (30.3%) 63 (61.7%) 25 (24.5%) 83 (81.4%) 
Week2, burst3 898 ipsweep (probe) 158 (17.6%) 428 (47.7%) 369 (41.1%) 708 (78.8%) 
Week2, burst4 1000 back (DOS) 752 (75.2%) 62 (6.2%) 44 (4.4%) 825 (82.5%) 
Week3, burst1 15 satan (probe) 0 (0%) 0 (0%) 0 (0%) 1 (6.7%) 
Week3, burst2 137 portsweep (probe) 15 (10.9%) 118 (86.1%) 84 (61.3%) 115 (83.9%) 
Week3, burst3 105 nmap (probe) 61 (58.1%) 105 (100%) 105 (100%) 97 (92.4%) 
Week3, burst4 1874 nmap (probe) 1060 (57%) 1071 (57.1%) 993 (53%) 1234 (65.8%) 
Week3, burst5 5 imap (r2l) 4 (80%) 5 (100%) 4 (80%) 5 (100%) 
Week3, burst6 17 warezmaster (u2r) 16 (94.1%) 15 (88.2%) 15 (88.2%) 16 (94.1%) 
Week4, burst1 86 warezclient (u2r) 33 (38.4%) 38 (44.2%) 38 (44.2%) 42 (48.8%) 
Week4, burst2 6104 satan (probe) 5426 (89%) 5558 (91.1%) 5388 (88.3%) 5645 (92.5%) 
Week4, burst3 1322 pod (DOS)  957 (72.4%) 969 (73.3%) 680 (51.4%) 1018 (77%) 
Week4, burst4 297 portsweep (probe) 221 (74.4%)  259 (87.2%) 230 (77.4%) 271 (91.2%) 
Week4, burst5 2304 portsweep (probe) 1764 (76.6%) 1809 (79%) 1095 (47.5%) 1969 (85.5%) 
Week5, burst1 3067 satan     (probe) 2986 (97.4%) 3022 (99%) 2983 (97%) 2981 (97.2%) 
Week5, burst2 5 ffb       (r2l) 0 (0%)  0 (0%)  0 (0%)  0 (0%)  
Week5, burst3 1021 portsweep (probe) 937 (92%) 978 (98%) 938 (92%) 942 (92.3%) 
Total 18424 - 13/19 14/19 11/19 16/19 * 
Detection rate   68.4% 73.7% 57.9% 84.2% * 

 
Table 6. The comparison of anomaly detection schemes when applied on all the attack bursts from 5 weeks of data (SA – 
Surface Area between the real attack curve and the predicted (score) attack curve, tresponse – response time in the number of 
connections) 

LOF approach NN approach Mahalanobis-based approach Unsupervised SVMBurst position  
(burst length) 

Attack type  
and category SA tresponse SA tresponse SA tresponse SA* tresponse*

Week1, burst1 neptune (DOS) 0.03 1 0.22 1 0.25 1 0.02 1 
Week2, burst1 guest (u2r) 0.22 1 0.01 1 0.03 1 0.04 1 
Week2, burst2 portsweep (probe) 0.5 20 0.38 21 0.54 37 0.23 15 
Week2, burst3 ipsweep (probe) 0.61 2 0.5 1 0.55 2 0.41 1 
Week2, burst4 back (DOS) 0.3 3 0.74 3 0.82 5 0.37 2 
Week3, burst1 satan (probe) 0.89 - 0.94 - 0.95 - 0.69 9 
Week3, burst2 portsweep (probe) 0.8 30 0.2 1 0.32 4 0.28 2 
Week3, burst3 nmap (probe) 0.3 2 0 1 0.1 3 0.09 2 
Week3, burst4 nmap (probe) 0.33 13 0.34 1 0.52 5 0.27 3 
Week3, burst5 imap (r2l) 0.14 2 0.0004 1 0.2 2 0.03 1 
Week3, burst6 warezmaster (u2r) 0.08 1 0.12 1 0.15 1 0.07 1 
Week4, burst1 warezclient (u2r) 0.56 1 0.58 1 0.69 2 0.52 1 
Week4, burst2 satan (probe) 0.12 10 0.08 13 0.11 19 0.06 7 
Week4, burst3 pod (DOS)  0.34 1 0.34 1 0.59 28 0.32 1 
Week4, burst4 portsweep (probe) 0.48 17 0.13 21 0.39 37 0.12 16 
Week4, burst5 portsweep (probe) 0.2 1 0.41 1 0.54 4 0.19 1 
Week5, burst1 satan     (probe) 0.06 21 0.02 38 0.08 47 0.03 14 
Week5, burst2 ffb       (r2l) 0.86 - 0.89 - 0.93 - 0.73 - 
Week5, burst3 portsweep (probe) 0.49 8    0.04 8 0.06 12 0.05 9 
Total: 18424 Detection rate 14/19 (73.7%) 15/19 (78.9%) 10/19 (52.63%) 16/19 (84.2%) * 
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Figure 6. ROC curves showing the performance of 
anomaly detection algorithms on bursty attacks. 
 

Table 6 reports on additional metrics namely surface 
area and response time, for evaluation of bursty attacks. 
As defined in section 2.1, the smaller the surface area 
under the real attack curve, the better the intrusion 
detection algorithm. It is important to note that surface 
area in Table 6 was normalized over the number of 
connections, such that the total surface area was divided 
by the total number of connections from the 
corresponding attack burst. Since different bursty attacks 
involved different time intervals, we decided to measure 
response time as the number of connections. Therefore, 
the response time represents the first connection for which 
the score value is larger than the prespecified threshold. 
When considering these additional evaluation metrics, we 
also attempted to measure detection rate. In Table 6, we 
consider an attack burst detected if the normalized surface 
area is less than 0.5. It is apparent that this method gives 
different results for overall detection rate. Again, the two 
most successful intrusion detection algorithms were NN 
and LOF, with 15 detected bursts and 14 detected bursts 
respectively. When using the proposed additional metrics, 
the Mahalobis-based approach was again inferior to the 
NN approach, while on the other side the unsupervised 
SVM approach achieved the highest detection rate but 
again with the highest false alarm rate. Therefore, the 
unsupervised SVM approach is not directly comparable to 
other three techniques. 

It is interesting to note that the performance of both 
NN and LOF approaches was slightly better when using 
these additional metrics than the standard metrics.  Since 
both schemes are based on computing the distances, they 
have similar performance on the bursty attacks because 
the major contribution in distance computation comes 
from the time-based and connection-based features.  
Namely, due to the nature of bursty attacks there is very 

large number of connections in a short amount of time 
and/or that are coming from the same source, and 
therefore the time-based and connection-based features 
end up with very high values that significantly influence 
the distance computation. 

However, there are also scenarios when these two 
schemes have different detecting behavior. For example, 
the burst shaded gray in Table 5 corresponds to the attack 
that was not detected with the LOF approach using the 
standard detection rate metric, but it was detected with the 
NN approach. Figure 7 illustrates the detecting of burst 2 
from week 2 using NN and LOF. It is apparent that the 
LOF approach has a smaller number of connections that 
are above the threshold than the NN approach (smaller 
burst detection rate), but it also has a slightly better 
response performance than the NN approach. It turns out 
that for specified threshold both schemes have similar 
response time. In addition, both schemes demonstrate 
some instability (low peaks) in the same regions of the 
attack bursts that are probably due to occasional “reset” 
value for the feature called “connection status”. However, 
when detecting this bursty attack, the NN approach was 
superior to other two approaches. The dominance of the 
NN approach over the LOF approach probably lies in the 
fact that the connections of this type of attack (portsweep 
attack, probe category) are located in the sparse regions of 
the normal data, and the LOF approach is not able to 
detect them due to low density, while distances to their 
nearest neighbors are still rather high and therefore the 
NN approach was able to identify them as outliers. The 
dominance of the NN approach over the Mahalanobis-
based approach can be again explained by the multi-
modal normal behavior. Finally, Figure 7 evidently shows 
that in spite of the limitations of the LOF approach 
mentioned above, it was still able to detect the attack 
burst, but with higher instability which is penalized by 
larger surface area. 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. The score values assigned to connections from 
burst 2, week 2 (Figure is best viewed in color) 
 

When detecting the bursty attacks, very often there are 
scenarios when the normal connections are mixed with 
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the connections from the attack bursts which makes the 
task of detecting the attacks more complex. It turns out 
that in these situations, the LOF approach is more 
suitable for detecting these attacks than the NN approach 
simply due to the fact that the connections associated with 
the attack are very close to dense regions of the normal 
behavior and therefore the NN approach is not able to 
detect them only according to the distance. For example, 
the burst 4 from week 2 involves 1000 connections, but 
within the attack time interval there are also 171 normal 
connections (Figure 8). Table 5 shows that for this attack 

the LOF approach was able to detect 752 connections 
associated with the attack, while the NN approach 
detected only 62 of them. In such situations the presence 
of normal connections usually causes the low peaks in 
score values for connections from attack bursts, thus 
reducing the burst detection rate and increasing the 
surface area (Figure 8). In addition, a large number of 
normal connections are misclassified as connections 
associated with attacks, thus increasing the false alarm 
rate. 

 
 

 
 
 
 
 

 
 

 
 

 
 

 
 
 
 

Figure 8. The detection of attack bursts mixed with normal data using the LOF approach (Figure is best viewed in color) 
 
Table 7. The comparison of anomaly detection schemes applied on interleaved bursts of attacks. The first one was slow 
probing attack, the second one was DoS attack within the slow probing attack, and the third one was low traffic U2R attack. 

Burst position  
(burst length) 

Attack type  
and category LOF NN approach Mahalanobis based 

approach 
Unsupervised 

SVM approach* 

burst1 (999) DOS 679 (68) 204 (20.4) 163 (16.3) 749 (74.9) 
burst2 (866) Probe 377 (43.5) 866 (100) 866 (100) 811 (93.7) 
Burst 3 (5) U2R 2 (40) 2 (40) 2(40) 2 (40) 

Detection rate  1 / 3 1 / 3 1 / 3 2 / 3 * 
 
Table 8. Number of attacks detected and detection rate for detecting single-connection attacks 

Number of 
attacks 

Attack type  
and category LOF NN approach Mahalanobis based 

approach 
Unsupervised 

SVM approach* 
13 U2R 6 (46.2%) 7 (53.8%) 5 (38.5%) 10 (76.9%) 
11 R2L 7 (63.7%) 1 (9.1%) 1 (9.1%) 7 (63.7 %) 
1 DOS 1 (100%) 1 (100%) 1 (100%) 1 (100 %) 

Detection rate  14 / 25 (56.0%) 9 / 25 (36.0%) 8/25 (28 %) 18 /25 (72 %) * 
 
4.2.2. Evaluation of Mixed Bursty Attacks. When 
predicting the attack bursts, it is also possible that two or 
more bursty attacks are overlapping. For example, in the 

training data that we used for our experiments there was a 
scenario when the DoS attack containing 999 connections 
was mixed with the slow probing attack that contained 
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866 connections and with the U2R attack that contained 5 
connections. Table 7 shows the performance of each of 
the proposed schemes when detecting mixed bursty 
attacks. It is apparent that the U2R attack was undetected 
by any of the techniques since it was hidden within two 
bursty attacks. In addition, the overlapping DoS and 
probing attacks were simultaneously detected only by 
unsupervised SVM approach but again unsupervised 
SVM had the highest false alarm rate of 4%. On the other 
hand, LOF, NN and Mahalanobis-based outlier detection 
schemes were not able to detect both overlapping DoS 
and probing attacks. Since their predictions were 
complementary in this scenario, it would be very 
beneficial if they could be combined such that the 
advantages of all approaches are employed. 
 
4.2.3. Evaluation of Single Connection Attacks. 
Measuring the performance of anomaly detection schemes 
when detecting single-connection attacks is performed by 
computing the detection rate while fixing the false alarm 
rate to 2%. Table 8 shows the experimental results 
obtained using all the proposed anomaly detection 
schemes. It turned out that only U2R, R2L and DoS attack 
categories were available as single connection attacks. 

Once again, NN and LOF approaches outperformed the 
Mahalanobis-based scheme for all attack types. In this 
case, however, the LOF approach is distinctly better than 
the NN approach especially for R2L attacks, where the 
LOF approach was able to detect 7 out of 11 attacks, and 
the NN approach was able to pickup only one. Such 
superior performance of the LOF approach comparing to 
the NN approach may be explained by the fact that 
majority of single connection attacks are located close to 
the dense regions of the normal data and thus not visible 
as outliers by the NN approach. 

 
 

 

 

 

 
Figure 9. ROC curves showing the performance of 
anomaly detection algorithms on single-connection 
attacks. 

 

The unsupervised SVM approach achieved again the 
best detection rate but with higher false alarm rate than 
2% (it was 4% again), and therefore it was not directly 
comparable to other techniques. For the purpose of the 
fair comparison of all the proposed anomaly detection 
algorithms we plot their ROC curves (Figure 9). The LOF 
approach was again superior to all other techniques and 
for all values of false alarm rate. All these results indicate 
that the LOF scheme may be more suitable than other 
schemes for anomaly detection of single connection 
attacks especially for R2L intrusions. 

 
4.3. Results from Real Network Data 

 
Due to various limitations of DARPA’98 intrusion 

detection evaluation data discussed above [28], we have 
repeated our experiments   on live network traffic at the 
University of Minnesota. When reporting results on real 
network data, we were not able to report the detection 
rate, false alarm rate and other evaluation metrics reported 
for DARPA’98 intrusion data, mainly due to difficulty to 
obtain the proper labeling of network connections. 

Since we were working on intrusion detection issues 
together with system administrators at the University of 
Minnesota, we could not apply all developed algorithms, 
but only the most prominent one.  For this purpose we 
have selected the LOF approach, since it achieved the 
most successful results on publicly available DARPA’98 
data set, especially in detecting single-connection attacks. 
The LOF technique showed also great promise in 
detecting novel intrusions in real network data and during 
the past few months it has been very successful in 
automatically identifying several novel intrusions at the 
University of Minnesota that could not be detected using 
state-of-the-art intrusion detection systems such as 
SNORT [30]. Many of these attacks have been on the 
high-priority list of CERT/CC recently. Examples 
include: 
• On August 9th, 2002, CERT/CC announced 

“widespread scanning and possible denial of service 
activity targeted at the Microsoft-DS service on port 
445/TCP” as a novel Denial of Service (DoS) attack 
that had not been observed before. In addition 
CERT/CC expressed “interest in receiving reports of 
this activity from sites with detailed logs and 
evidence of an attack.” This type of attack had been 
the top ranked one on August 13th, 2002, by our 
anomaly detection tool in its regular analysis of 
University of Minnesota traffic. This could not be 
detected by SNORT and other such tools since the 
port scanning was a low rate non-sequential one. 

• On June 13th, 2002, CERT/CC first noticed an attack 
that was “scanning for an Oracle server”. This can be 
a potentially insidious type of insider attack on 
databases. Our tool’s August 13th analysis listed this 
as the second highest ranked outlier. This type of 



attack is difficult to detect using other techniques, 
since the Oracle scan is hidden within a high rate 
Web scan. 

• On August 8th and 10th, 2002, our techniques 
identified machines running an illegal Microsoft 
PPTP VPN server, and an illegal FTP server, 
respectively – both as the top ranked outliers. The 
FTP attack did not have a known signature, and 
hence SNORT did not detect it. For the VPN attack, 
the collected GRE traffic is part of the normal traffic, 
and hence transparent to tools such as SNORT. 

 
5. Conclusions and Future Work 

 
Several anomaly detection schemes for detecting 

network intrusions are proposed in this paper. To support 
applicability of anomaly detection schemes, a procedure 
for extracting useful statistical content based and temporal 
features is also implemented. Experimental results 
performed on DARPA 98 data set indicate that the most 
successful anomaly detection techniques were able to 
achieve the detection rate of 74% for attacks involving 
multiple connections and detection rate of 56% for more 
complex single connection attacks, while keeping the 
false alarm rate at 2%. When the false alarm rate is 
increased to 4%, the achieved detection rate reaches 89% 
for bursty attacks and perfect 100% for single-connection 
attacks. Computed ROC curves indicate that the most 
promising technique for detecting intrusions in 
DARPA’98 data is the LOF approach. In addition, when 
performing experiments or real network data, the LOF 
approach was very successful in picking several very 
interesting novel attacks. 

Considering the DARPA’98 data, performed 
experiments also demonstrate that for different types of 
attacks, different anomaly detection schemes were more 
successful than others. For example, the unsupervised 
SVMs were very promising in detecting new intrusions 
since they had very high detection rate but very high false 
alarm rate too. Therefore, future work is needed in order 
to keep high detection rate while lowering the false alarm 
rate. In addition, in the Mahalanobis based approach, we 
are currently investigating the idea of defining several 
types of “normal” behavior and measuring the distance to 
each of them in order to identify the anomalies. Since our 
experimental results exhibited very low detection rate for 
single-connection attacks that are very similar to normal 
connections, we will also scrutinize whether these attacks 
demonstrate different densities than the normal 
connections. 

Our long-term goal is to develop an overall framework 
for defending against attacks and threats to computer 
systems. Although our developed techniques are 
promising in detecting various types of intrusions they are 
still preliminary in nature. Data generated from network 
traffic monitoring tends to have very high volume, 

dimensionality and heterogeneity, making the 
performance of serial data mining algorithms 
unacceptable for on-line analysis. Therefore, development 
of new anomaly detection algorithms that can take 
advantage of high performance computers is a key 
component of this project. According to our preliminary 
results on real network data, there is a significant non-
overlap of our anomaly detection algorithms with the 
SNORT intrusion detection system, which implies that 
they could be combined in order to increase coverage. 
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