
A Framework for Constructing Features
and Models for Intrusion Detection
Systems

WENKE LEE
Georgia Institute of Technology
and
SALVATORE J. STOLFO
Columbia University

Intrusion detection (ID) is an important component of infrastructure protection mechanisms.
Intrusion detection systems (IDSs) need to be accurate, adaptive, and extensible. Given these
requirements and the complexities of today’s network environments, we need a more system-
atic and automated IDS development process rather than the pure knowledge encoding and
engineering approaches. This article describes a novel framework, MADAM ID, for Mining
Audit Data for Automated Models for Intrusion Detection. This framework uses data mining
algorithms to compute activity patterns from system audit data and extracts predictive
features from the patterns. It then applies machine learning algorithms to the audit records
that are processed according to the feature definitions to generate intrusion detection rules.
Results from the 1998 DARPA Intrusion Detection Evaluation showed that our ID model was
one of the best performing of all the participating systems. We also briefly discuss our
experience in converting the detection models produced by off-line data mining programs to
real-time modules of existing IDSs.

Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks]: Gener-
al—Security and protection (e.g., firewalls); C.2.3 [Computer-Communication Networks]:
Network Operations—Network monitoring; D.4.6 [Operating Systems]: Security and Protec-
tion; H.2.8 [Database Management]: Database applications—Data mining; I.2.6 [Artificial
Intelligence]: Learning—Concept learning

General Terms: Design, Experimentation, Security

Additional Key Words and Phrases: Data mining, feature construction, intrusion detection

This article is based on the authors’ published papers in the Proceedings of the 1999 IEEE
Symposium on Security and Privacy and the Proceedings of the 5th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, as well as Wenke Lee’s Ph.D.
dissertation in the Computer Science Department at Columbia University.
This research is supported in part by grants from DARPA (F30602-96-1-0311).
Authors’ addresses: W. Lee, College of Computing, Georgia Institute of Technology, 801
Atlantic Drive, Atlanta, GA 30332–0280; email: wenke@cc.gatech.edu; S. J. Stolfo, Computer
Science Department, Columbia University, 1214 Amsterdam Avenue, Mailcode 0401, New
York, NY 10027-7003; email: sal@cs.columbia.edu.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 2001 ACM 1094-9224/00/1100–0227 $5.00

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000, Pages 227–261.

1. INTRODUCTION

As network-based computer systems play increasingly vital roles in modern
society, they have become the target of intrusions by our enemies and
criminals. In addition to intrusion prevention techniques, such as user
authentication and authorization, encryption, and defensive programming,
intrusion detection is often used as another wall to protect computer
systems.

The two main intrusion detection techniques are misuse detection and
anomaly detection. Misuse detection systems, for example, IDIOT [Kumar
and Spafford 1995] and STAT [Ilgun et al. 1995], use patterns of well-
known attacks or weak spots of the system to match and identify known
intrusions. For example, a signature rule for the “guessing password
attack” can be “there are more than four failed login attempts within two
minutes.” Misuse detection techniques in general are not effective against
novel attacks that have no matched rules or patterns yet. Anomaly detec-
tion (sub)systems, for example, the anomaly detector of IDES [Lunt et al.
1992], flag observed activities that deviate significantly from the estab-
lished normal usage profiles as anomalies, that is, possible intrusions. For
example, the normal profile of a user may contain the averaged frequencies
of some system commands used in his or her login sessions. If for a session
that is being monitored, the frequencies are significantly lower or higher,
then an anomaly alarm will be raised. Anomaly detection techniques can be
effective against unknown or novel attacks since no a priori knowledge
about specific intrusions is required. However, anomaly detection systems
tend to generate more false alarms than misuse detection systems because
an anomaly can just be a new normal behavior. Some IDSs, for example,
IDES and NIDES [Anderson et al. 1995], use both anomaly and misuse
detection techniques.

While accuracy is the essential requirement of an IDS, its extensibility
and adaptability are also critical in today’s network computing environ-
ment. There are multiple “penetration points” for intrusions to take place
in a network system. For example, at the network level carefully crafted
“malicious” IP packets can crash a victim host; at the host level, vulnera-
bilities in system software can be exploited to yield an illegal root shell.
Since activities at different penetration points are normally recorded in
different audit data sources, an IDS often needs to be extended to incorpo-
rate additional modules that specialize in certain components (e.g., hosts,
subnets, etc.) of the network systems. The large traffic volume in security-
related mailing lists and Web sites suggests that new system security holes
and intrusion methods are continuously being discovered. Therefore IDSs
need to be adaptive in such a way that frequent and timely updates are
possible.

Currently building an effective IDS is an enormous knowledge engineer-
ing task. System builders rely on their intuition and experience to select
the statistical measures for anomaly detection [Lunt 1993]. Experts first
analyze and categorize attack scenarios and system vulnerabilities, and

228 • W. Lee and S. J. Stolfo

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

hand-code the corresponding rules and patterns for misuse detection.
Because of the manual and ad hoc nature of the development process,
current IDSs have limited extensibility and adaptability. Many IDSs only
handle one particular audit data source, and their updates are expensive
and slow [Allen et al. 2000].

Some of the recent research and commercial IDSs have started to provide
built-in mechanisms for customization and extension. For example, both
Bro [Paxson 1998] and NFR [Network Flight Recorder Inc. 1997] filter
network traffic streams into a series of events, and execute scripts, such as
Bro policy scripts and NFR’s N-Codes, that contain site-specific event
handlers, that is, intrusion detection and handling rules. The system
administration personnel at each installation site must now assume the
roles of both security experts and IDS builders because they are responsible
for writing the correct event-handling functions. Our first-hand experience
with both Bro and NFR show that while these systems provide great
flexibility, writing the scripts involves a lot of effort, in addition to learning
the scripting languages. For example, there is no means to debug the
scripts. These systems also handle a fixed set of network traffic event
types. On a few occasions we were forced to make changes to the source
code of the original IDS to handle new event types.

Our research aims to develop a more systematic and automated approach
for building IDSs. We have developed a set of tools that can be applied to a
variety of audit data sources to generate intrusion detection models. We
take a data-centric point of view and consider intrusion detection as a data
analysis process. Anomaly detection is about finding the normal usage
patterns from the audit data, whereas misuse detection is about encoding
and matching the intrusion patterns using the audit data. The central
theme of our approach is to apply data mining programs to the extensively
gathered audit data to compute models that accurately capture the actual
behavior (i.e., patterns) of intrusions and normal activities. This approach
significantly reduces the need to manually analyze and encode intrusion
patterns, as well as the guesswork in selecting statistical measures for
normal usage profiles. The resultant models can be more effective because
they are computed and validated using a large amount of audit data.
Furthermore, data mining programs can be applied to multiple streams of
evidence, each from a detection module that specializes in a specific type(s)
of intrusion or a specific component of the network system (e.g., a mission-
critical host) to learn the combined detection model that considers all the
available evidence. Therefore, using our framework, IDSs can be extended
and adapted easily via automated integration of new modules.

The rest of the article is organized as follows: Section 2 outlines the main
components of our framework. Section 3 briefly describes several data
mining programs, and discusses how they can be applied to discover
frequent intrusion and normal activity patterns, which are the basis for
building misuse detection models and user anomaly detection models.
Section 4 describes how to construct temporal and statistical features using
the frequent patterns mined from audit data. Section 5 reports the results

Framework for Constructing Features and Models • 229

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

of our experiments on building intrusion detection models using the audit
data from the DARPA evaluation program. Section 6 briefly describes our
approach of converting off-line learned models into real-time intrusion
detection modules. Section 7 discusses related research projects. Section 8
outlines our future research plans.

2. A SYSTEMATIC FRAMEWORK

A basic premise for intrusion detection is that when audit mechanisms are
enabled to record system events, distinct evidence of legitimate activities
and intrusions will be manifested in the audit data. Because of the sheer
volume of audit data, both in the amount of audit records and in the
number of system features (i.e., the fields describing the audit records),
efficient and intelligent data analysis tools are required to discover the
behavior of system activities.

Data mining generally refers to the process of extracting useful models
from large stores of data [Fayyad et al. 1996]. The recent rapid develop-
ment in data mining has made available a wide variety of algorithms,
drawn from the fields of statistics, pattern recognition, machine learning,
and databases. Several types of algorithms are particularly useful for
mining audit data:

Classification: maps a data item into one of several predefined categories.
These algorithms normally output “classifiers,” for example, in the form
of decision trees or rules. An ideal application in intrusion detection
would be to gather sufficient “normal” and “abnormal” audit data for a
user or a program, then apply a classification algorithm to learn a
classifier that can label or predict new unseen audit data as belonging to
the normal class or the abnormal class;

Link analysis: determines relations between fields in the database
records. Correlations of system features in audit data, for example, the
correlation between command and argument in the shell command
history data of a user, can serve as the basis for constructing normal
usage profiles. A programmer, for example, may have emacs highly
associated with C files;

Sequence analysis: models sequential patterns. These algorithms can
discover what time-based sequence of audit events frequently occur
together. These frequent event patterns provide guidelines for incorpo-
rating temporal statistical measures into intrusion detection models. For
example, patterns from audit data containing network-based denial-of-
service (DoS) attacks suggest that several per-host and per-service mea-
sures should be included.

We have developed a framework, MADAM ID (for Mining Audit Data for
Automated Models for Intrusion Detection), described in Lee and Stolfo
[1998], Lee et al. [1999a; 1999b], and Lee [1999]. The main idea is to apply
data mining techniques to build intrusion detection models. The main

230 • W. Lee and S. J. Stolfo

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

components of the framework include programs for learning classifiers and
meta-classifiers [Chan and Stolfo 1993], association rules [Agrawal et al.
1993] for link analysis, and frequent episodes [Mannila et al. 1995] for
sequence analysis. It also contains a support environment that enables
system builders to interactively and iteratively drive the process of con-
structing and evaluating detection models. The end products are concise
and intuitive rules that can detect intrusions, and can be easily inspected
and edited by security experts when needed.

The process of applying MADAM ID can be summarized in Figure 1. Raw
(binary) audit data is first processed into ASCII network packet informa-
tion (or host event data), which is in turn summarized into connection
records (or host session records) containing a number of basic features,
such as service, duration, and the like. Data mining programs are then
applied to the connection records to compute the frequent patterns (i.e.,
association rules and frequent episodes), which are in turn analyzed to
construct additional features for the connection records. Classification
programs, for example, RIPPER [Cohen 1995], are then used to inductively
learn the detection models. This process is of course iterative. For example,
poor performance of the classification models often indicates that more
pattern mining and feature construction is needed.

In our approach, the learned rules replace the manually encoded intru-
sion patterns and profiles, and system features and measures are selected
by considering the statistical patterns computed from the audit data.
Meta-learning is used to learn the correlation of intrusion evidence from
multiple detection models, and to produce a combined detection model.

Fig. 1. The data mining process of building ID models.

Framework for Constructing Features and Models • 231

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

Our framework does not eliminate the need to preprocess and analyze
raw audit data, for example, tcpdump [Jacobson et al. 1989] or BSM
[SunSoft 1995] audit data. In fact, to build intrusion detection models for
network systems, our data mining programs use preprocessed audit data
where each record corresponds to a high-level event (e.g., a network
connection or host session). Each record normally includes an extensive set
of features that describe the characteristics of the event, for example, the
duration of a connection, the number of bytes transferred, and so on. While
analyzing and summarizing raw audit data is an essential task for an IDS,
we argue that generic utilities should first be developed by network and
operating system experts, and made available to all IDSs as the low-level
building blocks. Bro and NFR can be regarded as examples of such robust
utilities, as they both perform IP packet filtering and reassembling, and
allow event handlers to output summarized connection records. Our frame-
work assumes that such building blocks are available when constructing
IDSs.

Note that currently MADAM ID produces misuse detection models for
network and host systems as well as anomaly detection models for users.
We are extending MADAM ID to build network and host anomaly detection
models. Also note that the detection models produced by MADAM ID are
intended for off-line analysis. In Section 6, we briefly discuss how to
convert these models to on-line detection modules.

3. MINING AUDIT DATA

In this section, we describe our data mining algorithms, and illustrate how
to apply these algorithms to generate detection models from audit data.
Here audit data refers to preprocessed timestamped audit records, each
with a number of features (i.e., fields).

3.1 Classification

Intrusion detection can be thought of as a classification problem: we wish
to classify each audit record into one of a discrete set of possible categories,
normal or a particular kind of intrusion.

Table I. Telnet Records

Label Service Flag hot failed_logins compromised root_shell su Duration ...

normal telnet SF 0 0 0 0 0 10.2 ...
normal telnet SF 0 0 0 3 1 2.1 ...
guess telnet SF 0 6 0 0 0 26.2 ...
normal telnet SF 0 0 0 0 0 126.2 ...
overflow telnet SF 3 0 2 1 0 92.5 ...
normal telnet SF 0 0 0 0 0 2.1 ...
guess telnet SF 0 5 0 0 0 13.9 ...
overflow telnet SF 3 0 2 1 0 92.5 ...
normal telnet SF 0 0 0 0 0 1248 ...
...

232 • W. Lee and S. J. Stolfo

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

Given a set of records, where one of the features is the class label (i.e.,
the concept to be learned), classification algorithms can compute a model
that uses the most discriminating feature values to describe each concept.
For example, consider the telnet connection records shown in Table I. label
is the concept to be learned. “normal” represents normal connections and
“guess” and “overflow” represent various kinds of intrusions. hot is the
count of access to system directories, creation and execution of programs,
and so on and compromised is the count of file/path “not found” errors,
“Jump to” instructions, and the like. RIPPER [Cohen 1995], a classification
rule learning program, generates rules for classifying the telnet connec-
tions (see Table II). The symbol to the left of “:-” is the class label, and the
comma-separated expressions on the right are conjuncts (i.e., (sub)condi-
tions) of the classification rule. We see that RIPPER indeed selects the
discriminating feature values into the classification rules for the intru-
sions. These rules can be first inspected and edited by security experts, and
then be incorporated into misuse detection systems.

The accuracy of a classification model depends directly on the set of
features provided in the training data. From a theoretical point of view, the
goal of constructing a classification model is that after (selectively) apply-
ing a sequence of feature value tests, the dataset can be partitioned into
“pure” subsets, that is, each in a target class. Therefore, when constructing
a classification model, a classification algorithm searches for features with
large information gain [Mitchell 1997], defined as the reduction in entropy,
which characterizes the “impurity” of a dataset. It is thus very important
that the dataset indeed includes features with large information gain. For
example, if the features hot, compromised, and root_shell were removed
from the records in Table I, RIPPER would not be able to produce accurate
rules to identify buffer overflow connections. In Lee and Stolfo [1998], we
showed that due to the temporal nature of network events, especially
certain intrusions such as probing (e.g., port-scan, ping-sweep, etc.) and
denial-of-service (e.g., ping-of-death, teardrop, etc.), adding per-host and
per-service temporal statistics resulted in significant improvement in the
accuracy of the classification models. Thus, selecting the right set of system
features is a critical step when formulating the classification tasks. Our

Table II. Example RIPPER Rules from Telnet Records Shown in Table I

RIPPER Rule Meaning

guess:- failed_logins $ 4. If number of failed logins is at least 4, then
this telnet connection is “guess”, a guessing
password attack.

overflow:- hot $ 3, compromised $ 2,
root_shell 5 1.

If the number of hot indicators is at least 3,
the number of compromised conditions is at
least 2, and a root shell is obtained, then this
telnet connection is a buffer overflow attack.

.
normal:- true. If none of the above, then this connection is

“normal”.

Framework for Constructing Features and Models • 233

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

strategy is to first mine the frequent sequential patterns from the network
audit data, and then use these patterns as guidelines to select and
construct temporal statistical features. Section 3.3 discusses this process in
greater detail.

3.1.1 Meta-classification. Meta-learning [Chan and Stolfo 1993] is a
mechanism for inductively learning the correlation of predictions by a
number of (base) classifiers. Each record in the training data for meta-
learning contains the true class label of the record and the predictions
made by the base classifiers. The resultant meta-classifier thus “combines”
the base models because it uses their predictions to make the final
prediction. The motivations for meta-learning include: to improve classifi-
cation accuracy, that is, to produce a meta-classifier that is more accurate
than any individual base classifier; and to improve efficiency and scalabil-
ity, that is, to combine the models rather than the potentially huge volume
of data from different data sources. This general approach has been
extensively studied [Stolfo et al. 1997] and empirically evaluated in a
related domain of credit card fraud detection and has been shown to be
effective and scalable.

In order to avoid becoming a performance bottleneck and an easy attack
target, an IDS should consist of multiple cooperative lightweight sub-
systems that each monitors a separate part (e.g., access point) of the entire
network environment. For example, an IDS that inspects the full data
contents of each IP packet and keeps track of all opened connections may
run out of memory (i.e., buffers) during a TCP-based DoS attack and cease
to function. On the other hand, a more lightweight IDS that only inspects
the header of each IP packet can detect only those intrusions that are
aimed at the network protocols, and not those that try to exploit the hosts,
such as guess password, buffer overflow, and the like. A solution is to have
one relatively lightweight system on the gateway that checks only the
packet headers, and several host-based systems that monitor the activities
on the mission-critical hosts. A “global” detection system can then combine
the evidence from these subsystems and take appropriate actions. We use
meta-learning as a means to combine multiple intrusion detection models.

3.2 Association Rules

There is empirical evidence that program executions and user activities
exhibit frequent correlations among system features. For example, certain
privileged programs only access certain system files in specific directories
[Ko et al. 1994], programmers edit and compile C files frequently, and so
on. These consistent behavior patterns should be included in normal usage
profiles.

The goal of mining association rules is to derive multifeature (attribute)
correlations from a database table. Given a set of records, where each
record is a set of items, support~ X ! is defined as the percentage of records
that contain item set X. An association rule is an expression

234 • W. Lee and S. J. Stolfo

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

X 3 Y, @c, s#.

Here X and Y are item sets, and X ù Y 5 À, s 5 support~ X ø Y! is the
support of the rule, and c 5 support~ X ø Y! / support~ X ! is the confidence
[Agrawal et al. 1993].

Consider the shell input commands during one telnet session by a
secretary, shown in Table III. Here we keep only the filename extensions,
remove the (input) contents of mail bodies and files, and use “am” to
represent all the morning timestamps.

The original association rules algorithm searches for all possible frequent
associations among the set of given features. However, not all associations
are necessarily useful for analyzing program or user behavior. We utilized
the “schema” level information (i.e., data definitions) about the audit
records to direct the pattern mining process. Observe that certain features
are essential in describing the data, while others provide only auxiliary
information. Domain knowledge is used to determine the appropriate
essential features for an application. In shell command data, since the
combination of the exact “time” and “command” uniquely identifies each
record, “time” and “command” are the essential features; likewise, in
network connection data, timestamp, source and destination hosts, source
port, and service (i.e., destination port) are the essential features because
their combination uniquely identifies a connection record. We argue that
the relevant association rules should describe patterns related to the
essential features.

We call these essential features(s) axis features when they are used as a
form of item constraint, which specifies the conditions on the item sets of
an association rule. We restrict the association rules algorithm to only
output rules that include axis feature values. In practice, we need not
designate all essential features as the axis features. For example, some

Table III. Shell Command Records

Time Hostname Command arg1 arg2

am pascal mkdir dir1
am pascal cd dir1
am pascal vi tex
am pascal tex vi
am pascal mail fredd
am pascal subject progress
am pascal vi tex
am pascal vi tex
am pascal mail williamf
am pascal subject progress

...
am pascal vi tex
am pascal latex tex
am pascal dvips dvi -o
...

am pascal logout

Framework for Constructing Features and Models • 235

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

network analysis tasks require statistics about various network services
while others may require the patterns related to the destination hosts.
Accordingly, we can use service as the axis feature to compute the associa-
tion rules that describe the patterns related to the services of the connec-
tions, and use destination host as the axis feature to compute patterns
related to hosts.

In the case of shell command records, we use command as the axis
feature. Table IV shows some example association rules from the shell
command data in Table III. Each of these association rules conveys
information about the user’s behavior. The rules mined from each telnet/
login session of the same user can be merged into an aggregate rule set to
form the user’s normal profile. Section 5.1.8 details our experiments using
association rules for anomaly detection.

3.3 Frequent Episodes

There is often the need to study the frequent sequential patterns of audit
data in order to understand the temporal and statistical nature of many
attacks as well as the normal behavior of users and programs. We use
frequent episodes to represent the sequential audit record patterns.

Given a set of timestamped event records, where each record is a set of
items, an interval @t1, t2# is the sequence of event records that starts from
timestamp t1 and ends at t2. The width of the interval is defined as t2 2
t1. Let X be a set of items; an interval is a minimal occurrence of X if it
contains X and none of its proper subintervals contains X. Define
support~ X ! as the ratio between the number of minimum occurrences that
contain X and the total number of event records. A frequent episode rule is
the expression [Mannila and Toivonen 1996]

X, Y 3 Z, @c, s, w#.

X, Y, and Z are item sets, and together they form an episode. s 5
support~ X ø Y ø Z! is the support of the rule, and c 5 support~ X ø Y
ø Z! / support~ X ø Y! is the confidence. The width of each of the occur-
rences must be less than w.

Table IV. Example Association Rules from Shell Command Data Shown in Table III

Association Rule Meaning

command 5 vi 3 time 5 am,
hostname 5 pascal, arg1 5 tex,
@1.0, 0.28#

When using vi to edit a file, the user is always
(i.e., 100% of the time) editing a tex file, in the
morning, and at host pascal; and 28% of the
command data matches this pattern.

command 5 subject 3 time 5 am,
hostname 5 pascal, arg1 5
progress, @1.0, 0.11#

The subject of the user’s email is always (i.e.,
100% of the time) about “progress”, such emails
are in the morning, and at host pascal; and 11% of
the command data matches this pattern.

236 • W. Lee and S. J. Stolfo

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

We introduced several extensions to the original frequent episodes algo-
rithm. Our extended algorithm computes frequent sequential patterns in
two phases: it finds the frequent associations using the axis features(s) as
previously described; then it generates the frequent serial patterns from
these associations. Thus, our approach combines the associations among
features and the sequential patterns among the records into a single rule.

Another interesting schema-level fact about audit records is that some
essential features can be the references of other features. These reference
features normally carry information about some “subject”, and other fea-
tures describe the “actions” that refer to the same “subject”. For example, if
we want to study the sequential patterns of connections to the same
destination host, then dst_host is the “subject” and service is the action. In
this case, we can designate dst_host as the reference feature. When forming
an episode, our program tests the condition that, within the episode’s
minimal occurrences, the event records covered by its constituent item sets
have the same reference feature value.

4. FEATURE CONSTRUCTION

We use the mined frequent episodes, which also contain associations among
the features, from audit records as guidelines to construct temporal statis-
tical features for building classification models. This process involves first
identifying the intrusion-only patterns, then parsing these patterns to
define features accordingly. In this section, we use network connection data
as an example to illustrate the feature construction process.

Raw tcpdump output is first summarized into network connection records
using preprocessing programs, where each record has a set of intrinsic
features. For example, the duration, service, src_host and dst_host (source
and destination hosts), src_port (source port), src_bytes and dst_bytes
(number of data bytes), a flag indicating normal or error status according to
the protocols, and so on, are intrinsic features of a single connection. Table V

Table V. Network Connection Records

Timestamp Duration Service src_host dst_host src_bytes dst_bytes Flag ...

1.1 0 http spoofed_1 victim 0 0 S0 ...
1.1 0 http spoofed_2 victim 0 0 S0 ...
1.1 0 http spoofed_3 victim 0 0 S0 ...
1.1 0 http spoofed_4 victim 0 0 S0 ...
1.1 0 http spoofed_5 victim 0 0 S0 ...
1.1 0 http spoofed_6 victim 0 0 S0 ...
1.1 0 http spoofed_7 victim 0 0 S0 ...
...
10.1 2 ftp A B 200 300 SF ...
12.3 1 smtp B D 250 300 SF ...
13.4 60 telnet A D 200 12100 SF ...
13.7 1 smtp B C 200 300 SF ...
15.2 1 http D A 200 0 REJ ...
...

Framework for Constructing Features and Models • 237

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

shows examples of connection records. Note that these “intrinsic” features
are for general network analysis purposes, and not specific to intrusion
detection.

4.1 Identifying the Intrusion Patterns

We apply the frequent episodes program to both the exhaustively gathered
normal connection dataset and the dataset that contains an intrusion. We
then compare the resulting patterns to find the intrusion-only patterns,
that is, those that exhibit only in the intrusion dataset. The details of the
pattern comparison algorithm are described in Lee et al. [1999b]. Briefly,
since the number of patterns may be very large and there are rarely exactly
matched patterns from two datasets, we used heuristic algorithms to
automatically identify the intrusion-only patterns. The idea is to first
convert patterns into numbers in such a way that “similar” patterns are
mapped to “closer” numbers. Then pattern comparison and intrusion pat-
tern identification are accomplished through comparing the numbers and
rank ordering the results. We devised an encoding procedure that converts
each pattern into a numerical number, where the order of digit significance
corresponds to the order of importance of the features. We used the
following heuristic ordering on the importance of the features: flag, the axis
feature, the reference feature, the rest of the essential attributes, and then
the rest of the features in alphabetical order. flag is considered as the most
important in describing a pattern because it carries the summary informa-
tion of the connection behavior with regard to the protocol specifications.
Each unique feature value is mapped to a digit value in the encoding
process. The “distance” of two patterns is then simply a number where each
digit value is the digit-wise absolute difference between the two encodings.
A comparison procedure computes the intrusion score for each pattern from
the intrusion dataset, which is its lowest distance score against all patterns
from the normal dataset, and outputs the user-specified top percentage
patterns that have the highest intrusion scores as the intrusion-only
patterns.

As an example, consider the SYN flood attack records shown in Table V.
The attacker used many spoofed source addresses to send a lot of S0
connections (i.e., only the first SYN packet is sent) to a port (e.g., http) of
the victim host in a very short time span (e.g., all in timestamp 1.1). Table
VI shows one of the top intrusion only patterns, produced using service as
the axis feature and dst_host as the reference feature.

Table VI. Example Intrusion Pattern

Frequent Episode Meaning

~ flag 5 S0, service 5 http, dst_host 5
victim!, ~ flag 5 S0, service 5 http,
dst_host 5 victim! 3

93% of the time, after two http connections
with S0 flag are made to host victim, within
2 seconds from the first of these two, the
third similar connection is made, and this
pattern occurs in 3% of the data

~ flag 5 S0, service 5 http, dst_host 5
victim! @0.93, 0.03, 2#

238 • W. Lee and S. J. Stolfo

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

4.2 Constructing Features from Intrusion Patterns

Each of the intrusion patterns is used as a guideline for adding additional
features into the connection records to build better classification models.
We use the following automatic procedure for parsing a frequent episode
and constructing features:

—Assume F0 (e.g., dst_host) is used as the reference feature, and the width
of the episode is w seconds.

—Add the following features that examine only the connections in the past
w seconds that share the same value in F0 as the current connection:
—A feature that computes “the count of these connections”;
—Let F1 be service, src_dst, or dst_host other than F0 (i.e., F1 is an

essential feature). If the same F1 value (e.g., http) is in all the item
sets of the episode, add a feature that computes “the percentage of
connections that share the same F1 value as the current connection”;
otherwise, add a feature that computes “the percentage of different
values of F1”;

—Let V2 be a value (e.g., S0) of a feature F2 (e.g., flag) other than F0 and
F1 (i.e., V2 is a value of a nonessential feature). If V2 is in all the item
sets of the episode, add a feature that computes “the percentage of
connections that have the same V2”; otherwise, if F2 is a numerical
feature, add a feature that computes “the average of the F2 values.”

This procedure parses a frequent episode and uses three operators, count,
percent, and average, to construct statistical features. These features are
also temporal since they measure only the connections that are within a
time window w and share the same reference feature value. The intuition
behind the feature construction algorithm comes from the straightforward
interpretation of a frequent episode. For example, if the same feature value
appears in all the itemsets of an episode, then there is a large percentage of
records that have the same value. We treat the essential and nonessential
features differently. The essential features describe the anatomy of an
intrusion, for example, “the same service (i.e., port) is targeted.” The actual
values (e.g., http) are often not important because the same attack method
can be applied to different targets (e.g., ftp). On the other hand, the actual
nonessential feature values (e.g., flag 5 S0) often indicate the invariant of
an intrusion because they summarize the connection behavior according to
the network protocols.

This SYN flood pattern shown in Table VI results in the following
additional features: a count of connections to the same dst_host in the past
2 seconds, and among these connections, the percentage of those that have
the same service, and the percentage of those that have the “S0” flag.

4.3 Discussions

We examined the theoretical underpinnings of the feature construction
process in Lee [1999]. We outline the results here and explain why the

Framework for Constructing Features and Models • 239

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

features constructed from the intrusion patterns can be utilized to build
more accurate classification models. First, the intrusion-only patterns are
the results of intrusion records. That is, the “intrusion” dataset must
contain “intrusion records,” i.e., unique records, unique sequences of
records, or records or sequences with unique frequencies, in order for it to
have intrusion-only patterns. Second, for the temporal and statistical
features constructed from the intrusion patterns, their values in the
intrusion records that are responsible for resulting in the intrusion-only
patterns will be very different from the feature values in the normal
connection records. For example, for the feature from the SYN flood
pattern, for the connections to the same destination host in the past 2
seconds, the percentage of those that have S0 flag, normal records have
values close to 0, but SYN flood records have values in the range of greater
than 80%. The constructed features have high information gain because
their value ranges can separate intrusion records from the normal records.
In fact, they normally have higher information gain than the existing set of
features. For example, the feature “flag” has very low information gain
because some normal connections also have an “S0” value. As discussed in
Section 3.1, a classification algorithm needs to select features with the
highest information gain when computing a classification model. Therefore,
when the features constructed from the intrusion patterns are added to the
audit data, a more accurate classification model can be computed. This is
precisely the purpose of our feature construction process.

An open problem is how to decide the right time window value w. We
mine sequential patterns using different w values, for example, from 0.1 to
20 with an increment of 1, and plot the number of patterns generated at
each run. Our experience shows that this plot tends to stabilize after the
initial sharp jump. We call the smallest w in the stable region w0. In Lee
and Stolfo [1998], we reported experiments using different w values to
calculate temporal statistical features for classification models. Our results
showed the plot of accuracy of the classifier also stabilizes after w $ w0

and tends to taper off. Intuitively, a requirement for a good window size is
that its set of sequential patterns is stable; that is, sufficient patterns are
captured and noise is small. We therefore use w0 for adding temporal
statistical features.

5. EXPERIMENTS

In this section, we describe our experiments in building intrusion detection
models on the audit data from the 1998 DARPA Intrusion Detection
Evaluation Program. In these experiments, we applied the algorithms and
tools of MADAM ID to process audit data, mine patterns, construct fea-
tures, and build RIPPER classifiers.

We first describe the experiments on tcpdump data. The results of these
experiments were submitted to DARPA and were evaluated by MIT Lincoln
Lab. We then report recent experiments on BSM data, which were performed

240 • W. Lee and S. J. Stolfo

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

after the DARPA evaluation. We discuss our experiences and evaluate the
strengths and weaknesses of MADAM ID.

5.1 Experiments on tcpdump Data

We participated in the DARPA Intrusion Detection Evaluation Program,
prepared and managed by MIT Lincoln Lab [Lippmann et al. 2000]. The
objective of this study was to survey and evaluate the state of the art in
intrusion detection research. A standard set of extensively gathered audit
data, which includes a wide variety of intrusions simulated in a military
network environment, was provided by DARPA. Each participating site
was required to build intrusion detection models or tweak their existing
system parameters using the training data, and send the results (i.e.,
detected intrusions on the test data) back to DARPA for performance
evaluation. We report our experience here.

5.1.1 The DARPA Data. We were provided with about 4 gigabytes of
compressed tcpdump data of 7 weeks of network traffic. This data can be
processed into about 5 million connection records of about 100 bytes each.
The data contains the content (i.e., the data portion) of every packet
transmitted between hosts inside and outside a simulated military base.
BSM audit data from one UNIX Solaris host for some network sessions
were also provided.

The data contains four main categories of attacks:

—DoS, for example, Ping-of-Death, Teardrop, smurf, SYN flood, and so on;

—R2L, unauthorized access from a remote machine, for example, guessing
password;

—U2R, unauthorized access to local superuser privileges by a local unpriv-
ileged user, for example, various buffer overflow attacks; and

—PROBING, surveillance and probing, for example, Port-Scan, Ping-
Sweep, and the like.

In addition, there were anomalous user behaviors such as “a manager
becomes (i.e., behaves like) a system administrator.”

5.1.2 Data Preprocessing. We used Bro as the packet filtering and
reassembling engine. We extended Bro to handle ICMP packets, and made
changes to its packet fragment inspection modules since it crashed when
processing data that contains Teardrop or Ping-of-Death attacks.

We used a Bro “connection finished” event handler to output a summa-
rized record for each connection. Each connection record included a set of
“intrinsic” features shown in Table VII.

5.1.3 Misuse Detection. The training data from DARPA includes “list
files” that identify the timestamp, source host and port, destination host
and port, and the name of each attack. We used this information to select
intrusion data to perform pattern mining and feature construction, and to

Framework for Constructing Features and Models • 241

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

label each connection record with “normal” or an attack type to create
training data for building classification models.

Since the amount of audit data is huge, for example, some days have
several millions of connection records due to some nasty DoS attacks, we
did not aggregate all the connection records into a single training data set.
Instead, we extracted all the connection records that fell within a surround-
ing time window of plus and minus 5 minutes of the whole duration of each
attack to create a data set for each attack type. We also extracted
sequences of normal connection records to create the normal data set that
has the same distribution as the original data set.

5.1.4 Manual and Automatic Feature Construction. Following the fea-
ture construction approach described in Section 4, for each attack type
(e.g., SYN flood, Port-Scan, etc.) we performed pattern mining and compar-
ison using its intrusion data set and the normal data set. We constructed
features according to the top 20% intrusion-only patterns of each attack
type. Here we summarize the temporal and statistical features automati-
cally constructed by our system:

—the “same host” features that examines only the connections in the past 2
seconds that have the same destination host as the current connection:
—the count of such connections, the percentage of connections that have

the same service as the current one, the percentage of different
services, the percentage of SYN errors, and the percentage of REJ (i.e.,
rejected connection) errors;

—the “same service” features that examine only the connections in the past
2 seconds that have the same service as the current connection:
—the count of such connections, the percentage of different destination

hosts, the percentage of SYN errors, and the percentage of REJ errors.

We call these the “time-based traffic” features for connection records.
They are summarized in Table VIII.

There are several “slow” PROBING attacks that scan the hosts (or ports)
using a much larger time interval than 2 seconds, for example, one in every
minute or even one in every (few) hour(s). As a result, these attacks did not

Table VII. Intrinsic Features of Network Connection Records

Feature Description Value Type

duration Length (number of seconds) of the connection Continuous
protocol_type Type of the protocol, e.g., TCP, UDP, etc. Discrete
service Network service on the destination, e.g., http, telnet, etc. Discrete
src_bytes Number of data bytes from source to destination Continuous
dst_bytes Number of data bytes from destination to source Continuous
flag Normal or error status of the connection Discrete
land 1 - connection is from/to the same host/port; 0 - otherwise Discrete
wrong_fragment Number of “wrong” fragments Continuous
urgent Number of urgent packets Continuous

242 • W. Lee and S. J. Stolfo

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

produce intrusion-only patterns with the time window of 2 seconds. We
sorted the connection records by the destination hosts, and applied the
same pattern mining and feature construction process. Instead of using a
time window of 2 seconds, we now used a “connection” window of 100
connections, and constructed a mirror set of “host-based traffic” features as
the time-based traffic features.

We discovered that unlike most of the DoS and PROBING attacks, the
R2L and U2R attacks don’t have any intrusion-only frequent patterns. This
is because most of the DoS and PROBING attacks involve sending a lot of
connections to some host(s) in a very short period of time, and therefore can
have frequent sequential patterns that are different from the normal
traffic. The R2L and U2R attacks are embedded in the data portions of the
packets and normally involve only a single connection. Therefore, it is
unlikely that they can have any unique frequent traffic patterns. In other
words, our automatic feature construction process, which is based on
frequent patterns of connection records, would fail to produce any features
for these attacks.

After studying the outcome of this mining process, we focused our
attention on the content of the connections. Ideally, we should apply data
mining programs to compute patterns from the connection content data and
construct appropriate features for R2L and U2R attacks. However, our
current data mining algorithms cannot deal with unstructured data con-
tents of IP packets. We instead relied on domain knowledge to define
suitable features for R2L and U2R attacks. In the Bro event handlers, we
added functions that inspect data exchanges of interactive TCP connections
(e.g., telnet, ftp, smtp, etc.). These functions assign values to a set of
“content” features to indicate whether the data contents suggest suspicious
behavior. These features are: number of failed logins, successfully logged in
or not, whether logged in as root, whether a root shell is obtained, whether
a su command is attempted and succeeded, number of access to access
control files (e.g., “/etc/passwd”, “.rhosts”, etc.), number of compromised
states on the destination host (e.g., file/path “not found” errors, and “Jump

Table VIII. Traffic Features of Network Connection Records

Feature Description Value Type

count Number of connections to the same host as the current
connection in the past 2 seconds

Continuous

the following features refer to these same-host connections
serror_% % of connections that have “SYN” errors Continuous
rerror_% % of connections that have “REJ” errors Continuous
same_srv_% % of connections to the same service Continuous
diff_srv_% % of connections to different services Continuous
srv_count Number of connections to the same service as the

current connection in the past 2 seconds
Continuous

the following features refer to these same-service connections
srv_serror_% % of connections that have “SYN” errors Continuous
srv_rerror_% % of connections that have “REJ” errors Continuous
srv_diff_host_% % of connections to different hosts Continuous

Framework for Constructing Features and Models • 243

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

to” instructions, etc.), number of hot indicators, (e.g., access to system
directories, creation and execution of programs, etc.), and number of
outbound connections during a ftp session. These features are summarized
in Table IX. Our approach here is to include an extensive set of indicators,
and then let classification programs decide, from the vast amount of audit
data, which minimal set of discriminating features should actually be used
to identify intrusions.

5.1.5 Detection Models. It is evident from the feature construction pro-
cess that different categories of intrusions require different sets of con-
structed features for detection purposes. We therefore built classification
models using different feature sets:

—The “time-based traffic” model: each connection record contains the
“intrinsic” and the “time-based traffic” features. Table X shows some
example labeled connection records. The resultant RIPPER classifier
detects the DoS and PROBING attacks. Table XI shows some example
RIPPER rules.

—The “host-based traffic” model: each connection record contains the
“intrinsic” and the “host-based traffic” features. The resultant RIPPER
classifiers detect the slow PROBING attacks.

Table IX. Content Features of Network Connection Records

Feature Description Value Type

hot Number of “hot indicators” Continuous
failed_logins Number of failed login attempts Continuous
logged_in 1 - successfully logged in; 0 - otherwise Discrete
compromised Number of “compromised” conditions Continuous
root_shell 1 - root shell is obtained; 0 - otherwise Discrete
su 1 - “su root” command attempted; 0 - otherwise Discrete
file_creations Number file creation operations Continuous
shells Number of shell prompts Continuous
access_files Number of write, delete, and create operations on access

control files
Continuous

outbound_cmds Number of outbound commands in a ftp session Continuous
hot_login 1 - the login belongs to the “hot” list (e.g., root, adm, etc.);

0 - otherwise
Discrete

guest_login 1 - the login is a “guest” login (e.g., guest, anonymous,
etc.); 0 - otherwise

Discrete

Table X. Example “Traffic” Connection Records

Label Service Flag Count srv_count rerror_% diff_srv_% ...

normal ecr_i SF 1 1 0 1 ...
smurf ecr_i SF 350 350 0 0 ...
satan user-level REJ 231 1 85% 89% ...

normal http SF 1 0 0 1 ...
...

244 • W. Lee and S. J. Stolfo

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

—The “content” model: each connection record contains the “intrinsic” and
the “content” features. Table XII shows some example labeled connection
records. The resultant RIPPER classifier detects the R2L and U2R
attacks. Table XIII shows some example RIPPER rules.

These classification models each specializes in a certain type of intrusion.
We then constructed a meta-level classifier to combine these detection
models. Each meta-level training record consists of four features: the three
predictions — each from one of the base models — plus the true class label
(i.e., “normal” or an attack type). RIPPER was then applied to learn the
rules that combine the evidence from the “time-based traffic,”,“host-based
traffic,”and “content” classifiers to make a (final) prediction on a connec-
tion. The resulting meta-level rules basically use the predictions from the
“content” model to detect R2L and U2R attacks, and the combination of
“time-based traffic” and “host-based traffic” models to detect the DoS and
(fast and slow) PROBING attacks. That is, the meta-classifier predicts a
connection as an attack of R2L or U2R whenever the “content” model does
so; and an attack of DoS or PROBING whenever the “time-based traffic”
model does so, or whenever the “time-based traffic” model predicts “normal”
but the “host-based traffic” model predicts a PROBING attack.

Table XIV summarizes the complexity of the base models in terms of the
number of features in a connection record, the number of RIPPER rules

Table XI. Example RIPPER Rules for DoS and PROBING Attacks

RIPPER Rule Meaning

smurf:- count $ 5, srv_count
$ 5, service 5 ecr_i.

If the service is ICMP echo request, and for the past 2 seconds,
the number of connections that have the same destination host
as the current one is at least 5, and the number of connections
that have the same service as the current one is at least 5,
then this is a smurf attack (a DoS attack).

satan:- rerror_% $ 83%,
diff_srv_% $ 87%.

If for the connections in the past 2 seconds that have the
same destination host as the current connection, the
percentage of rejected connections is at least 83%, and the
percentage of different services is at least 87%, then this is a
satan attack (a PROBING attack).

Table XII. Example TCP Connection Records

label service flag hot failed_logins compromised root_shell su ...

normal ftp SF 0 0 0 0 0 ...
normal telnet SF 0 0 0 3 1 ...
guess telnet SF 0 6 0 0 0 ...

normal telnet SF 0 0 0 0 0 ...
overflow telnet SF 3 0 2 1 0 ...
normal rlogin SF 0 0 0 0 0 ...
guess telnet SF 0 5 0 0 0 ...

overflow telnet SF 3 0 2 1 0 ...
normal telnet SF 0 0 0 0 0 ...

...

Framework for Constructing Features and Models • 245

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

produced, and the number of distinct features actually used in the rules.
The numbers in bold, for example, 9, indicate the number of automatically
constructed temporal and statistical features being used in the RIPPER
rules. We see that, for both the “traffic” and “host-based traffic” models, our
feature construction process contributed the majority of the features. We
should point out that not all features in the connection records were
selected by RIPPER. This is because RIPPER, like most classification
algorithms, has a built-in “feature selection” process to select the most
discriminating and generalizable features according to their statistical
significance, that is, information gain, and performance on a hold-out test
dataset that simulates the “unseen/future” data. Because of the large
amount of audit data, a human expert is not able to manually gather and
test various statistics, and thus tends to do a poor job in selecting the
features. As a result, hand-crafted “signature” rules tend to be very specific
to a small intrusion data set. Alternative classification algorithms that
compute underlying probability distributions may indeed require all fea-
tures be evaluated in their resultant models. A crucial issue here is the
tradeoff between model accuracy and model cost. The RIPPER output
indicates that some features are irrelevant and hence we need not compute
these at run-time, thus reducing the cost of detection. This is the subject
matter of our ongoing research.

5.1.6 Results. We report the performance of our detection models as
evaluated by MIT Lincoln Lab. We trained our intrusion detection models
(i.e., the base models and the meta-level classifier) using the 7 weeks of
labeled data, and used them to make predictions on the 2 weeks of
unlabeled test data (i.e., we were not told which connection was an attack).
The test data contained a total of 38 attack types, with 14 types in test data
only (i.e., our models were not trained with instances of these attack types;
hence, these were considered as “new” attack types).

Table XIII. Example RIPPER Rules for R2L and U2R Attacks

RIPPER Rule Meaning

guess:- failed_logins $ 4. If number of failed logins is at least 4, then this telnet
connection is “guess”, a guessing password attack.

overflow:- hot $ 3,
compromised $ 2,
root_shell 5 1.

If the number of hot indicators is at least 3, the number of
compromised conditions is at least 2, and a root shell is
obtained, then this telnet connection is a buffer overflow attack.

.
normal:- true. If none of the above, then this connection is “normal”.

Table XIV. Model Complexities

Model #of Features in Records #of Rules #of Features Used in Rules

content 22 55 11
traffic 20 26 419

host traffic 14 8 115

246 • W. Lee and S. J. Stolfo

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

Figure 2 shows the ROC curves of the detection models by attack
categories as well as on all intrusions. In each of these ROC plots, the
x-axis is the false alarm rate, calculated as the percentage of normal
connections classified as an intrusion; the y-axis is the detection rate,
calculated as the percentage of intrusions detected. A data point in the
upper left corner corresponds to optimal performance, that is, high detec-
tion rate with low false alarm rate. We compare here our models with other
participants (denoted as Groups 1 through 3) in the DARPA evaluation
program (see the report by Lippmann et. al. [2000]).

Although our models were intended for misuse detection, we had hoped
that the features we constructed would be general enough that the models
detect new variations of the known intrusions. Table XV compares the
detection rates of old intrusions and new intrusions. Here, new intrusions
refer to those that did not have corresponding instances in the training
data. We see that our models were able to detect a large percentage of new
PROBING and U2R attacks, but were not as effective for new DoS and R2L
attacks.

0

10

20

30

40

50

60

70

0 0.05 0.1 0.15 0.2

D
et

ec
tio

n
R

at
e

False Alarm Rate

Columbia
Group1
Group2
Group3

0

10

20

30

40

50

60

70

80

90

100

0 0.05 0.1 0.15 0.2

D
et

ec
tio

n
R

at
e

False Alarm Rate

Columbia
Group1
Group2
Group3

0

10

20

30

40

50

60

70

80

0 0.05 0.1 0.15 0.2

D
et

ec
tio

n
R

at
e

False Alarm Rate

Columbia U2R
Group3 U2R

Group3 R2L
Group1 R2L

Columbia R2L

0

10

20

30

40

50

60

70

0 0.05 0.1 0.15 0.2

D
et

ec
tio

n
R

at
e

False Alarm Rate

Columbia
Group1
Group3

(a) DoS (b) PROBING

(c) U2R and R2L (d) Overall

Fig. 2. Performance of tcpdump misuse detection models: ROC curves on detection rates and
false alarm rates.

Framework for Constructing Features and Models • 247

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

5.1.7 Discussion. PROBING attacks have relatively limited variance
because they all involve making connections to a large number of hosts or
ports in a given timeframe. Likewise, the outcome of all U2R attacks is that
a root shell is obtained without legitimate means (e.g., login as root, su to
root, etc.). Thus, for these two categories of attacks, given some represen-
tative instances in the training data, our data mining system was able to
construct features that captured their general behavior patterns. As a
result, our detection models can detect a high percentage of old and new
PROBING and U2R attacks. On the other hand, DoS and R2L have a wide
variety of behavior because they exploit the weaknesses of a large number
of different network or system services. The features constructed based on
the available attack instances were very specialized to the known attack
types. Our detection models therefore missed a large number of new DoS
and R2L attacks.

The results here are not entirely surprising since our models are misuse
detection models. We need to use anomaly detection models on network
traffic or system programs to guard against new and diversified attacks.
Anomaly detection is much more challenging than misuse detection. For
example, we need to first decide whether we should build a normal profile
for each network service or group of services, and for each host or group of
hosts. The feature construction process will likely be more complex since
unlike a relatively small number of intrusion-only patterns, normal net-
work traffic can have a large number of variations. Network anomaly
detection is an important problem and an active area of research that we
are pursuing.

5.1.8 User Anomaly Detection. Thus far we have discussed only the
detection of attacks from outside the network. “Insiders” misusing their
privileges can also seriously compromise security. These insider attacks are
hard to detect because the insiders don’t need to break in. The goal of user
anomaly detection is to determine whether the behavior of a user is normal
(i.e., legitimate).

It is often very difficult to classify a single event by a user as normal or
abnormal because of the unpredictable nature of most people. A user’s
actions during a login session needs to be studied as a whole to determine
whether he or she is behaving normally. We used Bro event handlers to
examine the telnet sessions, and extract the shell commands of the users.
We further preprocessed the shell commands by replacing timestamps with

Table XV. Comparing Detection Rates (in %) on Old and New Attacks

Category Old New

DoS 79.9 24.3
PROBING 97.0 96.7

U2R 75.0 81.8
R2L 60.0 5.9

Overall 80.2 37.7

248 • W. Lee and S. J. Stolfo

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

am, pm, and nt (for night), eliminated the input (i.e., contents) of edit and
sendmail commands, and kept only the filename extensions. Table III
shows examples of the processed command data. These shell command
records were used for user anomaly detection.

Our initial exploratory approach was to mine the frequent patterns from
the command data, and merge or add the patterns into an aggregate set to
form the normal usage profile of a user. A new pattern can be merged with
an old pattern if they have the same left- and right-hand sides, their
support values are within 5% of each other, and their confidence values are
also within 5% of each other.

To analyze a user login session, we mine the frequent patterns from the
sequence of commands during this session. This new pattern set is com-
pared with the profile pattern set and a similarity score is assigned.
Assume that the new set has n patterns and among them, there are m
patterns that have “matches” (i.e., rules that they can be merged with) in
the profile pattern set; then the similarity score is simply m / n. Obviously,
a higher similarity score means a higher likelihood that the user’s behavior
agrees with his or her historical profile.

The DARPA data also included user anomaly data to evaluate anomaly
detection systems. Table XVI describes the consistent behavior of the six
users for anomaly analysis. Note that since we were the only group that
performed anomaly detection on the test data, Lincoln Lab did not evaluate
our results. We report our experiments on the training data here.

We applied our frequent episode algorithms to the command data from
each login session of the same user, with command as the axis feature and
w 5 5 (i.e., we looked for patterns within the range of five consecutive
commands), to mine the frequent sequential patterns on the associations
among user commands, their arguments, time segments, and hosts. We
used the first 4 weeks as a data-gathering period, during which we simply
merged the patterns into each user’s profiles. Each user has three profiles
— one for the activities of each time segment, am, pm, and nt. We used the
fifth week as the training period, during which we compared the patterns
from each session to the profile of the time segment. We recorded the
normal range of the similarity scores during this week. The data in the
sixth week had some user anomalies, as described in Table XVII. For each
of the anomalous sessions, we compared its patterns against the original

Table XVI. User Descriptions

User Normal Activities

sysadm Logs in as root, cats the password file, and runs commands such as top.
programmer1 Writes public domain C code, uses a vi editor, compiles the C code, reads

and sends mail,and executes UNIX commands.
programmer2 A similar user profile, but works in afternoons and evenings.
secretary Edits Latex files, runs Latex, reads and sends mail.
manager1 Reads and sends mail.
manager2 Reads mail.

Framework for Constructing Features and Models • 249

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

user’s profile, and then compared the resulting similarity score against the
recorded normal range of the same time segment. In Table XVIII, the
column labeled “Normal” is the range of similarity of each user against his
or her own profile as recorded during the fifth week. A ` here means that
the user did not login during the time segment in the fifth week. The
column “Anomaly” is the similarity measure of the anomalous session
described in Table XVII. We see that all anomalous sessions can be clearly
detected since their similarity scores are much smaller than the normal
range. For example, the row in bold in Table XVIII shows that, when the
sysadm becomes programmer, his/her patterns have 0 matches with the
sysadm’s profile; while, for the whole fifth week, the pm similarity scores
are in the range of 0.64 to 0.95.

Once user abnormal behavior is observed, we need to investigate the
nature of the anomaly. We report our experiments on finding out how “user
job functions” are violated. The problem can be stated as follows: Assume
that there are n possible groups of users according to their job functions.
When a user in group i does not behave according to the group profile (i.e.,
the normal job functions), we want to identify which group (e.g., group j)
the user has become. That is, we want to know what “illegal” job functions
the user has performed.

In our experiments, we first built group profiles for the p group (the
programmers), the s group (the secretary), the m (the managers), and the
sa group (the sysadm). From the data of the first 4 weeks, the patterns of
all the users of a group were aggregated to form the group profile. The data
of the fifth week was used to establish the range of similarity measures for
all the users of each group. The user anomalies described in Table XVII
include “illegal job function” cases during the sixth week: programmer1
becomes a secretary, secretary becomes a manager, and sysadm becomes a
programmer. Table XIX compares the similarity measure of each user in an
anomalous session with his/her normal similarity range gathered for the
same time segment. From the normal similarity measures of each user with
respect to the four groups, we can see that each user indeed has the largest
similarity measure with his/her own group. From the similarity measures
of the user anomalies, as the bold entries in Table XIX show, for each

Table XVII. User Anomaly Description

User Anomaly Description

programmer2 Logs in from beta
secretary Logs in at night
sysadm Logs in from jupiter
programmer1 Becomes a secretary
secretary Becomes a manager
programmer1 Logs in at night
sysadm Becomes a programmer
manager1 Becomes a sysadm
manager2 Logs in from pluto

250 • W. Lee and S. J. Stolfo

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

“illegal job function” case, the similarity measure of the targeted group is
the largest. For example, when sysadm becomes a programmer, the simi-
larity measure with the p group, 0.24, is the largest, and the similarity
measure with the sa group is outside the normal range.

In summary, although formal evaluation statistics are not available to
determine the error rates of our approach in user anomaly detection, the
initial results are encouraging. We believe that our approach is worthy of
future study.

5.2 Experiments on BSM Data

The DARPA data also contains Solaris BSM (Basic Security Module)
[SunSoft 1995] audit data for a designated host, pascal. In this section, we
describe our experiments in building host-based intrusion detection models
using BSM data. The purpose of these experiments was to show that our
algorithms for pattern mining and feature construction are not specific to a
particular audit data source, for example, tcpdump. We also wanted to
investigate whether combining models from tcpdump and BSM can result
in better detection performance.

When BSM is enabled in a host machine, there exists an audit trail for
the host. An audit trail is a time-ordered sequence of actions that are

Table XVIII. Similarity Against User’s Own Profile: in Normal Use and in the Anomaly
Described in Table XVII

User Normal Anomaly

programmer2 (0.58, 0.79) 0.00
secretary (`, `) 0.00
sysadm (0.84, 0.95) 0.00
programmer1 (0.31, 1.00) 0.04
secretary (0.41, 0.98) 0.17
programmer1 (`, `) 0.00
sysadm (0.64, 0.95) 0.00
manager1 (0.57, 1.00) 0.00
manager2 (1.00, 1.00) 0.00

Table XIX. Similarity Against Group Profiles: in Normal Use and in the Anomaly
Described in Table XVII

Normal Anomaly

User P S M SA P S M SA

p2 (0.33, 0.71) (0.04, 0.11) (0.00, 0.03) (0.00, 0.07) 0.00 0.00 0.00 0.00
s (`, `) (`, `) (`, `) (`, `) 0.04 0.00 0.00 0.00

sa (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.51, 0.81) 0.00 0.00 0.00 0.00
p1 (0.12, 0.57) (0.06, 0.09) (0.00, 0.00) (0.04, 0.14) 0.04 0.11 0.00 0.00
s (0.02, 0.18) (0.08, 0.73) (0.00, 0.00) (0.00, 0.00) 0.17 0.00 0.50 0.00

p1 (`, `) (`, `) (`, `) (`, `) 0.27 0.00 0.00 0.00
sa (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.51, 0.81) 0.24 0.03 0.00 0.00
m1 (0.14, 0.17) (0.00, 0.00) (0.29, 1.00) (0.00, 0.00) 0.02 0.00 0.00 0.61
m2 (0.50, 1.00) (0.00, 0.00) (1.00, 1.00) (0.00, 0.00) 0.00 0.00 0.00 0.00

Framework for Constructing Features and Models • 251

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

audited on the system, and consists of one or more audit files. Each audit
record in an audit file describes a single audit event, which can be a kernel
event (i.e., a system call) or a user-level event (i.e., a system program, such
as inetd, in.rshd, etc. invocation).

We define audit session here as the collection of all audit events of an
“incoming” or “outgoing” session on the host. Examples of these host
sessions include login (e.g., terminal login, telnet login, rlogin, etc.), rsh,
ftp, sendmail, and so on. It is easy to see that each host session often
corresponds to a network connection. We can therefore correlate the
predictions on host sessions by a host-based intrusion detection model with
the predictions on the corresponding connections by a network intrusion
detection model, to yield a higher accuracy.

As in the case of building network intrusion detection models, we also
need to first perform a sequence of data preprocessing tasks on the raw
BSM data. We extended the preprocessor component of USTAT [Ilgun
1992] to process the binary BSM data into ASCII event data. Table XX
shows examples of the event records. Here a “?” means the value is not
given in the original BSM audit record. Each event record contains a
number of basic features, defined in Table XXI.

We developed a program to process the event data into session records. A
brief description of the procedure is the following:

—Watch for the beginning of a session, which is the execution of
—the inetd_connect event (for telnet, rlogin, rsh, etc.), or
—the execve event on a system program in.fingerd (for incoming finger

request) or finger (outgoing), mail.local (incoming) or sendmail (outgo-
ing), ftpd (incoming) or ftp (outgoing), and so on.

—Record the setaudit event, which assigns the auid (audit user id) and sid
(audit session id) of a session.

—Examine all audit records that share the same combination of auid and
sid to summarize a number of session features, which are described in
Section 5.2.1.

—Record the termination of a session.

Table XX. Example BSM Event Records

Time auid sid event pid obname ... ruid euid

08:05:22 0 0 inetd_connect 0 ? ... 0 0
...

08:05:22 -2 0 execve 415 /usr/sbin/in.telnetd ... 0 0
...

08:05:31 2104 417 setaudit 417 ? ... 0 0
...

08:05:31 2104 417 chdir 418 /home/tristank ... 2104 2104
...

252 • W. Lee and S. J. Stolfo

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

The DARPA BSM data contains for each day about 500 sessions on host
pascal. The vast majority of the intrusions in the BSM data are U2R buffer
overflow attacks.

5.2.1 Defining Session Features. We experimented with feature con-
struction for session records. We first computed frequent patterns from the
event records. Here each dataset prepared for pattern mining contains all
event records of a session that have positive auid and sid values. That is,
we are only interested in events that are “accountable” to the users.

Since we are looking for general rather than session-specific event
patterns, we first removed auid and sid from the datasets. We also replaced
ruid and euid with a flag same_reid to indicate whether ruid agrees with
euid. We designated event as the axis attribute since it is obviously the
most essential attribute in describing event data.

After the initial few rounds of experiments, we discovered that the
patterns are all related to very specific obname or event values. There are
many kernel events (system calls) that cannot be directly linked to user-
level commands. We reasoned that for intrusion detection purposes, we
only needed to analyze user-level commands and their operations on the
file system. We therefore only kept the following types of event records:
read, write, create, delete, execute, change owner or permission, rename,
and link. The event value of each event record was replaced by the
appropriate type name; for example, open_r is replaced by read. We only

Table XXI. Features of BSM Event Records

Feature Description Value Type

time Timestamp of the event Discrete
auid Audit user id, inherited by all child processes started by the

user’s initial process of a session
Discrete

sid Audit session id, assigned for each login session and
inherited by all descendant processes

Discrete

event Audit event name Discrete
pid Process id of the event Discrete
obname The name of the object, i.e., full path of the file on which

the event operates
Discrete

arg1 - arg4 Arguments of the system call Discrete
text Short information of the event, e.g., “successful login” Discrete
error_status Error status of the event Discrete
return_value Return value of a system call event Discrete
tmid Terminal id (port and ip address) of the event Discrete
ip header The source and destination ip addresses and ports for the

network connection handled by the event
Discrete

socket The local and remote ip addresses and ports of the socket
used by the event

Discrete

ruid The real user id of the event Discrete
rgid The real group id of the event Discrete
euid The effective user id of the event Discrete
egid The effective group id of the event Discrete

Framework for Constructing Features and Models • 253

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

kept the original obname if the event was execute; otherwise, we used
“user” to replace all obname values that indicated files in the user’s
directories, and “system” to replace the obname values that indicated files
in the system’s directories. We also removed all event records that had “?”
(i.e., missing) obname values.

We aggregated event patterns of all normal sessions into a normal
pattern set. And for each U2R session, we mined its event patterns and
compared them with the normal patterns. We used the top 20% of intru-
sion-only patterns for each U2R attack, for example,

(event 5 execute, obname 5 /home/tristank/ffbexploit, same_reid51),
(event 5 execute, obname 5 /usr/sbin/ffbconfig, same_reid 5 0) 3
(event 5 execute, obname 5 /usr/bin/ksh, same_reid 5 0)

and

(event 5 execute, obname 5 /usr/bin/pwd, same_reid 5 0) 3
(event 5 read, obname 5 home, same_reid 5 0).

These patterns are very “unique” because in the normal pattern set,
patterns with same_reid 5 0 are those related to read operations only, for
example,

(event 5 read, obname 5 system, same_reid 5 0),
(event 5 read, obname 5 system, same_reid 5 0) 3
(event 5 read, obname 5 system, same_reid 5 0

and

(event 5 read, obname 5 home, same_reid 5 0) 3
(event 5 execute, obname 5 /usr/bin/cat, same_reid 5 1).

We could have used a mechanical (i.e., automatic) pattern parsing and
feature construction procedure for the intrusion-only patterns of the above
forms. For example, we could have added features to record the executions
of the relevant specific events as described by the patterns. However, we
very quickly realized that many U2R buffer overflow attacks share the
same characteristics in their intrusion-only patterns. For example, another
attack has the following intrusion-only pattern:

(event 5 execute, obname 5 /home/tristank/formatexploit, same_reid 5 1),
(event 5 execute, obname 5 /usr/bin/fdformat, same_reid 5 0) 3
(event 5 execute, obname 5 /usr/bin/ksh, same_reid 5 0).

These buffer overflow patterns indicate that there is an execution of a
user program, follow by a SUID (setuid) system utility, and finally a shell
in SIUD state (i.e., a root shell with effective user ID as root and different
from the real user ID). We need to construct features that capture the
general behavior of the attack method and the final outcome, rather than
the specific system utilities being exploited. However, since the event data
contains very low-level and specific information of the operating system, we
need to use domain knowledge to interpret the patterns to construct the
more abstract and general features. Although our experiments here showed
the limitations of fully automatic feature construction when dealing with

254 • W. Lee and S. J. Stolfo

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

low-level event data, we believe that the intrusion-only patterns resulted
from pattern mining and comparison can still provide a very helpful
starting point for the manual feature definition process.

We defined a set of features, described in Table XXII, for the BSM session
records. Some of the features (i.e., those in bold) are from the buffer
overflow patterns, while others are similar to the “content” features de-
scribed in Section 5.1.3.

5.2.2 Misuse Detection Models on BSM Data. We labeled each BSM
session record as “normal” or an intrusion name using the DARPA-supplied
list files. BSM session records from all 7 weeks were aggregated into a
single dataset for training a misuse detection model. Table XXIII shows
some examples of the labeled BSM session records.

RIPPER was applied to the dataset to learn a set of classification rules.
Table XXIV shows some examples of these detection rules.

We evaluated the performance of the rule set on the test data using the
list files provided by DARPA (available after completion of the official
evaluation). Figure 3 shows the ROC curves of the detection models on
BSM data. Here Figure 3(a) compares our model with other participants in

Table XXII. Features of BSM Session Records

Feature Description Value Type

duration Length (number of seconds) of the session Continuous
service Operating system or network service, e.g., telnet,

responsible for this session
Discrete

logged_in Whether the user successfully logged in (when using
telnet, rsh , etc).

Discrete

failed_logins Number of failed login attempts Continuous
process_count Number of processes in the session Continuous
suid_sh Whether a shell is executed in suid state Discrete
suid_p Whether a suid system program is executed Discrete
user_p Whether a user program is executed Discrete
su_attempted Whether a su command is issued Discrete
access_files Number of write, delete, and create operations on

access control files
Continuous

file_creations Number of file creations Continuous
hot_login Whether the login belongs to the “hot” list Discrete
guest_login Whether the login belongs to the “guest” list Discrete

Table XXIII. Example BSM Session Records

label service suid_sh suid_p user_p file_creations ...

normal smtp 0 0 0 0 ...
normal telnet 0 1 1 3 ...
normal telnet 0 1 0 0 ...

buffer_overflow telnet 1 1 1 2 ...
normal ftp 0 0 0 0 ...

wraz_master ftp 0 0 0 42 ...
...

Framework for Constructing Features and Models • 255

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

the DARPA Evaluation, in terms of performance in detecting the U2R
attacks (DARPA only evaluated performance on U2R). Figure 3(b) shows
the performance of our model in detecting DoS, R2L, and PROBING
attacks, as well as the overall performance (when all attacks are consid-
ered).

The BSM model here may seem to have slightly better performance than
the tcpdump models reported in Section 5.1.5. However, the tcpdump
models were computed using the tcpdump data of the entire network while
the BSM model was constructed using the BSM data, which is available
from only one host and contains many fewer attacks and normal sessions.
We should note that the BSM model, like the tcpdump models, has good
performance in detecting PROBING, U2R, and DoS attacks, but very poor
performance in detecting R2L attacks. In fact, when we compared the
predictions made by the BSM model and the tcpdump models, we found
that they simply agree with each other’s predictions on the pairs of
corresponding host session and network connection. That is, the BSM
misuse detection model, as we have constructed, provides no additional
predictive power. This is because:

—by the nature of misuse detection, a truly innovative intrusion, such as
one that uses a service that was not modeled, can go undetected, no
matter what audit data source is used for analysis; and

Table XXIV. Example RIPPER Rules for BSM Session Records Shown in Table XXIII

RIPPER Rule Meaning

buffer_overflow:- suid_sh 5 1 If a shell is executed in the SUID state, then this is a buffer
overflow attack.

wraz_master:- file_creations
$ 40, service 5 ftp,
guest_login 5 1

If the service is ftp, the user logs in as a guest (anonymous),
and the number of file creation operations is at least 40, then
this is a wraz attack (in which the attacker logs to anonymous
FTP site, creates a hidden directory, and uploads a lot of files,
often pirated copies of software, for others to download).

0

20

40

60

80

100

0 2 4 6 8 10

D
et

ec
tio

n
R

at
e

False Alarm Rate

Columbia
Group1
Group2
Group3
Group4

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

D
et

ec
tio

n
R

at
e

False Alarm Rate

Columbia R2L
Columbia DOS

Columbia Probe
Columbia Overall

(a) U2R (b) DoS, R2L, PROBING, and overall

Fig. 3. Performance of BSM misuse detection models: ROC curves on detection rates and
false alarm rates.

256 • W. Lee and S. J. Stolfo

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

—the features used in the BSM model and the tcpdump models are very
similar; that is, the models are looking for similar sets of evidence,
although in different data sources.

Although this seems discouraging if we have hoped for an accuracy
improvement by combining the two models, this is in fact encouraging if
our goal is to combine a lightweight tcpdump model that only checked the
IP headers with a number of host-based models that monitor the operating
system activities. Our experiments in meta-learning, where a combined
model was computed based on a model for tcpdump header-only connection
data and a model for BSM host session data, indeed showed that the same
level of accuracy was maintained as using a heavyweight tcpdump model
that also checked the IP data contents.

6. CONVERTING LEARNED MODELS TO REAL-TIME IDS MODULES

Effective intrusion detection should be in real-time to minimize security
compromises. We therefore need to study how our models, produced off-line
by MADAM ID, can be converted to modules of real-time IDSs, and how
they perform in a real-time environment. We are developing a system for
translating RIPPER rules into real-time detection modules of NFR (Net-
work Flight Recorder), a system that includes a packet capturing engine
and N-code programming support for specifying packet “filtering” logic.

NFR offers a fairly simple framework for network monitoring. It sniffs
packets from the network, reassembles them, and then passes them to
filter functions for further processing, for example, calculating network
traffic statistics. Filter functions are written in N-code, a preemptive,
event-driven scripting language that supports a wide range of operations
on network packet data. In order to use NFR for network intrusion
detection, one needs to implement an extensive set of N-code filters that
look for evidence in the network packets.

We seek a mechanical means of converting our off-line detection models
into real-time modules. Our approach is to first implement all the required
features used in the RIPPER ruleset as N-code “feature filters,” and then
implement a translator that can automatically convert each RIPPER rule
into an N-code “rule filter.” For example, a detection rule,

pod:- wrong_fragment .5 1, protocol_type 5 icmp.

can be automatically converted into the N-code:
filter pod () {

if (wrong_fragment() . 1 && protocol_type () 55 icmp)
alarm (“ping_of_death”);

}

as long as the features (i.e., wrong_fragment and protocol_type) have been
implemented as N-code filter functions in NFR.

The advantage of this approach is that when a real-time IDS such as
NFR is shipped with MADAM ID to a customer site, MADAM ID can
process the local audit data and compute the site-specific intrusion detection
rules, which are then automatically converted into N-code “rule filters.”

Framework for Constructing Features and Models • 257

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

Although often ignored in off-line analysis, efficiency is a very important
consideration in real-time intrusion detection. Specifically, in off-line anal-
ysis, it is implicitly assumed that all connections have already finished;
therefore, we have the luxury to compute all the features and check the
detection rules one by one. Whereas in real-time detection, we need to
detect and respond to an intrusion as soon as it happens, often during an
ongoing connection. We are therefore studying how to generate an efficient
real-time execution plan for a detection ruleset. In particular, we find that
many intrusions have cheap “necessary” conditions, which contain features
that are easy to compute and are available early in the connection. For
example, SYN flood has a necessary condition flag5S0; whereas its suffi-
cient condition includes checking the feature “for the connections to the
same destination host as the current connection in the past 2 seconds, the
percentage of those that have the S0 flag.” The necessary condition is
cheaper since the feature flag relies on only the information of the current
connection; whereas the feature for the sufficient condition is computed by
looking up a number of connection records. Note that a violation of the
necessary condition means that there is no need to check the sufficient
condition for the intrusion. For example, if flag is not S0, we know that the
connection can not be a SYN flood. Therefore, by checking the violations of
the cheap necessary conditions first and filtering out a large number of
unnecessary checking of ID rules, the overall execution time of the ruleset
can be reduced.

We have designed and implemented an algorithm for finding the neces-
sary conditions for intrusions, and are implementing the ruleset filtering
algorithm in NFR.

7. RELATED WORK

Network intrusion detection has been an ongoing research area [Mukherjee
et al. 1994]. More recent systems, for example, Bro [Paxson 1998], NFR
[Network Flight Recorder Inc. 1997], and EMERALD [Porras and Neu-
mann 1997] all made extensibility their primary design goals. Both Bro and
NFR provide high-level scripting languages for codifying the site-specific
intrusion detection rules, which are executed in run-time as event handlers
by the packet filtering and reassembly engines. Our research focuses on
developing methods for constructing intrusion detection models. Our
premise is to use robust IDSs such as Bro and NFR as the building blocks,
and provide a framework so that site-specific models can be computed and
installed automatically.

EMERALD provides an architecture to facilitate enterprise-wide deploy-
ment and configuration of intrusion detectors. The meta-learning mecha-
nism in our framework is designed to automate the process of learning a
“resolver,” which is needed to combine the alarms from the distributed
detectors to make a determination of the state of the (entire) network. The
meta-learning results reported in this article are preliminary. We will

258 • W. Lee and S. J. Stolfo

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

study how to incorporate network configuration information into the meta-
learning process.

There are several learning-based research efforts in intrusion detection.
Warrender et al. [1999] showed that a number of machine-learning ap-
proaches (e.g., rule induction, hidden Markov model, etc.) can be used to
learn concise and generalizable representation of the “self” identity of a
system program, which is the short sequences of run-time system calls
made by the program [Forrest et al. 1996]. These learned models were
shown to be able to accurately detect anomalies caused by exploits on the
system programs. Ghosh and Schwartzbard [1999] showed that, using
program activity data (e.g., system calls, arguments, return values, and
permissions, etc.) from BSM audit logs, Artificial Neural Networks can be
used to learn anomaly and misuse detection models for system programs.
Our research aims to develop algorithms and techniques that can be used
to build ID models for both networks and hosts. Towards this end, we
design the data mining algorithms to be independent of audit data sources.
We concentrate our effort on the feature construction process because we
believe this is the most critical step in the process of building ID models.

Lane and Brodley developed algorithms for analyzing user shell com-
mands and detecting anomalies [1999]. The basic idea is to first collapse
the multicolumn shell commands into a single stream of strings, and then
string matching techniques and consideration of “concept drift” are used to
build and update user profiles. We believe that our extended frequent
episodes algorithm is a superior approach because it considers both the
association among commands and arguments, and the frequent sequential
patterns of such associations.

8. CONCLUSIONS AND FUTURE DIRECTIONS

In this article, we outlined a data mining framework for constructing
intrusion detection models. The key idea is to first apply data mining
programs to audit data to compute frequent patterns, extract features, and
then use classification algorithms to compute detection models. To facili-
tate adaptability and extensibility, we proposed the use of meta-learning as
a means to construct a combined model that incorporates evidence from
multiple base models.

We extended the basic association rules and frequent episodes algorithms
to accommodate the special requirements in analyzing audit data. Our
experiments showed that the frequent patterns mined from audit data can
be used as reliable user anomaly detection models, and as guidelines for
selecting temporal statistical features to build effective classification mod-
els. Results from the 1998 DARPA Intrusion Detection Evaluation Program
showed that our detection models performed as well as the best systems
built using the manual knowledge engineering approaches.

Anomaly detection models are the only means to detect the truly “inno-
vative” intrusions. Therefore, for future work, we will develop algorithms
for learning network anomaly detection models.

Framework for Constructing Features and Models • 259

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

IDSs need to maximize user-defined security goals while minimizing
costs. This requires that ID models be sensitive to cost factors, that at the
minimum should include the development cost, the operational cost (i.e.,
the needed resources) the cost of damages of an intrusion, and the cost of
detecting and responding to a potential intrusion. For example, when the
response cost of an intrusion exceeds its damage cost, the ID models may
choose to ignore (i.e., not to respond to) the intrusion. It is particularly
important to direct the limited resources (i.e., the computing and human
resources) to detect and respond to the most damaging intrusions when the
adversaries are launching a large amount of automated attacks in an
attempt to overload the IDS. That is, we need ID models that can dynami-
cally determine what are the most cost-saving actions that should be taken.
We will extend our framework so that our algorithms can incorporate the
user-defined cost factors and policies to compute cost-sensitive ID models.

ACKNOWLEDGMENTS

We wish to thank our colleagues at Columbia University, Kui Mok, Chris
Park, Matt Miller, Wei Fan, and Andreas Prodromidis, for their help and
encouragement. We also wish to thank the anonymous reviewers for their
helpful comments.

REFERENCES

AGRAWAL, R., IMIELINSKI, T., AND SWAMI, A. 1993. Mining association rules between sets of
items in large databases. In Proceedings of the 1993 ACM SIGMOD International Confer-
ence on Management of Data (SIGMOD ’93, Washington, DC, May 26-28), P. Buneman and
S. Jajodia, Eds. ACM Press, New York, NY, 207–216.

ALLEN, J., CHRISTIE, A., FITHEN, W., MCHUGH, J., PICKEL, J., AND STONER, E. 2000. State of the
practice of intrusion detection technologies. CMU/SEI-99-TR-028,CMU/SEI. Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA.

ANDERSON, D., FRIVOLD, T., AND VALDES, A. 1995. Next-generation intrusion detection expert
system (NIDES): A summary. SRI-CSL-95-07 (May).

CHAN, P. K. AND STOLFO, S. J. 1993. Toward parallel and distributed learning by meta-
learning. In Proceedings of the AAAI Workshop on Knowledge Discovery in Databases.
227–240.

COHEN, W. W. 1995. Fast effective rule induction. In Proceedings of 12th International
Conference on Machine Learning (Lake Tahoe, CA). Morgan Kaufmann, San Mateo, CA.

FAYYAD, U., PIATETSKY-SHAPIRO, G., AND SMYTH, P. 1996. The KDD process of extracting useful
knowledge from volumes of data. Commun. ACM 39, 11, 27–34.

FORREST, S., HOFMEYR, S. A., SOMAYAJI, A., AND LONGSTAFF, T. A. 1996. A sense of self for Unix
processes. In Proceedings of the IEEE Symposium on Security and Privacy (Oakland, CA,
May). IEEE Press, Piscataway, NJ, 120–128.

GHOSH, A. K. AND SCHWARTZBARD, A. 1999. A study in using neural networks for anomaly and
misuse detection. In Proceedings of the 8th Security Symposium on USENIX (USENIX,
Aug.).

ILGUN, K. 1992. USTAT: A real-time intrusion detection system for Unix. Master’s Thesis.
University of California at Santa Barbara, Santa Barbara, CA.

ILGUN, K., KEMMERER, R. A., AND PORRAS, P. A. 1995. State transition analysis: A rule-based
intrusion detection approach. IEEE Trans. Softw. Eng. 21, 3 (Mar.), 181–199.

JACOBSON, V., LERES, C., AND MCCANNE, S. 1989. Tcpdump. available via anonymous ftp to
ftp.ee.lbl.gov.

260 • W. Lee and S. J. Stolfo

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

KO, C., FINK, G., AND LEVITT, K. 1994. Automated detection of vulnerabilities in privileged
programs by execution monitoring. In Proceedings of the 10th Conference on Computer
Security Applications (Dec.). IEEE Computer Society Press, Los Alamitos, CA, 134–144.

KUMAR, S. AND SPAFFORD, E. H. 1995. A software architecture to support misuse intrusion
detection. In Proceedings of the 18th National Conference on Information Security. 194–204.

LANE, T. AND BRODLEY, C. E. 1999. Temporal sequence learning and data reduction for
anomaly detection. ACM Trans. Inf. Syst. Secur. 2, 3, 295–331.

LEE, W. 1999. A data mining framework for constructing features and models for intrusion
detection systems. Ph.D. Dissertation. Columbia University, New York, NY.

LEE, W. AND STOLFO, S. J. 1998. Data mining approaches for intrusion detection. In
Proceedings of the 7th Symposium on USENIX Security (San Antonio, TX, Jan.).

LEE, W., STOLFO, S. J., AND MOK, K. W. 1999. A data mining framework for building intrusion
detection models. In Proceedings of the 1999 IEEE Symposium on Security and Privacy
(Oakland, California, May).

LEE, W., STOLFO, S. J., AND MOK, K. W. 1999. Mining in a data-flow environment: Experience
in network intrusion detection. In Proceedings of the 5th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (KDD-99).

LIPPMANN, R. P., FRIED, D., GRAF, I., HAINES, J., KENDALL, K., MCCLUNG, D., WEBBER, D.,
WEBSTER, S., WYSCHOGRAD, D., CUNNINGHAN, R., AND ZISSMAN, M. 2000. Evaluating
intrusion detection systems: The 1998 DARPA off-line intrusion detection evaluation. In
Proceedings of the on DARPA Information Survivability Conference and Exposition (DISCEX
’00, Hilton Head, South Carolina, Jan. 25-27). IEEE Computer Society Press, Los Alamitos,
CA, 12–26.

LUNT, T. 1993. Detecting intruders in computer systems. In Proceedings of the 1993
Conference on Auditing and Computer Technology.

LUNT, T., TAMARU, A., GILHAM, F., JAGANNATHAN, R., NEUMANN, P., JAVITZ, H., VALDES, A., AND

GARVEY, T. 1992. A real-time intrusion detection expert system (IDES) - final technical
report.

MANNILA, H. AND TOIVONEN, H. 1996. Discovering generalized episodes using minimal
occurrences. In Proceedings of the 2nd International Conference on Knowledge Discovery in
Databases and Data Mining (Portland, OR, Aug.).

MANNILA, H., TOIVONEN, H., AND VERKAMO, A. I. 1995. Discovering frequent episodes in
sequences. In Proceedings of the First International Conference on Knowledge Discovery in
Databases and Data Mining (Montreal, Canada, Aug. 20-21).

MITCHELL, T. 1997. Machine Learning. McGraw-Hill, Inc., New York, NY.
MUKHERJEE, B., HEBERLEIN, L. T., AND LEVITT, K. N. 1994. Network intrusion detection. IEEE

Network 8, 1 (Jan.).
NETWORK FLIGHT RECORDER INC. 1997. Network flight recorder. http://www.nfr.com
PAXSON, V. 1998. Bro: A system for detecting network intruders in real-time. In Proceedings

of the 7th Symposium on USENIX Security (San Antonio, TX, Jan.).
PORRAS, P. AND NEUMANN, P. 1997. EMERALD: Event monitoring enabling responses to

anomalous live disturbances. In Proceedings of the 20th National Conference on National
Information Systems Security. Vol.1 (Baltimore, MD). National Institute of Standards and
Technology, Gaithersburg, MD, 353–365.

STOLFO, S. J., PRODROMIDIS, A. L., TSELEPIS, S., LEE, W., FAN, D. W., AND CHAN, P. K. 1997.
JAM: Java agents for meta-learning over distributed databases. In Proceedings of the 3rd
ACM SIGMOD International Workshop on Data Mining and Knowledge Discovery (SIG-
MOD-96, Newport Beach, CA, Aug.), R. Ng, Ed. ACM Press, New York, NY, 74–81.

SUNSOFT. 1995. SunSHIELD Basic Security Module Guide.
WARRENDER, C., FORREST, S., AND PERLMUTTER, B. 1999. Detecting intrusions using system

calls: Alternative data models. In Proceedings of the 1999 IEEE Computer Society Sympo-
sium on Research in Security and Privacy (Berkeley, CA, May). IEEE Computer Society
Press, Los Alamitos, CA, 133–145.

Received: February 2000; revised: October 2000; accepted: November 2000

Framework for Constructing Features and Models • 261

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

