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ABSTRACT
Launching a denial of service (DoS) attack is trivial, but detec-
tion and response is a painfully slow and often a manual process.
Automatic classification of attacks as single- or multi-source can
help focus response, but current packet-header-based approaches
are susceptible to spoofing. This paper introduces a framework for
classifying DoS attacks based on header content, ramp-up behavior,
and novel techniques based on spectral analysis. Although head-
ers are easily forged, we show that characteristics of ramp-up and
the attack spectrum are much more difficult to spoof. To evaluate
our framework we monitored access links of a regional ISP over a
period of five months, detecting 80 live attacks. Header analysis
identified the number of attackers in 67 attacks, while the remain-
ing 13 attacks were classified based on ramp-up and spectral anal-
ysis. We validate our results through monitoring at a second site,
controlled experiments over the Internet, and simulation. We use
experiment and simulation to understand the underlying reasons
for the characteristics observed. In addition to helping understand
attack dynamics, classification mechanisms such as ours are impor-
tant for the development of realistic models of DoS traffic, and can
be packaged as an automated tool to aid in rapid response to at-
tacks. Finally, we use our attack observations to estimate the level
of DoS activity on the Internet.

1. INTRODUCTION
The Internet connects hundreds of millions of computers across

the world running on multiple hardware and software platforms [28].
It serves uncountable personal and professional needs for millions
of people and corporations. However, interconnectivity among com-
puters also enables malicious users to misuse resources and mount
denial of service (DoS) attacks against arbitrary sites.

In a denial of service attack, a malicious user exploits the con-
nectivity of the Internet to cripple the services offered by a victim
site, often simply by flooding a victim with many requests. A DoS
attack can be either a single-source attack, originating at only one
host, or a multi-source, where multiple hosts coordinate to flood the
victim with a barrage of attack packets. The latter is called a dis-
tributed denial of service (DDoS) attack. Sophisticated attack tools
that automate the procedure of compromising hosts and launching
attacks are readily available on the Internet, and detailed instruc-
tions allow even an amateur to use them effectively.
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Denial of service attacks cause significant financial damage ev-
ery year, making it essential to devise techniques to detect and re-
spond to attacks quickly. Development of effective response tech-
niques requires intimate knowledge of attack dynamics, yet little
information about attacks in the wild is currently published in the
research community. Moore et al provide insight into the preva-
lence of DoS activity on the Internet, but their analysis is based on
back-scatter packets and lacks the level of detail required to gener-
ate high-fidelity models needed for DoS research [27]. Monitoring
tools today can detect an attack and identify basic properties of an
attack, such as traffic rates and packet types, however, because at-
tackers can forge most packet information, characterizing attacks
as single- or multi-source and identifying the number of attackers
is difficult.

In this paper, we develop a framework to classify attacks based
on header analysis, ramp-up behavior and spectral analysis. First,
as others have done, we analyze header content to get a rapid char-
acterization of attackers. Since headers can be forged by the at-
tacker, we develop new techniques to analyze packet stream dy-
namics using ramp-up behavior and the spectral characteristics of
the attack traffic. The absence of an initial ramp-up suggests a sin-
gle attacker, whereas a slow ramp-up (several hundred milliseconds
or more) suggests (but does not prove) a multi-source attack. Since
ramp-up is also easily spoofed, we identify spectral characteristics
that distinguish single- from multi-source attacks and show that at-
tackers cannot easily spoof spectral content without reducing attack
effectiveness. We describe the algorithms used in our framework in
Section 4 and discuss robustness in Section 7.

The contribution of this paper is an automated methodology for
analyzing DoS attacks that is based on ramp-up and spectral analy-
sis to build upon existing approaches of header analysis. In addition
to providing a better understanding of DDoS attack dynamics, our
work has several direct applications. This identification framework
can be used as part of an automated DDoS detection and response
system. It can provide the classification component of a real-time
attack analysis system to aid network administrators in selecting
appropriate responses depending on the type of ongoing DoS at-
tack. This analysis can also be used to create and validate models
of DoS and DDoS attacks for simulation and experimentation. Fi-
nally, long-term automated measurements of DoS attacks can be
used to estimate the amount of DoS attack activity in the Internet.
We describe these applications and our estimate of attack activity
in Section 8.

We tested our algorithms on traffic collected from two peering
links at a moderate size regional ISP. Over a period of five months
we observed 80 attacks, which were analyzed to develop our frame-
work. Header analysis provided significant insight allowing us to
classify 67 attacks as either single- or multi-source. Using ramp-up
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behavior and spectral analysis, we developed spectral signatures for
the classified attacks, which were subsequently used to classify the
remaining 13 attacks. We validate our algorithm and conclusions
in three ways. First, we monitor a second site at a major univer-
sity and compare attack observed there. Second, to understand the
spectral characteristics of attacks, we analyze synthetically gener-
ated attack traffic sent over a wide-area network and compare it to
traffic from real attack tools on a testbed. Finally, we use simple
numerical simulations to improve and confirm our understanding
of the physical causes for differences in attack characteristics.

2. RELATED WORK
Denial of service attacks attempt to exhaust the resources at the

victim. These resources are either network bandwidth, computing
power, or operating system data structures. Research on denial of
service attacks is focused on either attack detection mechanisms to
identify an ongoing attack [10, 14, 30, 38, 43] or response mech-
anisms that attempt to alleviate the damage caused by the attack.
Response mechanism usually take two approaches; localizing the
source of the attack using traceback techniques [8, 16, 34, 35],
or reducing the intensity of the attack [22, 18, 44] by blocking
attack packets. Besides the reactive techniques discussed above,
some systems take proactive measures to discourage DoS activity.
Both, CenterTrack [38] and SOS [20] use overlay techniques with
selective rerouting to prevent large flooding attacks. This paper
presents a unique framework to identify single- and multi-source
attacks based on spectral content of the attack and does not have
the coordination and infrastructure requirements imposed by other
techniques.

Many techniques have been proposed to detect an ongoing DoS
attack. Cisco routers provide support for attack detection via RMON [40]
and Netflow [39] data, that can be processed offline to detect an
attack. Multops exploits the correlation of incoming and outgo-
ing packet rates at different level of subnet prefix aggregation to
identify attacks [14]. Wang provides a rigorous statistical model
to detect abrupt changes in the number of TCP SYN packets as
compared to the TCP SYN ACK packets [43]. Bro, an intrusion
detection system uses change in (statistical) normal behavior of
applications and protocols to detect attacks [30] while Cheng use
spectral analysis to detect high volume DoS attack due to change
in periodicities in the aggregate traffic [10]. All the above tech-
niques are based on anomaly-detection which is faster than static
signature-scan techniques used by Snort [32]. Snort has one main
disadvantage; new attacks that do not have well-defined signatures
may go undetected until the signature is defined. In this paper, we
use a simple anomaly-detection technique that tracks the number
of source connecting to a single destination. Traffic is flagged as
an attack if there is an abnormally high number of source addresses
connecting to a single destination address.

Response to an attack consists of localizing the attackers and
reducing the intensity of the attack. The SPIE system can trace-
back individual packets within a domain using packet digests [35].
On the other hand, Burch and Cheswick propose a technique to
traceback to the source by flooding routes to the victim and observ-
ing change in the attack rates [8]. IP Traceback [34, 11, 36] and
ICMP traceback [4] provide mechanisms to identify the source of
the attack using packet marking at routers. Most of these mecha-
nisms require large scale deployment over the Internet to be effec-
tive and as the number of attackers increase, the number of packets
and computational time required to identify the attacker increases
drastically (SPIE is the exception). In this paper we propose a
framework to identify the presence of single- or multi-sources in
an attack based on local attack stream information. If an attack
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Figure 1: Classification of DoS attacks based on volume of
packets and number of attackers. In this paper we analyze
flooding attacks.

consists of only a single attackers, using traceback to identify the
culprits is trivial, but as the number of attackers increase traceback
becomes rapidly intractable. Thus the additional information pro-
vided by our framework can be used to judiciously decide the re-
sponse mechanism.

To reduce the intensity of an attack, Mahajan et al propose an ag-
gregate congestion control and pushback technique to identify and
throttle the attack flows [22]. Pushback is a cooperative technique
that allows routers to block an aggregate upstream. On the other
hand, D-WARD uses TCP-based rate control at the first hop to pre-
vent attackers from participating in an attack [18]. Packet filters are
the best line of defense during an attack [44]. Filtering decisions
are typically based on source and destination addresses, port num-
bers or packet contents. Once an attack is classified as single or
multi-source using the proposed framework, network operators can
strategically deploy packet filters to block the attack packets.

Beside attack detection and response mechanisms, it is important
to understand DoS attack prevalence and the attack dynamics on the
Internet. Moore et al used backscatter analysis and detected 12,805
attacks during a period of 3 weeks [27]. The backscatter technique
allows detection of attacks that uniformly spoof source addresses in
the complete IP addresses space. Many attack tools use reflection
techniques, subnet spoofing, or do not spoof source addresses [15,
31]. The backscatter technique will not detect these attacks. Much
work needs to be done to understand DoS dynamics to formulate
correct DoS models for simulation and testbed experiments. Bar-
ford et al use flow-level information to identify frequency charac-
teristics of DoS attacks and other anomalous network traffic [3].
They develop a network anomaly detection mechanism based on
time-series and wavelet analysis. In this paper we attempt to char-
acterize the behavior of different attacks based on their header con-
tent, transient behavior and spectral content. We discuss applica-
tions of our classification framework later in the paper.

3. ATTACK TAXONOMY
To launch a DDoS attack, a malicious user first compromises In-

ternet hosts by exploiting security holes, many of which are openly
disclosed by software vendors. The malicious user then installs at-
tack tools on the compromised host (also known as a zombie), that
now becomes available to attack any victim on command. With
full control of the zombie the attacker can construct any packet in-
cluding illegal packets, such as packets with incorrect checksums,
incorrect header field values, or an invalid combination of flags.

The different types of denial of service attacks can be broadly
classified into software exploits and flooding attacks. Flooding at-
tacks can be further classified into single- and multi-source attacks
based on the number of attackers. This classification is depicted in
Figure 1 and explained next.
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Figure 2: Flooding attacks are classified as (a) single-source, (b)
multi-source, or (c) reflected based on the number of attackers
and their location, with respect to the observation point and
victim.

3.1 Software Exploits
These attacks exploit specific software bugs in the operating sys-

tem or an application, and can potentially disable the victim ma-
chine with a single or a few packets. A well known example is the
ping of death, that causes the operating system to crash by send-
ing a single large ICMP echo packet. Similarly, the land attack
sends a single TCP SYN packet containing the victim’s IP address
in both the source and destination address fields, resulting in an
endless loop in the protocol stack. Such attacks can only be pre-
vented by diligently applying software updates. While important,

such attacks are beyond the scope of this paper.

3.2 Flooding attacks
Flooding attacks are the result of one or more attackers send-

ing incessant streams of packets aimed at overwhelming link band-
width or computing resources at the victim. Based on the loca-
tion of the observation point, we classify flooding attacks as single-
source attacks when a single zombie is observed flooding the vic-
tim (although there may be more zombies), and as multi-source
when multiple zombies are observed, as shown in Figure 2(a) and
Figure 2(b) respectively. Multiple attackers may be summoned for
an attack to increase firepower, or to evade detection. In both at-
tack classes, the master can installs attack tools on the host ma-
chine that can generate illegal packets. Examples include the TCP
NULL attack that generates packets with no flags set, the Xmas at-
tack that has all TCP flags set, and attacks that use packets with a
non-existent IP protocol number [2]. Several canned attack tools
are available on the Internet, such as Stacheldraht, Trinoo, Tribal
Flood Network 2000, and Mstream that generate flooding attacks
using a combination of TCP, UDP, and ICMP packets [12]

A significant percentage of captured attacks consist of a single
source. Moore et al detected 14% of all DoS attacks were di-
rected toward home machines using either dial-up or broadband
access [27]. CERT also reports most DoS attacks on the Internet
are from a single source to a single victim [15]. Thus, a single
high bandwidth zombie can potentially generate enough packets to
overwhelm a victim.

The third type of attack is the reflector attack (Figure 2(c)). Such
attacks are used to hide the identity of the attacker and/or to amplify
an attack [31]. A reflector is any host that responds to requests, such
as web servers or ftp servers, that respond to TCP SYN requests
with a TCP SYN-ACK packets, or hosts that respond to ICMP echo
requests with ICMP echo replies. Servers may be used as reflectors
by spoofing the victim’s IP address in the source field of the re-
quest, tricking the reflector into directing its response to the victim.
Unlike direct zombie attacks, reflector attacks require well-formed
packets to solicit a reply. If many reflector machines are employed,
such an attack can easily overwhelm the victim without adversely
affecting the reflectors or triggering the local IDS. Reflectors can
also be used as amplifiers by sending packets to the broadcast ad-
dress on the reflector network, soliciting a response from every host
on the LAN. Unlike zombies which represent improperly secured
hosts, reflectors are often hosts intentionally providing Internet ser-
vices, and so reflector attacks may be more difficult to prevent.

4. ATTACK CLASSIFICATION
Our framework classifies attacks using (a) header contents, (b)

transient ramp-up behavior, and (c) spectral characteristics. This
three-pronged approach is necessary to deal with an increasing level
of difficulty in classifying attacks depending on the level of IP
header spoofing present in an attack. If the source address in the at-
tack packets is not spoofed, classifying an attack as single- or multi-
source becomes a simple matter of counting the distinct sources
present in the attack stream. When the source address is spoofed,
we must look at other header fields (such as ID and TTL) for clues.
Finally, when the entire IP header is spoofed, we resort to ramp-
up and spectral analysis for classification. Next, we describe these
stages in more detail.

4.1 Header Contents
Most attacks spoof the source address concealing the number of

attackers. However, other header fields, such as the fragment iden-
tification field (ID) and time-to-live field (TTL), can be indirectly
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Let P ={attack packets}, Pi ⊂ P, P =
⋃n

i=2
Pi

If ∀ p ∈ P
ID value increases monotonically and
TTL value remains constant
then Single-source

elseif ∀ p ∈ Pi

ID value increases monotonically and
TTL value remains constant
then Multi-source with n attackers

else Unclassified

Figure 3: Pseudo code to identify number of attackers based on
header content.

interpreted to provide hints regarding the number of attackers. Such
techniques have been used before to identify multiple interfaces on
routers [37] and count number of hosts behind a NAT box [5]. This
technique works because many operating systems sequentially in-
crement the ID field for each successive packet. As a result, all
packets generated by the same host will contain monotonically in-
creasing ID values. In addition, the TTL value provides further
hints because it remains constant for the same source-destination
pair. Thus, for attacks where the ID and TTL fields are not forged
we use the algorithm outlined in Figure 3 to estimate the number
of attackers and classify attacks as single- or multi-source.

We estimate the number of attackers by counting the number of
distinct ID sequences present in the attack. Packets are classified as
belonging to the same sequence if their ID values are separated by
less than idgap (we use an idgap of 16) and the TTL value remains
constant for all packets. We allow for some separation in idgap
to tolerate moderate packet reordering. In high volume attacks the
ID value typically wraps around within a second. Therefore using
a small idgap also limits collisions during sequence identification.
If a packet does not belong to an existing sequence, it forms the
beginning of a new sequence. In most cases attack packets arrive
close to each other and have a gap of one. An attack sequence must
consist of at least 100 packets to identify a distinct attacker.

Some attacks have short silence periods during the attack. After a
silence period, packets may form a new attack sequence that should
be considered as a continuation of an old sequence, but would not
be identified as such due to the strict idgap. To bridge these silence
periods we coalesce such streams into one stream if they are within
500ms of each other. Finally, since many operating systems do not
send the ID value in network byte order, we infer byte-order from
the first 10 packets observed.

Current attack tools like Stacheldraht and variants of TFN2K
spoof the source IP address but allow the operating system to fill
in its default values for other fields [12]. Such tools are susceptible
to ID analysis. We are not aware of any attack tools that attempt to
coordinate the ID field over a distributed set of attackers. In fact,
it is inherently difficult to coordinate packet streams from multiple
hosts such that their ID fields consistently arrive in order without
reducing the effectiveness of the attack.

Some attack tools forge all header contents, including both the
ID and the TTL field. For such attacks it is impossible to distin-
guish between a single or multiple sources based on header infor-
mation alone, making it essential to use the techniques described
next.

4.2 Ramp-up Behavior
In a multi-source attack, a master typically activates a large num-

ber of zombies by sending a trigger message that either activates
the zombies immediately or at some later time. When observed
near the victim, both activation processes will result in a ramp-up
of the attack intensity due to the variation in path latency between
the master and the zombies, coupled with weak synchronization
of local clocks at the zombies. In contrast, single-source attacks
do not exhibit a ramp-up behavior and typically begin their attack
at full strength. Thus, the presence of a ramp-up provides a hint
as to whether the attack is a single- or multi-source attack. This
method, however, cannot robustly identify single-source attacks,
since an intelligent attacker could create an artificial ramp-up. To
our knowledge, current attack tools do not attempt to do so.

4.3 Spectral Analysis
A more robust method for classifying attacks as single- or multi-

source is to consider their spectral characteristics. We have ob-
served attack streams exhibit markedly different signatures that vary
depending on the number of attackers. In this section, we present
our methodology for analyzing the spectral characteristics of an at-
tack stream; in Section 5.5 we present several examples.

Spectral analysis requires treating the packet trace as a time se-
ries. We divide the attack stream into 30 second intervals and define
x(t), 0 ≤ t < 30 as the number of attack packet arrivals in each
1ms interval. To avoid initial ramp-up and abrupt changes within
the attack stream (e.g. due to a change in number of attackers),
we use linear least-square regression to compute the slope and ver-
ify that the difference between the slope and zero is statistically
insignificant within a 95% confidence interval [23]. Further, we
condition x(t) by subtracting the mean arrival rate before proceed-
ing with spectral analysis. The mean value results in a large DC
component in the spectrum that does not provide any useful infor-
mation for our classification framework.

We use the Bartlett window method to compute the frequency
spectrum by performing a discrete-time Fourier transform on the
autocorrelation function (ACF) of the attack stream. The autocor-
relation of an attack stream is a measure of how similar the attack is
to itself shifted in time by offset k [6, 7]. When k = 0 we compare
the attack stream to itself, and the autocorrelation is maximum and
equal to the variance of the attack stream. When k > 0 we com-
pare the attack stream with a version of itself shifted by lag k. The
autocorrelation sequence r(k) at lag k is

c(k) = 1/N

N−k∑

t=0

(x(t) − x̄)(x(t + k) − x̄); (1)

r(k) = c(k)/c(0) (2)

where x̄ is the expected value and N is the length of the attack
stream x(t). The spectrum S(f) of attack obtained by the discrete-
time Fourier transform of the autocorrelation sequence of length M
as given below:

S(f) =

M∑

k=0

r(k)e−ıfk (3)

The highest frequency observable in the spectrum S(f) is 500Hz
(the Fourier transform is a symmetric function). Intuitively, the
spectrum captures the power the attack stream contains at a partic-
ular frequency.

Once we generate the spectrum we need a technique to compare
the spectral characteristics of different attacks. Therefore, for each
attack we define the cumulative spectrum P (f) as the amount of
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Figure 4: The trace machine monitors two of the four peering
links at Los Nettos.

power in the range 0 to f . We then normalize this value by the total
power to get the normalized cumulative spectrum (NCS), C(f) [9,
7]. Finally, we define F (p) as the frequency at which the NCS
captures p% of the power. Formally:

P (f) =

f−1∑

i=0

(S(i) + S(i + 1))

2
; (4)

C(f) =
P (f)

P (fmax)
; (5)

F (p) =
min f
C(f)≥p

(6)

Attacks are classified as single- or multi-source based on F (60%).
The sixty percent cut-off provides an effective technique to detect
localization of power in lower frequencies. Our observations in-
dicate single-source attacks have a linear cumulative spectrum due
to dominant frequencies spread across the spectrum. This causes
F (60%) to be in the range of 240–296Hz. In contrast, multi-source
attacks have localization of power in lower frequencies resulting
a F (60%) in the range of 142–210Hz. In Section 5.5 we show
how spectral analysis can be used to robustly classify attacks whose
headers are completely forged.

5. EXPERIMENTAL EVALUATION
In this section we present our trace collection infrastructure and

our experimental analysis based on attack captured at Los Nettos.
Validation results are presented in the next section.

5.1 Packet Trace Infrastructure
We tested our framework (described in Section 4) using attacks

captured by our trace infrastructure installed at Los Nettos in Los
Angeles [21]. We captured 80 large-scale attacks over a period of
five months, from July 2002 to Nov 2003.

Los Nettos has four major peering links with commercial providers.
Due to technical reasons, we were able to monitor only two of those
links, as shown in Figure 4. Los Nettos has a diverse clientele in-
cluding academic and commercial customers. The trace machine
is an off-the-shelf Intel P4 1.8Ghz, with 1GB of RAM running
FreeBSD 4.5. We use a Netgear GA620 1000BT-SX NIC (Tigon II
chipset) with a modified driver that supports partial packets transfer
from the NIC card to the kernel. Typical daytime observed load is
140Mbps with a mean of 38Kpps. Measurement drops (as reported
by tcpdump) were usually below 0.04% during normal operation,
rising to 0.6% during attacks that reached 100Kpps.

We continuously capture packet headers using tcpdump [17],
creating a trace file every two minutes. Each trace is then post-
processed and flagged as containing a potential attack if either of

Attack Class # Attacks Range in pps Range in Kbps
Single-source 37 680–1360 640–2600
Multi-source 10 16600–84000 13000–46000
Reflected 20 1300–3700 1700–3000
Unclassified 13 550–33500 1600-16000

Table 1: Number of attacks in each class based on header anal-
ysis

Protocol Packet Type Attack Class
S M R U

TCP SYN 2 3 (2) - 7 (5)
ACK 5 2 (2) - 3 (2)
SYN-ACK 9 - 4 -
no flags 15 1 (1) - -
unusual 5 1 - -
state exploit 2 - - -

ICMP echo request 5 - - -
echo reply 1 - 16 (3) -
invalid - - - 1 (1)

UDP all 6 (1) - - 5 (4)
Other ip-proto 0 5 - - -

ip-proto 255 - 3 - -
fragmented 1 - - 3 (3)

Table 2: Detailed analysis of packet headers. S indicates single-
source, M indicates multi-source, R indicates distributed re-
flectors, and U indicates unclassified attacks. The number in
parenthesis indicates attacks terminating within our ISP while
the first number indicates total attacks.

two thresholds are reached: (a) the number sources that talk to the
same destination within one second exceeds 60, or (b) the traffic
exceeds 40Kpps. Traces that are not flagged are discarded. We
identify and ignore known servers that would trigger these thresh-
olds. Finally, we manually verify each flagged trace to confirm the
presence of an attack. The automated thresholding works reason-
ably well but provides a false positive rate of 25–35%. Ongoing
attacks that do not trigger our detection mechanism are not identi-
fied. We thus miss many small DoS attacks, including some attacks
that would incapacitate a dial-up line.

We monitor both inbound and outbound traffic. For attacks ter-
minating in Los Nettos, we capture most of the attack traffic, miss-
ing only portions from peering links we do not monitor and from
attackers within Los Nettos. For attacks transiting through Los Net-
tos, our monitoring point may not be exposed to the full intensity
of the attack since there may be attackers outside Los Nettos and
we do not monitor all external links of Los Nettos. The distinction
between transient and terminating attacks becomes more important
in Section 8.3

5.2 Classifying Attacks based on Packet Head-
ers

First, we classify attacks based on packet header information
alone. As shown in Table 1, we classified all but 13 attacks using
this method. Table 2 shows a more detailed breakdown of attacks
based on manual analysis with tcpdump [17] and tcpshow [33]. The
categories listed in the table are not mutually exclusive since some
attack streams carry multiple packet types.

From header analysis we can make several observations about
the prevalence of attack techniques in the wild. First, 87% of the
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zombie attacks use illegal packet formats or randomize fields, indi-
cating the presence of root access. Use of TCP protocol was most
common, with reflection attacks typically exploiting web servers
(port 80) and FTP servers (port 21). In Table 2, TCP no flags refers
to pure data packets with no flags set, while unusual refers to at-
tacks that use non-standard (but not always invalid) combinations
of TCP flags, such as setting all the flags. State exploit refers to
attacks that exhaust OS data-structures based on the TCP-state dia-
gram, (e.g. ESTABLISHED, FIN-WAIT1 states) [1]. Even though
TCP-SYN attacks belong to this class, we list them separately since
they are common. The most aggressive attack was a TCP attack that
reached a peak of 98Kpps and generated packets with a combina-
tion of TCP flags and options. Many attacks set the type of service
(TOS) bits to minimize delay, maximize throughput and increase
reliability.

ICMP is the next protocol of choice. The echo reply attack was
the most popular reflector attack, since most Internet hosts respond
to an echo request packet allowing the attacker to choose from the
large number of possible reflectors. One attack consists of 1262
distinct reflectors (based on the source IP address) visible at our
observation point. The other ICMP attacks use echo request packet
or an invalid ICMP code. Several reflector attacks share the same
attack signature (for example, identical ICMP sequence number, ID
and checksum fields), indicating the use of the same attack tool. Fi-
nally, we detected five attacks that use a combination of protocols,
such as TCP, ICMP, UDP, and IP proto-0. UDP and other invalid
protocols were less frequently used in the attacks.

5.3 Classifying Attacks based on Packet Ar-
rival Rate

This section investigates the relation between attack rate and at-
tacker population. We captured attacks with rates ranging from
133pps to 98Kpps. Figure 5 shows the correlation between the at-
tack classes (defined earlier) and attack rate. In Figure 5(a) we
show measured attack rates in Kbps and pps in logarithmic scale
for each attack. Not surprisingly, single-source attacks are clus-
tered toward lower packet rates whereas multi-source attacks ex-
hibit higher rates, most likely due to aggregation from multiple
zombies. In reflection attacks, many reflectors are typically em-
ployed to generate high attack aggregates without overloading the
reflectors. The captured reflection attacks have a much lower inten-
sity than multi-source attacks since the observation point might not
be exposed to the complete intensity of the attack.

To statistically confirm attack rates of single-source, multi-source,
and reflected attack have different means, we performed Kruskal-
Wallis one-way ANOVA test [23]. We consider the null hypoth-
esis, H0; there is no relation between the attack rates and attack
class. The alternative hypothesis, Ha states there there is a rela-
tion between attack rate and class. If H0 is true, the variance es-
timate based on within-group variability should be approximately
the same as the variance due to between-group variability. This test
defines a F ratio that evaluates the two variance estimates; if the F
ratio is significantly greater than 1, the test is statistically signifi-
cant, and we can conclude that the means for the three groups are
different from each other and reject H0. It also defines a p-value,
the probability of observing the sample result assuming H0 true.
Hence a smaller p-value provides higher confidence in rejecting
H0. For the data in Figure 5(a), the F ratio is 37.42, indicating a
strong relation between the attack rates and the attack classes. Fur-
ther, the p-value is 1.7 × 10−11, indicating a very low probability
of H0 being correct.

The box plot in Figure 5(b) provides graphical representation of
the means of different classes. The lower and upper lines of the box
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Figure 5: Correlation of attack rates and number of attackers

are the 25th and 75th percentiles of the sample. The distance be-
tween the top and bottom of the box is the interquartile range. The
line in the middle of the box is the sample median. The “whiskers”
(lines extending above and below the box) show the range of the
rest of the sample (unless there are outliers). Single-source at-
tacks have the lowest median while the median and range of the
multi-source attacks is significantly higher than single-source and
reflected attacks.

Figure 6 shows the cumulative distribution of the attack duration
and peak attack rates in packets and Kbps. The peak attack rates
vary from about 133pps to 98Kpps. In some attacks packet rates
vary over the attack duration. An increase in the attack rate is usu-
ally due to addition of new machines or the addition of new type
of attack. We also observed a reduction in attack rate, possibly due
to withdrawal of sources or installation of filters by network opera-
tors.

5.4 Classifying Attacks based on Ramp-up Be-
havior

To identify the presence of multiple sources when the header is
forged we measure the attack’s ramp-up behavior (changes in the
traffic volume of the attack as a function of time). Single-source
attacks typically exhibit no ramp-up, while all multi-source attacks
showed ramp-up behavior, ranging from 200ms to 14s.

Figure 7 illustrates the attack ramp-up for two observed attacks.
Figure 7(a) shows an attack where packet headers were not forged,
and thus the attacker population was visible. The graph shows a
three second ramp-up at about 27s as the number of attackers grad-
ually increase to six. The attack reaches a peak rate of 78Kpps
with 14 active sources. We observe a total of 40 unique IP ad-
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Figure 7: Due to lack of synchronization among the zombies,
multi-source attacks exhibit initial ramp-up behavior

dresses during the attack, with sources steadily arriving and depart-
ing. Figure 7(b) shows an attack where the last eight bits of the
source address are forged. The attack is classified as a multi-source
attack since it exhibits a ramp-up, rising from 36Kpps to 50Kpps
in 14 seconds. In this attack the source addresses and ID field is
spoofed, and all packets have the same TTL value, making it dif-
ficult to classify the attack based on header content. The presence
of transient ramp-up behavior in the first few seconds of the attack
strongly suggests the presence of multiple sources. We also verified
it is a multi-source attack via spectral analysis.

5.5 Classifying Attacks based on Spectral Anal-
ysis

In this section we demonstrate that spectral analysis of the at-
tack time-series (described in Section 4.3) can distinguish between
single- and multi-source attacks, even if all headers are spoofed.
Because the traffic spectrum is influenced by OS and network be-
havior we argue that it will be difficult for attackers to easily con-
ceal their spectrum without reducing attack effectiveness. We re-
view this claim more carefully in Sections 6 and 7, for now we
present example spectra.

We analyzed the spectral content of all 67 attacks previously
classified by header analysis. Based on observations from these
known classes, we conclude that single- and multi-source attacks
can be distinguished by their spectra:

• Single-source attacks include dominant high frequencies cre-
ating a linear trend in the normalized cumulative spectrum.

• Multi-source attacks have dominant low frequencies with a
normalized cumulative spectrum that sharply rises at lower
frequencies.

Figure 8(a) shows an example of the spectrum of a single-source
attack. In this case, the attacker that generates TCP no flag packets
at a rate of 1100pps. The source addresses are spoofed, but the
ID and TTL values clearly indicate a single-source attack (using
analysis from Section 4.1). There are noticeable peaks at higher
frequencies in the spectrum and the NCS is linear.

By contrast, Figure 8(b) shows a reflected attack using echo re-
ply packets. Since the source address in reflected attacks is not
spoofed, we can count 145 different reflectors located in countries
such as Brazil, Japan, Korea, Singapore, and United States. The
attack rate is 4300pps. Here we observe concentration of power in
lower frequencies creating a corresponding shift in the NCS.

We consider the physical explanations for this shift in spectra in
Section 6.3. The intuition behind the result requires consideration
of a single attack source and then the interaction of multiple attack-
ers. We suggest that a single attacker sending at full rate will al-
ways have high frequency components in the attack traffic because
any computer and network interface has a maximum possible trans-
mission rate due to hardware or operating system limits. This rate
gives that attacker a basic frequency and harmonics at multiples
of that frequency, consistent with our single-source observation.
Now consider a collaborative, distributed attack with multiple at-
tackers, each sending as fast as possible Each attacker will have its
own maximum rate and corresponding spectra, but in the aggregate,
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Figure 8: The power spectrum(top) and NCS(bottom) for two
example attacks

their traffic will “blur together”, loosing dominant high frequency
components, because the attackers operate independently at differ-
ent rates and frequencies, and because each attacker experiences
noise from different levels of cross-traffic. In fact, we suggest that
it is inherently difficult to coordinate high-rate attackers. We ex-
pand on this intuition in several steps: through experiments in Sec-
tion 6.2, simple simulations in Section 6.3, and discussion about
robustness in Section 7.

Since it is difficult to compare the graphical NCS across attacks,
we will use the F (60%) value (from Equation 6) for each attack to
detect if the power is concentrated in lower frequencies. Figure 9
plots F (60%) against the attack rates in pps (log-scale). Single-
source attacks are concentrated in the middle frequencies because
their linear normalized cumulative spectrum results in mid-range
F (60%) values. Multi-source attacks are concentrated in the lower
frequency band, due to the accumulation of power in lower fre-
quencies. The two classes of attacks also have a significant dif-
ference in first order statistics: single-source attacks have a mean
268Hz and a 95% confidence interval between 240–295Hz, while
multi-source attacks have a mean of 172Hz, and a 95% confidence
interval between 142–210Hz. We performed the Wilcoxon rank
sum test [23] to verify that the two classes have different F (60%)
ranges. The test strongly rejects the null hypothesis, that single-
and multi-source attacks have identical dominant frequencies, with
a p-value of 7.7 × 10−5. We also visually verified it using a box
plot.

We use the spectral analysis described above to classify the re-
maining 13 unclassified attacks. The spectrum of five attacks match
spectral characteristics of single-source attacks, with a F (60%)
located above 240Hz. The remaining eight attacks have spectral
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Figure 9: Comparison of F (60%) against attack rate for each
attack class

Protocols Los Nettos USC
TCP 84.2% 95.6%
UDP 13.8% 4.10%
ICMP 1.21% 0.118%
other 0.894% 0.175%

Table 3: Percentage of packets observed for each protocol at
the two sites

characteristics similar to multi-source attacks. These attacks also
exhibit an initial ramp-up lasting from 300ms to 14 seconds that
corroborates the presence of multiple attackers.

6. VALIDATION
We use three techniques to validate our classification algorithms

and understand the nature of our observations. We measure DoS
attacks from a second site to confirm that the numbers and kinds
of attacks we identified were not unique to our original observation
point. To understand the physical explanations behind our classifi-
cation techniques we conduct controlled experiments and use sim-
ple numerical simulations. These experiments also suggest how
robust our methods would be to knowledgeable attackers.

6.1 Observations from an Alternate Site
We deployed a second trace machine at USC’s connection to In-

ternet2. Typical daytime load is 112Mbps with a mean of 25Kpps.
The traffic mix on the Internet2 link is fairly different than observed
at Los Nettos; see Tables 3 for a breakdown of traffic at each site
by protocol. Los Nettos shows much more DNS traffic (due to the
presence of a root nameserver) and web traffic, while USC shows
more “other” traffic due to gaming, files sharing, and research that
use atypical or ephemeral ports.

We observed 18 attacks at USC in the months of October and
November 2003. Because of differences in monitoring duration
and traffic quantity, it is difficult to compare the absolute number
of attacks to our observations at Los Nettos, but we observe about
the same ratio of attacks in each attack class.

Table 4 lists attacks by class as determined from header content.
Three attacks were classified as unknown since they completely
randomize the ID value. Table 5 shows a more detailed manual
analysis of packet headers. Again, it is difficult to directly compare
it to Table 2, but we observe a similar set of attacks. Packet types
TCP SYN-ACK, TCP unusual and ICMP illegal were not seen at
USC, however some of these attacks were not very frequent at our
primary location either.

Ramp-up and spectral analysis of attacks at USC were similar to
attacks observed at our original site, and hence we do not reproduce
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Attack Class # Attacks Range in pps Range in Kbps
Single-source 9 1250–54000 1100–10000
Multi-source 3 58700–95000 28000–72000
Reflected 3 2120-2250 1641–2142
Unclassified 3 6170–8500 2600–6500

Table 4: Number of attacks in each class based on header anal-
ysis at USC.

Protocol Packet Type Attack Class
S M R U

TCP SYN - - - 2
ACK 3 (1) - - -
no flag 5 - - -
unusual 3 - - -
state exploit - - - 1

ICMP echo request 4 - - -
echo reply - - 3 -

UDP all 5 2 (2) - -
Other ip-proto 0 4 - - -

ip-proto 255 1 1 (1) - -
fragmented 1 - - -
routing 1 - - -

Table 5: Detailed analysis of packet headers at USC.

spectra of individual attacks here. Figure 10 plots F (60%) against
the attack rate (in log-scale) for each attack class. As expected,
F (60%) is located in the middle frequency band for single-source
attacks, and in the low frequency band for multi-source attacks.
The two classes of attacks also have first-order statistics similar
to the Los Nettos. The mean for single-source attacks is 292Hz
and a 95% confidence interval between 202–382Hz, while multi-
source attacks have a mean of 120Hz and a 95% confidence interval
between 35Hz–202Hz. One unknown attack is most likely a single-
source attack since besides the absence of a ramp-up, F (60%) is
2Hz. The other two unknown attacks are similar to each other in
many aspects. They exhibit a small ramp-up of 120ms and have
low F (60%) of 12Hz, indicating multiple attackers.

The tendency of multi-source attacks to localize power in lower
frequencies is distinctly visible in the summary of F (60%) fre-
quencies for both sites, Los Nettos in Figure 9 and USC in Fig-
ure 10. Based on these observations, we conclude that our results
are not distorted by unusual traffic characteristics at our original site
and that our techniques apply to at least some other traffic mixes.
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Figure 10: Comparison of F (60%) and attack rate by attack
class for USC attacks.

Location CPU (Mhz) Hop Count RTT (ms)
UCSB 1800 9 5
UCSD 500 10 7
UCLA 900 11 2
ISIE 900 15 74
UMass 600 16 90
USC1 1800 6 1
USC2 1800 6 1
USC3 1000 6 1
USC4 900 6 1
USC5 500 6 1

Table 6: The WAN testbed. The top block of hosts are used
for distributed experiments while the bottom block of hosts are
used for clustered experiments.

6.2 Experimental Confirmation
To understand the effect of network topology and number of

sources on attack traffic we varied both these parameters in con-
trolled experiments over the Internet. We placed synthetic attack-
ers at six universities and research labs on both coasts of the United
States (at ISI East, UCLA, UCSB, UCSD, UMass, and USC). We
measured traffic at a target while varying the number of sources
from 1–5 considering two topologies: a clustered attack, where
all attackers reside on the same LAN segment and are well con-
nected to the target via a high bandwidth, low latency link, and a
distributed topology where attackers are widely distributed (with
attackers on both coasts). We repeated these experiments multi-
ple times during heavy and light network utilization, during peak
weekday hours and early morning/weekend times, respectively (as
measured local to the target), although it is obviously not possi-
ble to control Internet traffic. The victim and the observation point
were located on the same Ethernet segment, connected via a hub.
The traffic traces are collected at the the observation point using
tcpdump [17]. Each synthetic DoS attacker is an Iperf [41] UDP
sources sending 50 byte packets at a rates of 1Mbps and all exper-
iment was run for 100 seconds. The hosts in the experiments have
different operating speeds and all run variants of Linux. Table 6
provides a complete list of all the hosts, their operating speeds and
the number of hops and RTT from the victim.

Figure 11(a) shows the clustered topology with only one sender.
We see strong peaks in the high frequency ranges. This behavior
is an inherent characteristic of a host sending at a rapid pace. All
computers run at certain frequencies due to clocks in the CPU, the
network card, and the operating system. We therefore believe that
this pattern will be present in any host is sending as rapidly as pos-
sible. It could be masked by sending at slower rates, but that would
reduce the effectiveness of the attack.

Looking across Figure 11 we see how the spectrum changes as
the number of sources increase from 1 to 3, with all sources on the
same Ethernet segment. The dominant spectral characteristics tend
to shift toward low frequencies as the number of sources increase,
with F (60%) at 300Hz, 150Hz, and 21Hz for 1, 2 and 3 sources
respectively. In Section 6.3 we examine this effect more closely to
show that it is due to multiple attackers operating out of phase with
each other.

To examine the effect of network topology we repeated this ex-
periment with each source at different locations around the Internet.
Figure 12(a) shows the spectrum of a single attacker at UMass. The
spectrum lacks the distinct peaks of Figure 11(a) which we believe
this is due to a larger amount of cross traffic and more variation

9



 0

 20

 40

 60

 80

 100

 120

 0  50  100  150  200  250  300  350  400  450  500
S

(f
)

Frequency (Hz)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300  350  400  450  500

C
(f

)

Frequency (Hz)

(a) One Source

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0  50  100  150  200  250  300  350  400  450  500

S
(f

)

Frequency (Hz)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300  350  400  450  500

C
(f

)

Frequency (Hz)

(b) Two Sources

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 0  50  100  150  200  250  300  350  400  450  500

S
(f

)

Frequency (Hz)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300  350  400  450  500

C
(f

)

Frequency (Hz)

(c) Three Sources

Figure 11: WAN experiments using the clustered topology.

in transit time than with a single attacker in the clustered topology.
The normalized cumulative spectrum is robust to this affect though,
with both single-source attacks showing nearly linear trends.

Comparing Figure 12(a) to Figures 12(b) and 12(c), we see a
shift in the spectrum to lower frequencies, with F (60%) at 43Hz
and 35Hz for 2 and 3 sources, as compared to 328Hz for a single-
source. Again, we suggest this is due to the presence of multiple,
unsynchronized sources.

Figure 13 summarizes the F (60%) results for 30 WAN exper-
iments conducted at different times of the day. The experiments
show a localization of power in lower frequencies as the number of
sources increase from 1–5 in both the clustered and the distributed
topology. As seen in Figure 13 the F (60%) is close to 300Hz dur-
ing single-source experiments, but reduces to 100Hz when more
sources are added. This indicates that although the absolute value
of F (60%) differs from one experiment to the next, the multi-

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0  50  100  150  200  250  300  350  400  450  500

S
(f

)

Frequency (Hz)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300  350  400  450  500

C
(f

)

Frequency (Hz)

(a) One Source

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 0  50  100  150  200  250  300  350  400  450  500

S
(f

)

Frequency (Hz)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300  350  400  450  500

C
(f

)

Frequency (Hz)

(b) Two Sources

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 0  50  100  150  200  250  300  350  400  450  500

S
(f

)

Frequency (Hz)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300  350  400  450  500

C
(f

)

Frequency (Hz)

(c) Three Sources

Figure 12: WAN experiments using the distributed topology.

source attacks always have a much lower F (60%) in both topolo-
gies, qualitatively confirming our observations at Los Nettos.

To confirm the above results are not due to characteristics unique
to Iperf, we conducted experiments with real DoS attack tools on a
dumbbell-like topology consisting of 12 host machines, four hubs
and two Cisco routers (we could not deploy the attack tools on
the WAN topologies due to signature-based IDS monitoring tools).
The testbed provides a low latency (¡1ms), high bandwidth (100Mbps)
connection between the attackers and the victim. We generated at-
tack traffic using three DoS tools: punk, stream, and synful, and
web-based background traffic with WebStone [42]. Figure 14 shows
all three attack tools produced spectral characteristics similar to
Figure 13, both in the single- and multi-source experiments. We
observe the single-source spectra (Figure 14(a), (b), and (c)) cre-
ated by attack tools show strong characteristic high frequencies
and linear normalized cumulative spectra, while the power in the
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Figure 14: Testbed experiments using real attack tools.
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Figure 13: Localization of power as the number of sources in-
crease in both clustered and distributed topologies.

higher frequencies start to reduce and the NCS shows a localization
of power in lower frequencies as more attackers are added (Fig-
ure 14(c), (d) and (e)).

These experiments confirm the presence of multiple attackers
changes the attack spectrum, and that the NCS and F (60%) are a
reasonably robust discriminators between single- and multi-source
attacks. They do not completely explain the reasons why multiple
attackers shift the spectrum; we consider that next.

6.3 Understanding Multiple Source Effects
Although Section 6.2 confirms the validity of the use of spectral

analysis to discriminate between single- and multiple-sources, it
does not explain why spectral content is a good discriminator. To
understand the physical meaning behind the shift in F (60%) to
lower frequencies, we considered three hypotheses for its cause:

1. Aggregation of multiple sources at either slightly, or very dif-
ferent rates,

2. Bunching of traffic due to queuing behavior (analogous to
ACK compression [26], but in the data direction),

3. Aggregation of multiple sources at different phases

To explore these hypotheses we perform simple numerical simu-
lation. To test Hypothesis 1, we aggregate a scaled attack trace with
the original attack trace to simulate aggregation of multiple attack-
ers at different rates. If a(t) represents the packet arrival sequence
in the original trace, we multiply the time-stamp by a scaling factor
s, jittered by ε, to generate a scaled trace. Therefore the aggregate
trace is given by:

a1(t) = a(t) + a((s + ε)t) (7)

We use the packet trace from the single-source LAN experiment
(Figure 11(a)) and vary the scaling factor from 0.5 to 2 representing
attackers with rates varying from twice to half the original attack
rate respectively (ε is uniformly distributed between 1–5µs). The
scaled trace is then aggregated with the original attack trace using
the approach defined by Kamath et al. [19]. If Hypothesis 1 is
true, then a change in the attack rate should cause a corresponding
change in F (60%). Figure 15 plots the scaling factor s against
F (60%). We observe F (60%) remains nearly constant even when
aggregated with an attacker with dissimilar attack rates. Hence we
reject Hypothesis 1.

To test Hypothesis 2 we capture a packet arrival sequence on the
attacker host and filter the arrival sequence to delay transmission
until p packets, p varies from 5–15, have arrived, sending out all
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Figure 16: The effect of aggregation of two sources at different
phases.

the packets at once. The trace passed through this process pro-
duces very different spectra. We observe a cluster of prominent
frequencies around 320Hz with very little power (less than 15%)
in the lower frequency band. The normalized cumulative spectrum
has a sharp rise between 300–320Hz which is unlike spectra we
have observed earlier. We therefore discarded Hypothesis 2.

To test Hypothesis 3, we aggregate a shifted attack trace with the
original attack trace to simulate aggregation of attackers at different
phases. If a(t) represents the packet arrival sequence in the original
trace, we add a phase φ, jittered by ε, to generate a shifted trace.
Therefore the aggregate trace is given by:

a3(t) = a(t) + a(t + φ + ε) (8)

We vary the phase from 1–200ms, representing the difficultly
of attackers to start and remain synchronized. If Hypothesis 3 is
true, then changes in attacker phase should cause a corresponding
change in F (60%). Figure 16 plots the phase φ against F (60%).
We observe F (60%) remains nearly constant even when aggre-
gated with an attacker with dissimilar phase demonstrating that
phase alone (Hypothesis 3) does not cause the shift.

Finally we considered a variation on Hypothesis 3. Suppose we
aggregate multiple streams, each slightly out of phase. To test it
we aggregate shifted attack traces with the original attack trace to
simulate aggregation of multiple attackers at different phases. If
a(t) represents the packet arrival sequence in the original trace, we
generate the shifted trace by:

a3b(t) =

n∑

i=2

a(t + iφ) (9)

We vary the number of attackers n from 2–15 with a 1ms phase
shift between each attacker. If Hypothesis is true, then we should
observe a drop is F (60%) as the number of attacker increase. Fig-
ure 17 plots the number of sources against F (60%) when using
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Figure 17: The effect of aggregation of multiple sources at dif-
ferent phases.

packet traces from both Figures 11(a) and 12(a). In both case we
observe a drop in the F (60%) as the number of sources increase
demonstrating phase along with aggregation of multiple sources
causes localization of power in the lower frequencies. This re-
sults in consistent with the attack traffic observed at Los Nettos
and USC.

The three hypothesis and simulation experiments provide insight
into the attack stream dynamics that have been used by our frame-
work to classify attacks robustly.

These experiments support our claims that: (a) sharp peaks in
a high-rate, single-source attack are inherent. (b) Peaks cannot be
maintained in a high-rate distributed attack because it is impossi-
ble to keep distributed sources in tight synchrony. (c) The effects
of topological distance decrease the prominence of individual fre-
quencies, but do not change its character. While these results apply
to high-rate attackers, it is possible for attackers to affect their spec-
tral characteristics by changing their attack rate. We examine this
issue in the next section.

7. SENSITIVITY OF TECHNIQUES TO COUN-
TERMEASURES

Network security is an arms race; both attack tools and defenses
evolve in relation to each other. Thus an important consideration of
our framework is how robust they are to improved attack tools. In
fact, our ramp-up and spectral analysis techniques were motivated
by limitations of header analysis in the face of packet spoofing.

Header analysis was successful at classifying 83% of the 80 at-
tacks we observed. We expect this percentage to drop as more so-
phisticated tools become more widely used. Even though source
addresses are forged, currently most attack tools neglect random-
izing the ID field. However it is easy for attackers to spoof this
field, and as well as many operating systems are randomizing the
ID field when the packet is not fragmented (to discourage OS fin-
gerprinting [13]). Use of TTL is somewhat more robust, since at-
tack packets with too low TTL values will fail to reach the victim.
Statistical analysis of TTL values may be helpful at determining
attacker distance in spite of spoofing. Unfortunately usefulness of
this approach will be limited because a distance of a few hops en-
compasses much of the Internet. We expect evolution of attack
tools to increase dependence on more advanced classification tech-
niques based on spectral content.

Even though none of the observed single-source attacks exhibit
an initial ramp-up, it can be easily generated by an attacker that
gradually increases the attack rate. On the other hand, in large
multi-source attacks we believe an initial ramp-up is an inherent
part of the attack dynamics. The duration of the ramp-up may vary
based on the zombie clock skew and differences in the zombie-
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victim network distance, but masking the ramp-up by accounting
for both sources of variability would require great sophistication.

Spectral analysis is much more robust to attacker manipulation
than header analysis. We believe the characteristics of high-rate
attack traffic are inherent; they cannot be avoided by single- or
multi-source attackers sending at maximum rate. Further, it is not
practical for a multi-source attacker to synchronize geographically
distributed attackers to to create spectral characteristics similar to
single-source attacks. To accomplish comparable levels of synchro-
nization requires not only tight time synchronization between at-
tacking hosts (perhaps using NTP [25]), but also measurement and
accounting for the varying propagation and queuing delay between
each attacker and the victim.

It may be possible for a single-source attacker to masquerade
as a multi-source attack if it is willing to reduce its attack rate.
A single-source can generate packets in bursty, on-off patterns by
introducing a delay between packets, creating dominant low fre-
quency contents in its spectrum.

8. APPLICATIONS
The focus of this paper is classification and understanding of

DoS attack traffic. There are several applications of our results, in-
cluding automating attack detection, providing synthetic models of
attack traffic for simulation or testbed use, and inferring the amount
of DoS attack activity in the Internet as a whole. Although details
of these applications are outside the scope of this paper, next we
briefly identify each.

8.1 Automating attack detection
A robust automatic attack detection tool is useful in guiding man-

ual or automated response systems in installing filters [18, 29] or, in
case of flash crowds, for use in aggregate congestion control [22].
Discrimination between single- and multi-source attacks is useful
in selecting the appropriate response mechanism, since some mech-
anisms are much more expensive when dealing with multiple at-
tackers compared to single attackers (for example, traceback [34]).
We have already created an automated tool that given an attack
trace will carry out the spectral analysis, demonstrating the feasi-
bility of such a tool, but work remains to integrate this tool with
other detection systems. A different kind of automation would be
to develop spectral signatures for use in attack detection systems
such as Snort [32].

8.2 Modeling
Many simulation studies of DoS attacks and responses use fairly

simple traffic models such as constant bit-rate sources with fixed
size packets, yet such models fail to capture the nuances of attack
traffic. While real attack tools are easy to obtain and can be used in
a testbed, there remain questions about how to support large num-
bers of attack machines and how to configure a testbed to reproduce
attacks similar to those in the wild. Thus to create synthetic DoS
traffic, both in simulation and testbeds, we need a better under-
standing of DoS attack traffic.

To our knowledge there have been no published studies of de-
tailed characterization or models of DoS attacks. Studies based
on back-scatter observe attacks indirectly, and thus do not capture
fine-grained details of the attack dynamics [27]. Given the many
modes of failure an attack can cause (hardware failures, exploita-
tion of software glitches and misconfiguration, etc.), it is important
to create faithful reproductions of real attacks. Although not the
focus of this paper, we include some statistics about the kinds of
attacks we see in the wild. Future work may use our tools as part
of a broader study to better characterize DoS attacks, laying down

Figure 18: Limitations when extrapolating Los Nettos DoS ac-
tivity to the Internet.

the groundwork for the creation of more realistic attack models.

8.3 Inferring DoS Activity in the Internet
Using our detection tools, we captured 80 DoS attacks in Los

Nettos over five months. If we consider these attacks to be a sam-
ple of DoS activity in the Internet as a whole, we can project this
activity to the public Internet. Such a projection should be consid-
ered extremely rough because of the small fraction of the Internet,
the relatively small number of attacks we observed, and because
such an estimation requires several assumptions about character-
istics of the component information. Due to the limitations about
these assumptions, we consider our estimates to have an error of
at least a factor of 2. However, we suggest that the methodology
proposed below coupled with a larger future monitoring effort can
provide a reasonable Internet-wide estimate of attacks.

To provide a rough projection, we first compare the size of the
monitored address space to the Internet. We monitored about 0.105%
of the advertised Internet address space, determined by compar-
ing the size of the routing table advertised by Los Nettos to the
size of the advertised Internet address space as reported by Route
Views [24] on 15 December 2002. We assume that both Los Net-
tos and the Internet allocates address space equally uniformly. (At
small granularities, we know that addresses are not allocated uni-
formly, and ISP policy strongly influences address allocation den-
sity.) Given these assumptions, we can scale our observations to
the Internet accordingly (by a factor of 950).

We observe both DoS attacks that transit and terminate in Los
Nettos. Since distributed DoS attacks depart from many sources
to attack a single victim, we would expect that counts of transiting
attacks to be more prevalent than terminating attacks alone. For
example, in Figure 18 we monitor a quarter of the address space. If
we measure unique victims from the shaded area we observe 3 at-
tacks and project 12, overestimating by a factor of three. If instead
we observe only terminating attacks, we get an accurate estimate
of 4. In general, projections from transit traffic identify a loose
upper-bound on the number of attacks, since it may overestimate
by the minimum of the scale-up factor or the number distributed at-
tackers. Unfortunately, the number of attacks that terminate in our
monitored address space is quite low, and so the accuracy of our
projections is limited.

Since we project based on the number of attacks that terminate in
our monitored area, our projections assume that the monitored area
draws about the same number of attacks as a typical part of the
Internet. We only monitored two of the four external connections
of Los Nettos (see Figure 4) and so we increase our projection by a
factor of two.

Our automated monitoring tool discards traces without major at-
tacks (see Section 5.1), so we miss low-rate attacks that use few
addresses. It is difficult to quantify this false negative rate, but be-
lieve we capture most large attacks and miss many small attacks. If
these assumptions are true, the number of attacks observed can be
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Month In Los Nettos In the Internet
transiting terminating terminating (projected)

July 18 6 11400
Aug 12 1 1800
Sept 10 5 9500
Oct 10 0 0*
Nov 9 6 11400

Table 7: Extrapolating Los Nettos DoS activity to the Internet.

considered a lower bound.
Based on these assumptions, Table 7 projects our observations

to the Internet as a whole. Clearly these projections are tentative,
since it is very unlikely, for example that there were no attacks any-
where in the Internet in October. One point of comparison is the
work of Moore et al. where they observe backscatter from 12,805
attacks in 3 weeks [27]. Direct comparison between their obser-
vation and ours is extremely difficult since the methodology and
classes of counted attacks are very different, but it is somewhat re-
assuring that both their observation and our estimate are roughly
the same order of magnitude.

Although the observations are very rough and require many as-
sumptions, we believe this methodology will be useful at approx-
imating attack prevalence if we can increase the size and duration
of the monitored region. We are working on doing both.

9. CONCLUSION AND FUTURE WORK
In this paper we present a framework to classify attacks based

on the number of sources present in the attack stream. The identi-
fication of single- and multi-sources attacks is based only on local
information readily available in the attack stream and uses header
content, initial ramp-up transients, and spectral analysis.

We test our framework on 80 attacks collected from two peering
links at a moderate size commercial ISP. We validate our frame-
work with attacks captured at a second monitoring site and experi-
mentally, using synthetically generated attack traffic on a wide-area
network and with real attack tools on a testbed. We use experiments
and simulations to explain the physical causes for the difference in
attack characteristics.

DoS attacks are constantly evolving, and currently there is a
dearth of detailed information regarding attack dynamics. An em-
pirical study, as presented in this paper, enables fine-grained anal-
ysis of attack patterns and topologies, that can be used to validate
defense mechanisms and increase confidence in the solutions. The
attack database created during this study can be used for a number
of purposes; developing an automatic detection and response sys-
tem based on number of attackers, developing high-fidelity models
of attack dynamics, and inferring global DoS activity.

This work adopts a unique approach in analysis of attacks based
on local attack information. Currently we have two observation
points to capture attacks. When large attacks occur, like the recent
root-server attack, additional detection sites would aid by providing
multiple vantage points for the same attack, strengthening our clas-
sification framework. Additional detection sites would also provide
more insight when projecting the prevalence of DoS activity on the
Internet.
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