Undermining an Anomaly-Based Intrusion
Detection System Using Common Exploits

Kymie M.C. Tan, Kevin S. Killourhy, and Roy A. Maxion

Dependable Systems Laboratory
Computer Science Department
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213 USA

Abstract. Over the past decade many anomaly-detection techniques
have been proposed and/or deployed to provide early warnings of cyber-
attacks, particularly of those attacks involving masqueraders and novel
methods. To date, however, there appears to be no study which has
identified a systematic method that could be used by an attacker to
undermine an anomaly-based intrusion detection system. This paper
shows how an adversary can craft an offensive mechanism that renders
an anomaly-based intrusion detector blind to the presence of on-going,
common attacks. It presents a method that identifies the weaknesses of
an anomaly-based intrusion detector, and shows how an attacker can
manipulate common attacks to exploit those weaknesses. The paper ex-
plores the implications of this threat, and suggests possible improvements
for existing and future anomaly-based intrusion detection systems.

1 Introduction

In recent years, a vast arsenal of tools and techniques has been accumulated to
address the problem of ensuring the availability, integrity and confidentiality of
electronic information systems. Such arsenals, however, are frequently accompa-
nied by equally vast “shadow” arsenals of tools and techniques aimed specifi-
cally at subverting the schemes that were designed to provide system security.
Although a shadow arsenal can be viewed negatively as a formidable threat to
the security of computer systems, it can also be viewed positively as a source of
knowledge for identifying the weaknesses of current security tools and techniques
in order to facilitate their improvement.

A small part of the security arsenal, and the focus of this work, is the
anomaly-based intrusion-detection system. Anomaly-based intrusion-detection
systems have sought to protect electronic information systems from intrusions
or attacks by attempting to detect deviations from the normal behavior of the
monitored system. The underlying assumption is that such deviations may indi-
cate that an intrusion or attack has occurred (or may still be occurring) on the
system. Anomaly detection — detecting deviations from normal — is one of two
fundamental approaches used in systems that seek to automate the detection of
attacks or intrusions; the other approach is signature-based detection. Anomaly

A. Wespi, G. Vigna, and L. Deri (Eds.): RAID 2002, LNCS 2516, pp. 54-73, 2002.
© Springer-Verlag Berlin Heidelberg 2002

Undermining an Anomaly-Based Intrusion Detection System 55

detection is typically credited with a greater potential for addressing security
problems such as the detection of attempts to exploit new or unforeseen vul-
nerabilities (novel attacks), and the detection of abuse-of-privilege attacks, e.g.,
masquerading and insider misuse [1].

The promise of the anomaly-detection approach and its incorporation into a
number of current automated intrusion-detection strategies (e.g., AT&T’s Com-
puterWatch, SRI’s Emerald, SecureNet, etc. [1]) underscores the importance of
studying how attackers may fashion counter-responses aimed at undermining
the effectiveness of anomaly-based intrusion-detection systems. Such studies are
important for two reasons:

— to understand how to strengthen the anomaly-based intrusion-detection sys-
tem by identifying its weaknesses; and

— to provide the necessary knowledge for guiding the design and implementa-
tion of a new generation of anomaly-based intrusion detectors that are not
vulnerable to the weaknesses of their forebears.

This paper lays out a method for undermining a well-known anomaly-based
intrusion-detection system called stide [2], by first identifying the weaknesses
of its anomaly-detection algorithm, and then by showing how an attacker can
manipulate common attacks to exploit those weaknesses, effectively hiding the
presence of those attacks from the detector’s purview. Stide was chosen pri-
marily because it is freely available to other researchers via the Internet. Its
accessibility not only encourages independent verification and replication of the
work performed here, but it also builds on, and contributes to, a large body of
previously published work that uses the stide detection mechanism.

To undermine an anomaly-based intrusion detector, an attacker needs to
know the three elements described in Table 1. These elements set the framework
for the paper.

Table 1. Elements of methodology for undermining.

1. Detection coverage (specifically, blind spots) of an anomaly detector.
2. Where and how an attack manifests in sensor data.

3. How to shift the manifestation from a covered spot to a blind one.

2 Approaches to Undermining Anomaly Detectors

There are two approaches that would most obviously cause an anomaly detector
to miss detecting the anomalous manifestation of an attack. The first of these
two items describes the approach commonly found in the literature; the second
describes the approach adopted by this study.

56 K.M.C. Tan, K.S. Killourhy, and R.A. Maxion

— modify the normal to look like the attack, i.e., incorporate the attack mani-
festations into the model of normal behavior; or
— modify the attack to make it appear as normal behavior.

In the intrusion detection literature, the most cited way to undermine an
anomaly-based intrusion detection system is to incorporate undesired, intrusive
behavior into the training data, thereby falsely representing “normal” behavior
[1,9,10]. By including intrusive behavior explicitly into the training data, the
anomaly detector is forced to incorporate the intrusive behavior into its internal
model of normal and consequently lose the ability to flag future instances of that
intrusive behavior as anomalous. Note that the anomaly detector is viewed as
that component of an anomaly-based intrusion detection system solely respon-
sible for detecting deviations from normal; it performs no diagnostic activities.

For example, one way to incorporate intrusive behavior into an anomaly de-
tector’s model of normal behavior is to exploit the fact that behavior can change
over time. Changing behavior requires the anomaly detector to undergo periodic
on-line retraining. Should the information system undergo attacks during the
retraining process, then the anomaly detector could inadvertently incorporate
undesired attack behavior into its model of normal behavior [1]. The failure of
an anomaly-based intrusion detector to detect intrusions or attacks can typi-
cally be attributed to contaminated training data, or to updating schemes that
incorporate new normal behavior too quickly.

Undermining an anomaly-based intrusion detection system by simply incor-
porating intrusive behavior into its training data is too imprecise and abstract a
method as to be practically useful to an attacker. Identifying and accessing the
segment, feature or attribute of the data that will be used to train an anomaly
detector, and then surreptitiously and slowly introducing the intrusive behavior
into the training dataset, may require time, patience and system privileges that
may not be available to an attacker. Moreover, such a scheme does not provide
the attacker with any guarantees as to whether or not the act of subversion
has been, or will be, successful. The incorporation of intrusive behavior into the
training data is no guarantee that the anomaly detector will be completely blind
to the attack when the attack is actually deployed. The attacker has no knowl-
edge of how the anomaly detector perceives the attack, i.e., how the attack truly
manifests in the data, and no knowledge concerning the conditions that may
impede or boost the anomaly detector’s ability to detect the manifestation of
the attack. For example, even if intrusive behavior were to be incorporated into
an anomaly detector’s model of normal, it is possible that when the attack is
actually deployed, it will interact with other conditions in the data environment
(conditions that may not have been present during the training phase), causing
anomalous manifestations that are detectable by the anomaly detector. It is also
possible for the anomalous manifestation of an attack to be detectable only when
the detector uses particular parameter values. These points illustrate why it is
necessary to determine precisely what kinds of anomalous events an anomaly
detector may or may not be able to detect, as well as the conditions that enable
it to do so.

Undermining an Anomaly-Based Intrusion Detection System 57

These issues are addressed by determining the coverage of the anomaly de-
tector in terms of anomalies (not in terms of attacks); this forms the basis of the
approach. Only by knowing the kinds of anomalies that are or are not detectable
by a given anomaly detector is it possible to modify attacks to manifest in ways
that are not considered abnormal by a given anomaly detector. The coverage of
an anomaly detector serves as a guide for an attacker to know precisely how to
modify an attack so that it becomes invisible to the detector.

3 Detection Coverage of an Anomaly Detector

Current evaluation techniques attempt to establish the detection coverage of an
anomaly-based intrusion detection system with respect to its ability to detect
attacks [21,4,5] , but without establishing whether or not the anomalies detected
by the system are attributable to the attack. Typically, claims that an anomaly-
based intrusion detector is able to detect an attack are based on assumptions that
the attack must have manifested in a given stream of data, that the manifestation
was anomalous, and that the anomaly detector was able to detect that specific
kind of anomaly.

The anomaly-based evaluation technique described in this section establishes
the detection coverage of stide [2,21] with respect to the types of anomalous
manifestations that the detector is able to detect. The underlying assumption of
this evaluation strategy is that no anomaly detection algorithm is perfect. Before
it can be determined whether an anomaly-based intrusion detector is capable of
detecting an attack, it must first be ascertained that the detector is able to
detect the anomalous manifestation of the attack.

This section shows how detection coverage (in terms of a coverage map) can
be established for stide. For the sake of completeness, and to facilitate a bet-
ter understanding of the anomaly-based evaluation strategy, the stide anomaly-
detection algorithm is described, followed by a description of the anomaly-based
evaluation strategy used to establish stide’s detection coverage. A description
and explanation of the results of the anomaly-based evaluation is given.

3.1 Brief Description of the Stide Anomaly Detector

Stide operates on fixed-length sequences of categorical data. It acquires a model
of normal behavior by sliding a detector window of size DW over the training
data, storing each DW-sized sequence in a “normal database” of sequences of
size DW . The degree of similarity between test data and the model of normal
behavior is based on observing how many DW -sized sequences from the test data
are identical matches to any sequences from the normal database. The number
of mismatches between sequences from the test data and the normal database
is noted. The anomaly signal, which is the detector’s response to the test data,
involves a user-defined parameter known as the “locality frame” which deter-
mines the size of a temporally local region over which the number of mismatches
is summed up. The number of mismatches occurring within a locality frame is

58 K.M.C. Tan, K.S. Killourhy, and R.A. Maxion

referred to as the locality frame count, and is used to determine the extent to
which the test data are anomalous. A detailed description of stide and its origins,
can be found in [2,21].

3.2 Evaluation Strategy for Anomaly Detectors

It is not difficult to see that stide will only detect “unusual” or foreign sequences
— sequences that do not exist in the normal database. Its similarity metric es-
tablishes whether or not a particular sequence exists in a normal database of
sequences of the same size. Such a scheme means that any sequence that is
foreign to the normal database would immediately be marked as an anomaly.
However, this observation alone is not sufficient to explain the anomaly detector’s
performance in the real world. There are two other significant issues that must
be considered before the performance of the anomaly detector can be understood
fully. Specifically:

— how foreign sequences actually manifest in categorical data; and
— how the interaction between the foreign sequences and the anomaly detection
algorithm affects the overall performance of the anomaly detector.

In order to obtain a clear perspective of these two issues, a framework was
established in [12,19] that focused on the architecture and characteristics of
anomalous sequences, e.g., foreign sequences. The framework defined the anoma-
lous sequences that a sliding-window anomaly detector like stide would likely
encounter, and provided a means to describe the structure of those anomalous
sequences in terms of how they may be composed from other kinds of sub-
sequences. The framework also provided a means to describe the interaction
between the anomalous sequences and the sliding window of anomaly-detection
algorithms like stide. Because the framework established how each anomalous
sequence was constructed and composed, it was possible to evaluate the detec-
tion efficacy of anomaly detectors like stide on synthetic data with respect to
examples of clearly defined anomalous sequences. The results of the evaluation
showed the detection capabilities of stide with respect to the various foreign se-
quences that may manifest in categorical data, and how the interaction between
the foreign sequences in categorical data and the anomaly-detection algorithm
affected the overall performance of the anomaly detector.

3.3 Stide’s Performance Results

The most significant result provided by the anomaly-based evaluation of stide
was that there were conditions that caused the detector to be completely blind
to a particular kind of foreign sequence that was found to exist (in abundance)
in real-world data [19]: a minimal foreign sequence. A minimal foreign sequence
is foreign sequence whose proper subsequences all exist in the normal data. Put
simply, a minimal foreign sequence is a foreign sequence that contains within it
no smaller foreign sequences.

Undermining an Anomaly-Based Intrusion Detection System 59

= 12 - * * * * * * * * * *
o ! Detection Region
'g 11+ * * * * * * * * *
E 10 * * * * * * * * * Y
] |
a3 9 * * * * * * * * * >
(] |
° 8 * * * * * * * *
S |
S 7 + * * * * * * *
g 6 - * * * * * *
(7] |
5 * * * * *
4 * * * *
3+ * * *
3 Blind Region
2 - * E
I
1 1 1 1 1 1 1 1 1]
1 2 3 4 5 6 7 8 9 10

Size of minimal-foreign-sequence anomaly

Fig. 1. The detector coverage (detection map) for stide; A comparison of the size of
the detector window (rows) with the ability to detect different sizes of minimal foreign
sequence (columns). A star indicates detection.

For stide to detect a minimal foreign sequence, it is imperative that the size of
the detector window is set to be equal to or larger than the size of the minimal
foreign sequence. The consequence of this observation can be seen in Figure
1 which shows stide’s detection coverage with respect to the minimal foreign
sequence. This coverage map for stide, although previously presented in [19],
is shown again here as an aid to the reader’s intuition for the coverage map’s
essential role in the subversion scheme.

The graph in the figure plots the size of the minimal foreign sequence on
the x-axis and the size of the detector window on the y-axis. Each star marks
the size of the detector window that successfully detected a minimal foreign
sequence whose corresponding size is marked on the x-axis. The term detect for
stide means that the minimal foreign sequence must have caused as at least
one sequence mismatch. The diagonal line shows the relationship between the
detector window size and the size of the minimal foreign sequence, a relationship
that can be described by the function, y = x. The figure also shows a region
of blindness in the detection capabilities of stide with respect to the minimal
foreign sequence. This means that it is possible for a foreign sequence to exist
in the data in such a way as to be completely invisible to stide. This weakness
will presently be shown to be exploitable by an attacker.

60 K.M.C. Tan, K.S. Killourhy, and R.A. Maxion

4 Deploying Exploits and Sensors

At this point of the study, the first step in undermining an anomaly detector
(see Table 1) has been completed; the detection coverage for stide has been
established, and it was observed that the anomaly detector exhibited occasions
of detection blindness with respect to the detection of minimal foreign sequences.

The following is a summary of the procedure that was performed in order
to address the remaining two items in the method for subverting an anomaly
detector listed in Table 1. The remaining two items are where and how an attack
manifests in data, and how the manifestation of exploits can be modified to
hide the presence of those exploits in the regions of blindness identified by the
detection coverage for stide.

1. Install the sensor that provides the anomaly detector with the relevant type
of data. In the present work, the sensor is the IMMSEC kernel patch for
the Linux 2.2 kernel [18]. The kernel patch records to a file the system calls
made by a pre-determined set of processes.

2. Download the passwd and traceroute exploits and determine the corre-
sponding system programs that these exploits misuse.

3. Execute the system program under normal conditions to obtain a record
of normal usage, to obtain normal data. An account of what is considered
normal conditions and normal usage of the system programs that correspond
to both exploits is described in section 5.2.

4. Deploy the exploits against the host system to obtain the data recording the
occurrence of the attacks.

5. Identify the precise manifestation of the attacks in the sensor data.

6. Using the normal data obtained from step 3, and the intrusive data obtained
from step 4, deploy stide to determine if the anomaly detector is capable of
detecting the unmodified exploits that were simply downloaded, compiled
and executed. This is performed in order to establish the effectiveness of the
subversion process. If stide is able to detect the unmodified exploits but not
the modified exploits, then the subversion procedure has been effective.

7. Using information concerning the kind of events that stide is blind to, modify
the attacks and show that it is possible to make attacks that were once
detectable by stide, undetectable for detector window sizes one through six.

5 Where and How an Attack Manifests in the Data

This section addresses the second item in the list of requirements for undermining
an anomaly detector — establishing where and how an attack manifests in sensor
data (see Table 1) — by selecting two common exploits, deploying them, and
establishing how and where they manifest in the sensor data. Steps 2 to 5 of the
method laid out above are covered by this section.

Undermining an Anomaly-Based Intrusion Detection System 61

5.1 Description and Rationale for the Exploits Chosen

The attacks selected for this study are examples of those that stide is designed
to detect, i.e., attacks that exploit privileged UNIX system programs. UNIX
system programs typically run with elevated privileges in order to perform tasks
that require the authority of the system administrator — privileges that ordinary
users are not typically afforded. The authors of stide have predominantly ap-
plied the detector towards the detection of abnormal behavior in such privileged
system programs, because exploiting vulnerabilities to misuse privileged system
programs can potentially bestow those extra privileges on an attacker [6].

Two attacks were chosen arbitrarily out of several that fulfill the requirement
of exploiting UNIX system programs. The two attacks chosen will be referred
to as the passwd and traceroute exploits. The passwd exploit takes advantage
of a race condition between the Linux kernel and the passwd system program;
the traceroute exploit takes advantage of a vulnerability in the traceroute
system program.

passwd is a system program used to change a user’s password [3]. The pro-
gram allows an ordinary user to provide his or her current password, along with
a new password. It then updates a system-wide database of the user’s informa-
tion so that the database contains the new password. The system-wide database
is commonly referred to as the /etc/passwd or the /etc/shadow file. A user
does not normally have permission to edit this file, so passwd must run with
root privileges in order to modify that file. The exploit that misuses the passwd
system program does so by employing a race condition that is present in the
Linux kernel to debug privileged processes.

Normally, the passwd system process performs only a restricted set of actions
that consists of editing the /etc/passwd and/or the /etc/shadow file. However,
the passwd system process can be made to do more, because of a race condition
in the Linux kernel which allows an unprivileged process to debug a system
process. Using an unprivileged process, an attacker can alter or “debug” the
passwd system process and force it to execute a command shell, granting the
attacker elevated privileges.! Details of race conditions in the Linux kernel are
given in [13] and [17]. The passwd exploit was obtained from [15].

The traceroute network diagnostic utility is a system program that is usu-
ally employed by normal users to gather information about the availability and
latency of the network between two hosts [7]. To accomplish this task, the
traceroute system program must have unrestricted access to the network inter-
face, a resource provided only to privileged system programs. However, a logic
error in the traceroute system program allows an attacker to corrupt the mem-
ory of the process by specifying multiple network gateways on the command line
[16]. The traceroute exploit uses this memory corruption to redirect the pro-
cess to instructions that execute a command shell with the elevated privileges
of the traceroute system program [8]. More detail on this memory corruption
vulnerability is provided in [16]. The traceroute exploit was obtained from [8].

! In industry parlance, the instructions injected by the exploit are termed “shellcode”,
and the shell in which an intruder gains elevated privileges is a “rootshell.”

62 K.M.C. Tan, K.S. Killourhy, and R.A. Maxion

Several key features make certain attacks or exploits likely candidates for
subverting sequence-based anomaly detectors such as stide. The subversion tech-
nique presented in this paper is more likely to be effective when:

— the vulnerability exploited involves a system program that runs with elevated
(root) privileges;

— the vulnerability allows an attacker to take control of the execution of the
system program, giving the attacker the ability to choose the system kernel
calls or instructions that are issued by the system program,;

— the attack does not cause the system program to behave anomalously (e.g.
produce an error message in response to an invalid input supplied by the
attacker) before the attack/attacker can take control of the execution of the
system program;

— the system kernel calls occurring after the “point of seizure”, i.e., the point
in the data stream at which the attacker first takes control of the system
program, include any or all of execve, or open/write, or chmod, or chown,
or any other system kernel call that the attacker can use to effect the attack.

5.2 Choice of Normal Data

It is unreasonable to expect an attacker to be able to identify and access the
precise segment, feature or attribute of the data that can be used to train an
anomaly detector. The time, patience and system privileges required to do so
may simply not be available to an attacker. However, since training data is
vital to the function of an anomaly detector, the attacker has to construct an
approximation of the training data that may have been used by the anomaly
detector if he or she desires to exploit a blind spot of the detector.

For anomaly detectors like stide, i.e., anomaly detectors that monitor sys-
tem programs, training data can be approximated more easily, because system
programs typically behave in very set and regimented ways. For example, the
passwd and traceroute system programs are limited in the number of ways that
they can be used, and as a result it is possible to make reasonable assumptions
about how these programs would be regularly invoked.

These assumptions may be aided by the wealth of easily accessible docu-
mentation that typically accompanies each system program, as well as by any
general knowledge or experience already acquired by the attacker. It is important
to note, however, that the success of this method for undermining stide relies on
the attacker’s being able to approximate normal usage of the system program.

To be successful at undermining stide, the attacker does not need to obtain
every possible example of a system program’s normal behavior. If the anomalous
manifestation of an exploit can already be crafted by an extremely reduced subset
of normal behavior, then it can only be expected that more examples of normal
behavior contribute to an increased number of ways with which to construct the
anomalous manifestation of the exploit.

For the passwd system program, normal data was obtained by executing the
passwd system program with no arguments, and then by following the instruc-
tions displayed by the program to input the user’s current password once, and

Undermining an Anomaly-Based Intrusion Detection System 63

then their new password twice. In other words passwd was invoked to expire an
old password and install a new one.

For the traceroute system program, normal data was obtained by executing
traceroute to acquire diagnostic information regarding the network connectiv-
ity between the local host and the Internet site nis.nsf.net. This site was
chosen because it is the simplest example of using traceroute, based on the
documentation provided with the program itself [7].

5.3 Establishing Attack Manifestations in Sensor Data

Two issues are addressed in this subsection. The first is whether the attacks
embodied by the execution of the chosen exploits actually manifested in the
sensor data, and the second is whether the manifestation is an anomalous event
detectable by stide. Simply because an attack can be shown to manifest in the
sensor data does not necessarily mean that the manifestation is automatically
anomalous. It is necessary to establish that the manifestation of the exploits are
initially detectable by stide in order to show that any modifications to the same
exploits effectively render them undetectable by the same detector.

Before proceeding any further it is necessary to define what is meant by the
term manifestation within the scope of this study. The manifestation of an attack
is defined to be that sequence of system calls issued by the exploited/privileged
system program, and due to the presence and activity of the exploit. The re-
mainder of this section describes how the manifestations of the two exploits,
passwd and traceroute, were obtained.

passwd. The passwd exploit was downloaded from [15]; then it was compiled
and deployed. There were no parameters that needed to be set in order to execute
the exploit. The successful execution of the exploit was confirmed by checking
that elevated privileges were indeed conferred.

The manifestation of the passwd exploit was determined manually. An in-
spection of the source code for both the passwd exploit and that portion of the
Linux kernel responsible for the race condition vulnerability identified the pre-
cise system calls that were attributable to the attack. The sequence of system
calls that comprise the manifestation of the attack embodied by the passwd
exploit is setuid, setgid, execve. Stide was then deployed, using the normal
data described above as training data, plus the test data comprised of the data
collected while the passwd exploit was executed. Stide was run with detector
window sizes ranging from 1 to 15. It was found that the attack was detectable
at all detector window sizes. More precisely, the attack was detectable by stide
because setuid, setgid, and execve were all foreign symbols. From the detec-
tion map of stide in Figure 1, it can be seen that stide is capable of detecting
size-1 foreign symbols at any detector window size.

64 K.M.C. Tan, K.S. Killourhy, and R.A. Maxion

traceroute. The traceroute exploit was downloaded from [8]; then it was
compiled and deployed. The traceroute exploit expects values for two argu-
ments. The first argument identifies the local platform, and the second argu-
ment is a hexadecimal number that represents the address of a specific function
in memory. This address is overwritten to point to an attacker-specified function.
The successful execution of the exploit was confirmed by checking that elevated
privileges were indeed conferred.

The manifestation of the traceroute exploit was determined manually. An
inspection of the source code for the traceroute exploit as well as for the
traceroute system program, identified the precise system calls that were at-
tributable to the attack. The sequence of system calls that comprise the man-
ifestation of the attack embodied by the traceroute exploit is: brk, brk, brk,
setuid, setgid, execve. Mirroring the deployment strategy for passwd, stide
was trained on the previously collected traceroute normal data, and run with
detector-window sizes 1-15. The attack was shown to be detectable at all window
sizes, because setuid, setgid, and execve were all foreign symbols.

6 Manipulating the Manifestation; Modifying Exploits

Three vital items of knowledge have been established up to this point: the char-
acteristics of the minimal-foreign-sequence event that stide is sometimes unable
to detect; the conditions ensuring that stide does not detect such an event (the
detector-window size must be smaller than the size of the minimal foreign se-
quence); and the fact that stide is completely capable of detecting the two cho-
sen exploits when they were simply executed on the host system without any
modifications. This means that the anomaly detector is completely effective at
detecting these exploits should an attacker decide to deploy them.

How can these exploits be modified so that the anomaly detector does not
sound the alarm when the modified exploits are deployed? How can an attacker
provide his or her attack(s) with every opportunity to complete successfully and
stealthily? This section shows how both exploits, guided by the detection map
established for stide, can be modified to produce manifestations (or signatures)
in the sensor data that are not visible to the detector.

6.1 Modifying passwd and traceroute

In aiming to replace the detectable anomalous manifestations of the exploits
with manifestations that are undetectable by stide, there are two points that
must be considered. Recall that each exploit embodies some goal to be attained
by the attacker, e.g., elevation of privileges.

First, because the method for achieving the goal that is embodied by each
exploit, passwd and traceroute, produces an anomalous event detectable by
stide, namely a foreign symbol, another method for achieving the same goal
must be found to replace it. Note that the goal of both exploits is the typical
one of securing an interactive shell with elevated privileges. Interestingly, the

Undermining an Anomaly-Based Intrusion Detection System 65

Table 2. The system calls that implement each of three methods that attempt to
achieve the same goal of securing an interactive root account accessible to the attacker.

Description of method System calls that implement method

1 | Changing the access rights to the | chmod, exit
/etc/passud file in order to give the
attacker permission to modify the file
(write permission)

2 | Changing the ownership of the | chown, exit
/etc/passwd file to the attacker

3 | Opening the /etc/passwd file to append | open, write, close, exit
a new user with root privileges

new means of achieving the same goal involves changing the value of only one
variable in both exploit programs.

Second, the new method of achieving the same goal must not produce any
manifestation that is detectable by stide. Although this could mean that both
exploits are modified so that their manifestations appear normal, i.e., their man-
ifestations match sequences that already exist in the normal data, it is typically
more difficult to do this than to cause the exploits to manifest as foreign se-
quences. The difficulty lies in the fact that the kinds of normal sequences that
can be used to effect an attack may be small. This makes it more likely that
an attacker may require sequences that lie outside the normal vocabulary, i.e.,
foreign sequences.

6.2 New Means to Achieve Original Goals in Exploit Programs

In Section 5.3 it was shown that the execution of the passwd and traceroute
exploits were detectable by stide because both exploits manifested anomalously
as the foreign symbols setuid, setgid, and execve. Any attack that introduces
a foreign symbol into the sensor data that is monitored by stide, will be detected.
This is because foreign symbol manifestations lie in the visible region of stide’s
detection map. In order for the traceroute or passwd exploits to become unde-
tectable by stide, they must not produce the system calls setuid, setgid, and
execve. Instead an alternate method causing the exploits to manifest as minimal
foreign sequences is required. Only system calls that are already present in the
normal data can be the manifestation of the exploits.

For the passwd exploit, another method for achieving the same goal of secur-
ing an interactive shell with elevated privileges that does not involve the foreign
symbols setuid, setgid, and execve would be to cause the exploit program to
give the attacker permission to modify the /etc/passwd file. With such access,
the attacker can then edit the accounts and give him or herself administrative
privileges, to be activated upon his or her next login. The system calls required

66 K.M.C. Tan, K.S. Killourhy, and R.A. Maxion

to implement this method are chmod and exit. These two calls are found in the
normal data for the passwd system program.

There at least two other methods that will achieve the same goal. A second
method would be to give the attacker ownership of the /etc/passwd file, and a
third method would be to make the affected system program directly edit the
/etc/passud file to add a new administrative (root) account that is accessi-
ble to the attacker. The system calls that would implement all three methods
respectively are listed in Table 2.

For the traceroute exploit, the other method for achieving the same goal
of securing an interactive shell with elevated privileges that does not involve the
foreign symbols setuid, setgid, and execve, is to make the affected system
program directly edit the /etc/passwd file to add a new administrative (root)
account that is accessible to the attacker. The system calls required to implement
this method are open, write, close, and exit. All these system calls can be
found in the normal data for the traceroute system program.

6.3 Making the Exploits Manifest as Minimal Foreign Sequences

In the previous subsection, the two exploits were made to manifest as system
calls that can be found in the normal data for the corresponding passwd and
traceroute system programs. This is still insufficient to hide the manifestations
of the exploits from stide, because even though system calls that already exist in
the normal data were used to construct the new manifestation of each exploits,
the order of the system calls with respect to each other can still be foreign to the
order of system calls that typically occur in the normal data. For example, even if
chmod and exit both appear in the passwd normal data, both calls never appear
sequentially. This means that the sequence chmod, exit, is a foreign sequence
of size 2, foreign to the normal data. More precisely, this is a minimal foreign
sequence of size 2, because the sequence does not contain within it any smaller
foreign sequences or foreign symbols.

As a consequence, stide with a detector window of size 2 or larger would be
fully capable of detecting such a manifestation. In order to make the manifesta-
tion invisible to stide, it is necessary to increase the size of the minimal foreign
sequence. Increasing the size raises the chances of falling into stide’s blind spot.
Referring to Figure 1, it can be seen that the larger the size of the minimal
foreign sequence, the larger the size of the blind spot.

To increase the size of the minimal foreign sequence, the short minimal foreign
sequences that are the manifestations of both exploits (chmod, exit for the
passwd exploit, and open, write, close, and exit for the traceroute exploit)
must be padded with system calls from the normal data that would result in
larger minimal foreign sequences with common subsequences. For example, for
passwd the short minimal foreign sequence that is the manifestation of the new
method described in the previous section is chmod, exit. This is a minimal
foreign sequence of size 2. To increase this minimal foreign sequence it can be
seen that in the normal data for passwd, the system call chmod is followed by

Undermining an Anomaly-Based Intrusion Detection System 67

the sequence utime, close, munmap, and elsewhere in the normal data, munmap
is followed by exit. These two sequences

1. chmod, utime, close, munmap
2. munmap, exit

can be concatenated to create a third sequence
3. chmod, utime, close, munmap, exit.

A method of attack can be developed which manifests as this concatenated
sequence. This method is functionally equivalent to the method developed in
the previous subsection; it gives the attacker permission to modify /etc/passwd
with the chmod system call and exits with the exit system call. The three system
calls utime, close, and munmap are made in such a way that they do not alter
the state of the system.

If stide employed a detector window of size 2, and the detector window slid
over the manifestation of the exploit that is the sequence chmod, utime, close,
munmap, exit, no anomalies would result; no alarms would be generated because
the manifestation no longer contains any foreign sequences of size 2. However, if
stide employed a detector window of size 3, a single anomaly would be detected,
namely the minimal foreign sequence of size 3, close, munmap, exit, which would
result in an alarm.

The simple example given above describes the general process for creating
the larger minimal foreign sequences required to fool stide. By performing an
automated search of the normal data it is possible to find all sequences that can
be used by an attacker as padding for the manifestation of a particular exploit.
The general process for creating larger minimal foreign sequences was automated
and used to modify both the passwd and traceroute exploits.

It is important to note that because stide only analyzes system calls and not
their arguments, it is possible to introduce system calls to increase the size of
minimal foreign sequences without affecting the state of the system. Executing
system calls introduced by the attacker that are aimed at exploiting stide’s blind
spot need not cause any unintended side-effects on the system because the argu-
ments for each system call is ignored. It is therefore possible to introduce system
calls that do nothing, such as reading and writing to an empty file descriptor, or
opening a file that cannot exist. This point argues for using more diverse data
streams in order to provide more effective intrusion detection. Analyzing only
the system call stream may be a vulnerability in anomaly detectors.

7 Evaluating the Effectiveness of Exploit Modifications

A small experiment is performed to show that the modified exploits were indeed
capable of fooling stide. As shown in the previous section, a single deployment
of a modified exploit is accompanied by a parameter that determines the size
of the minimal foreign sequence that will be the manifestation of the exploit.
Each exploit was deployed with parameter values that ranged between 2 and 7.
A minimum value of 2 was chosen, because it is the smallest size possible for a

68 K.M.C. Tan, K.S. Killourhy, and R.A. Maxion

minimal foreign sequence. The maximum value chosen was 7, because a minimal
foreign sequence of size 7 would be invisible to stide employing a detector window
of size 6. In the literature, stide is often used with a detector window of size 6 [6,
21]. 6 has been referred to as the “magic” number that has caused stide to begin
detecting anomalies in intrusive data [6,11]. Using a detector window of size 6
in this experiment serves to illustrate a case where 6 may not be the best size
to use because it will miss detecting exploits that manifest as minimal foreign
sequences of size 7 and higher.

Each of the two exploits were deployed 6 times, one for each minimal foreign
sequence size from 2 to 7. For each execution of an exploit, stide was deployed
with detector window sizes 1 to 15. 1 was chosen as the minimum value simply
because it is the smallest detector window size that the detector can be deployed
with, and 15 was chosen as the maximum arbitrarily.

7.1 Results

The x-axis for the graph in Figure 2 represents the size of the minimal foreign
sequence anomaly, and the y-axis represents the size of the detector window.
Each star marks the size of the detector window that successfully detected a
minimal foreign sequence whose corresponding size is marked on the x-axis. The
term detect for stide means that the manifestation of the exploit must have
registered as at least one sequence mismatch. Only the results for traceroute
are presented. The results for passwd are very similar and have been omitted
due to space limitations.

The graph in Figure 2 mirrors the detection map for stide, showing that the
larger the minimal foreign sequence that is the manifestation of an exploit, the
larger the detector window required to detect that exploit. Each circle marks the
intersection between the size of the minimal foreign sequence that is the mani-
festation of the exploit and the size of the detector window used by stide, namely
6. Within each circle the presence of the star indicates that the manifestation of
the exploit was detected by stide with a window size of 6.

Each successive circle along the x-axis at y = 6 depicts a shift in the man-
ifestation of the exploit in terms of the increasing size of the minimal foreign
sequence. These shifts are due to having modified the exploit. The arrows indi-
cate a succession of modifications. For example, without any modification the
exploit will naturally manifest as a foreign symbol in the data stream; this is
represented by the circle at x = 1,y = 6. The first modification of the exploit re-
sulted in a minimal foreign sequence of size 2; this is represented by the circle at
x = 2,y = 6 pointed to by the arrow from the circle at x = 1,y = 6. The second
modification yields a size-3 foreign sequence, and so forth. There is no circle at
x = 7 because it was impossible to modify the exploit to shift its manifestation
to a size-7 minimal foreign sequence, given the normal data for traceroute.

To summarize, if stide were deployed with a detector window of size 6, then it
is possible to modify the traceroute exploit incrementally, so that it manifests
as successively larger minimal foreign sequences, until a size is reached (size 7)
at which the manifestation falls out of stide’s visible detection range, and into its

Undermining an Anomaly-Based Intrusion Detection System 69

= 12 * * * * * * * *
o ! Detection Region
T 11+ * * * * * * * *
£ :
2 10| * * * * * * * *
= 1
2 9 * * * * * * * *
S :
@ 8 * * * * * * * s
e | Successive Attack Modifications
"6 7 + * * * * * * A >
]
N 6 g [g 1 S [i £ O
»n :

5 * * * * o

4+ * * * i‘

3+ * * i

2r L Blind Region

1 *

1 1 1 1 1 1 1]
1 2 3 4 5 6 7 8

Size of foreign—-sequence anomaly

Fig.2. The manifestation of each version of the traceroute exploit plotted on the
detector coverage map for stide, assuming that stide has been configured with a detector
window size of 6. Each version of the exploit can be detected by fewer and fewer
configurations of stide until the last is invisible.

blind spot. This shows that it is possible to exert control over a common exploit
so that its manifestation is moved from an anomaly detector’s detection region,
to its region of complete blindness. Such movement of an exploit’s manifestation
effectively hides the exploit from the detector’s view.

8 Discussion

The results show that it is possible to hide the presence of the passwd and
traceroute common exploits from stide by modifying those exploits so that
they manifest only within stide’s detection blind spot. Achieving an attack’s
objectives is not affected by the modifications to the exploit programs; neither
is the training data tampered with in order to render an anomaly detector blind
to the attacks. Note that, at present, these results can be said to be relevant
only to other anomaly-based intrusion detection systems that employ anomaly
detectors operating on sequences of categorical data. Although the results make
no claims about other families of anomaly detectors that, for example, employ
probabilistic concepts, it is possible that the methods described in this study
may be applicable to a broader range of anomaly detectors.

The results presented in this paper show that it is also possible to control
the manifestation of an attack so that the manifestation moves from an area of

70 K.M.C. Tan, K.S. Killourhy, and R.A. Maxion

detection blindness to an area of detection clarity for stide. Figure 2 shows the
results of modifying the manifestation of an exploit in controlled amounts until
the manifestation falls outside the anomaly detector’s detection range.

8.1 Implications for Anomaly Detector Development

By identifying the precise event and conditions that characterize the detection
blindness for stide and showing that real-world exploits can be modified to take
advantage of such weaknesses, one is forewarned not only that such weaknesses
exist, but also that they present a possible and tangible threat to the protected
system. It is now possible to mitigate this threat by, for example, combining
stide with another detector that could compensate for the problems inherent
in the stide detection algorithm. The variable sequence size model explored by
Marceau [11] seems to be a promising step toward addressing the weakness in
stide. Because detection coverage has been defined in a way that is pertinent to
anomaly detectors, i.e., in terms of the kinds of anomalies that can be detected
by a given anomaly detector rather than in terms of intrusions, it is also possible
to compose anomaly detectors to effect full coverage over the detection space.

It is interesting to note that the ease with which an attacker can introduce
sequences into the system call data suggests that sequences of system calls may
not be a sufficiently expressive form of data to allow an anomaly detector to more
effectively monitor and defend an information system. Increasing the number of
different kinds of data analyzed, or changing the kind of data analyzed by an
anomaly detector, may make an impact on the effectiveness of the intrusion-
detection capabilities of an anomaly detector.

8.2 Implications for Anomaly Detector Evaluation

There are a few benefits of an anomaly-based evaluation method, an evalua-
tion method focused on how well anomaly detectors detect anomalies. First,
the results of an anomaly-based evaluation increases the scope of the results.
In other words, what was established to be true with respect to the anomaly-
detection performance of the anomaly detector on synthetic data will also be
true of the anomaly detector on real-world data sets. This cannot be said of
current evaluation procedures for anomaly detectors because current evaluation
schemes evaluate an anomaly detector in terms of how well it detects attacks.
This constrains the scope of the results to the data set used in the evaluation
because an attack that manifests as a specific kind of anomaly in one data set
may no longer do so in another data set due to changing normal behavior.
Second, the results of an anomaly-based evaluation can only contribute to
increasing the accuracy of anomaly detectors performing intrusion detection.
Current evaluation methods do not establish the detection capabilities of an
anomaly detector with regard to the detection of the anomalous manifestations
of attacks. The fact that attacks may manifest as different types of anomalies
also means that different types of anomaly detectors may be required to detect
them. If anomaly detectors are not evaluated on how well they detect anomalies,

Undermining an Anomaly-Based Intrusion Detection System 71

it is difficult to determine which anomaly detector would best suit the task of
detecting a given type of attack. The events that anomaly detectors directly
detect are anomalies, but typically anomaly detectors are evaluated on how well
they detect attacks, the events that anomaly detectors do not detect except by
making the assumption that attacks manifests as those anomalies detected by
an anomaly detector.

9 Related Work

The concept of modifying an attack so that it successfully accomplishes its goal
while eluding detection is not a new one. Ptacek and Newsham [14] highlighted
a number of weaknesses that the network intrusion detection community needed
to address if they were to defeat a wily attacker using network signature-based
intrusion detection systems. Although the work presented in this paper differs in
that it focuses on anomaly-based intrusion detection, it strongly reiterates the
concern that an unknown weakness in an intrusion detection system creates a
“dangerously false sense of security.” In the case of this work, it was shown that a
weakness in an anomaly detector could realistically be exploited to compromise
the system being protected by that detector.

Wagner and Dean [20] introduced a new class of attacks against intrusion
detection systems which they called the “mimicry attack”. A “mimicry attack”
is where an attacker is able to “develop malicious exploit code that mimics the
operation of the application, staying within the confines of the model and thereby
evading detection ...” Wagner and Dean studied this class of attack theoretically,
but until this present paper, no study has shown if it were possible to create and
deploy a mimicry attack in the real-world that truly affected the performance of
an intrusion-detection system.

The present study confirms that the class of mimicry attacks does pose a
serious threat to an anomaly-based intrusion detection system. By modifying
common real-world exploits to create examples of this class of attack, this study
also shows how mimicry attacks are able to undermine the protection offered by
an anomaly-based intrusion detection system.

10 Conclusion

This study has shown how an anomaly-based intrusion detection system can be
effectively undermined by modifying common real-world exploits. It presented
a method that identified weaknesses in an anomaly-based intrusion detector,
and showed how an attacker can effectively modify common exploits to take
advantage of those weaknesses in order to craft an offensive mechanism that
renders an anomaly-based intrusion detector blind to the on-going presence of
those attacks.

The results show that it is possible to hide the presence of the passwd and
traceroute common exploits from stide by modifying those exploits so that they
manifest only within stide’s detection blind spot. The results also show that it

72

K.M.C. Tan, K.S. Killourhy, and R.A. Maxion

is possible to control the manifestation of an attack such that the manifestation
moves from an area of detection clarity to one of detection blindness for stide.

References

10.

11.

12.

13.

14.

15.

16.

Herve Debar, Marc Dacier, and Andreas Wespi. Towards a taxonomy of intrusion-
detection systems. Computer Networks, 31(8):805-822, April 1999.

Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji, and Thomas A. Longstaff.
A sense of self for unix processes. In Proceedings of the 1996 IEEE Symposium on
Security and Privacy, 6-8 May 1996, Oakland, California, pages 120-128, IEEE
Computer Society Press, Los Alamitos, California, 1996.

Cristian Gafton. passwd(1). Included in passwd version 0.64.1-1 software package,
January 1998.

Anup K. Ghosh, Aaron Schwartzbard, and Michael Schatz. Learning program
behavior profiles for intrusion detection. In Proceedings of the 1st Workshop on
Intrusion Detection and Network Monitoring, 9-12 April 1999, Santa Clara, Cali-
fornia, pages 51-62, The USENIX Association, Berkeley, California, 1999.

Anup K. Ghosh, James Wanken, and Frank Charron. Detecting anomalous and
unknown intrusions against programs. In Proceedings of the 14th Annual Computer
Security Applications Conference, 7-11 December 1998, Phoenix, Arizona, pages
259-267, IEEE Computer Society Press, Los Alamitos, 1998.

Steven A. Hofmeyr, Stephanie Forrest, and Anil Somayaji. Intrusion detection
using sequences of system calls. Journal of Computer Security, 6(3):151-180, 1998.
Van Jacobson. Traceroute(8). Included in traceroute version 1.4a5 software
package, April 1997.

Michel “MaXX” Kaempf. Traceroot2: Local root exploit in LBNL traceroute. In-
ternet: http://packetstormsecurity.org/0011-exploits/traceroot2.c, March
2002.

Sandeep Kumar. Classification and Detection of Computer Intrusions. PhD thesis,
Purdue University, West Lafayette, Indiana, August 1995.

Teresa Lunt. Automated audit trail analysis and intrusion detection: A survey. In
Proceedings of the 11th National Computer Security Conference, Baltimore, Mary-
land, pages 65—73, October 1988.

Carla Marceau. Characterizing the behavior of a program using multiple-length N-
grams. In New Security Paradigms Workshop, 18—22 September 2000, Ballycotton,
County Cork, Ireland, pages 101-110, ACM Press, New York, New York, 2001.
Roy A. Maxion and Kymie M. C. Tan. Anomaly detection in embedded systems.
IEEE Transactions on Computers, 51(2):108-120, February 2002.

Andrew P. Moore. CERT/CC vulnerability note VU#176888, July 2002. Internet:
http://www.kb.cert.org/vuls/id/176888.

Thomas H. Ptacek and Timothy N. Newsham. Insertion, evasion, and denial of ser-
vice: Eluding network intrusion detection. Secure Networks, Inc., Calgary, Alberta,
Canada, January 1998.

Wojciech Purczynski (original author) and “Ist” (author of improvements). Epcs2:
Exploit for execve/ptrace race condition in Linux kernel up to 2.2.18. Internet:
http://www.securiteam.com/exploits/5NPO61P4AW.html, March 2002.
SecurityFocus Vulnerability Archive. LBNL Traceroute Heap Corruption Vulnera-
bility, Bugtraq ID 1739. Internet: http://online.securityfocus.com/bid/1739,
March 2002.

17.

18.

19.

20.

21.

Undermining an Anomaly-Based Intrusion Detection System 73

SecurityFocus Vulnerability Archive. Linux PTrace/Setuid Exec Vulnerability,
Bugtraq ID 3447. Internet: http://online.securityfocus.com/bid/3447, March
2002.

Anil Somayaji and Geoffrey Hunsicker. IMMSEC Kernel-level system call tracing
for Linux 2.2, Version 991117. Obtained through private communication. Previous
version available on the Internet:

http://www.cs.unm.edu/"immsec/software/, March 2002.

Kymie M. C. Tan and Roy A. Maxion. “Why 67" Defining the operational limits
of stide, an anomaly-based intrusion detector. In Proceedings of the 2002 IEEE
Symposium on Security and Privacy, 12-15 May 2002, Berkeley, California, pages
188-201, IEEE Computer Society Press, Los Alamitos, California, 2002.

David Wagner and Drew Dean. Intrusion detection via static analysis. In Pro-
ceedings of the 2001 IEEE Symposium on Security and Privacy, 14-16 May 2001,
Berkeley, California, IEEE Computer Society Press, Los Alamitos, California, 2001.
Christina Warrender, Stephanie Forrest, and Barak Pearlmutter. Detecting intru-
sions using system calls: Alternative data models. In Proceedings of the 1999 IEEE
Symposium on Security and Privacy, 9-12 May 1999, Oakland, California, pages
133-145, IEEE Computer Society Press, Los Alamitos, California, 1999.

	1 Introduction
	2 Approaches to Undermining Anomaly Detectors
	3 Detection Coverage of an Anomaly Detector
	3.1 Brief Description of the Stide Anomaly Detector
	3.2 Evaluation Strategy for Anomaly Detectors
	3.3 Stide ’s Performance Results

	4 Deploying Exploits and Sensors
	5 Where and How an Attack Manifests in the Data
	5.1 Description and Rationale for the Exploits Chosen The attacks selected for this study are examples of those that
	5.2 Choice of Normal Data
	5.3 Establishing Attack Manifestations in Sensor Data

	6 Manipulating the Manifestation;Modifying Exploits
	6.1 Modifying passwd and traceroute
	6.2 New Means to Achieve Original Goals in Exploit Programs
	6.3 Making the Exploits Manifest as Minimal Foreign Sequences

	7 Evaluating the E .ectiveness of Exploit Modi .cations
	7.1 Results

	8 Discussion
	8.1 Implications for Anomaly Detector Development
	8.2 Implications for Anomaly Detector Evaluation

	9 Related Work
	10 Conclusion

