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Abstract
This paper describes two recently developed intrusion

detection algorithms, and gives experimental results on their
performance. The algorithms detect anomalies in execution
audit data. One is a simply constructed finite-state machine,
and the other monitors statistical deviations from normal
program behavior. The performance of these algorithms is
evaluated as a function of the amount of available training
data, and they are compared to the well-known intrusion de-
tection technique of looking for novel � -grams in computer
audit data.

1 Introduction

The goal of intrusion detection is to detect attacks against
a computer system. This may be done in a number of ways,
such as monitoring network activity (Cf., [13, 15]), moni-
toring user behavior (Cf., [11, 12]), or monitoring the sys-
tem state (Cf., [8]). Recently there has also been an interest
monitoring program behavior to detect intrusions [3, 5].

Each of these techniques has its own advantages and dis-
advantages, but the appeal of the last — program-based
intrusion detection — lies in the philosophy that normal
program behavior can be characterized in an unambiguous
way. Unlike the behavior of a human user or the behav-
ior of network traffic, the behavior of a program ultimately
stems from a series of machine instructions whose mean-
ings we know. The programs in question are usually system
programs, so we also know that their behavior should not
change without our knowledge (at least until after an attack
has taken place and has hopefully been detected). Thus, if
intrusions can be detected as deviations from normal pro-
gram behavior, such an intrusion detection technique would
be free from false alarms caused by changes in user behav-
ior patterns, and free as well from missed intrusions caused
by attackers that mimic benign users.

The question, however, is how we should characterize
normal program behavior. Actually extracting the pro-
gram’s semantics from source code would be difficult —�
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in the general case this is an undecidable problem — so
program-based intrusion detection is based on the observed
behavior of the program. Indeed, many operating systems
provide a mechanism, known as kernel auditing, for record-
ing the behavior of at least some programs in terms of the
programs’ interaction with the operating system.

In this paper, audit data is condensed into a stream of
discrete events that we refer to as audit events, and such a
stream of events characterizes each execution of each pro-
gram being monitored. Specifically, our audit data comes
from the Sun BSM auditing system, and the events are sys-
tem calls recorded in the data. This approach is essentially
the same one used in other work on program-based intru-
sion detection, such as [3, 5].

One intrusion detection technique, that of [3], simply
characterizes program behavior in terms of audit-data � -
grams that are characterized as being either normal or ab-
normal (depending on whether they were seen previously in
training data taken from non-intrusive program executions.)
But since program behavior can be complex, it seems natu-
ral to look for more expressive mechanisms, such as finite
automata, to characterize the normal behavior of a program.

In this paper, we report on completely automated tech-
niques for generating finite automata characterizing a pro-
gram’s normal behavior. After describing our algorithms,
we present an empirical comparison to the � -gram-based
technique mentioned above.

2 Background and Related Work

In the past [9], finite automata for intrusion detection
have been generated with a certain amount of manual in-
tervention. First, the audit data was preprocessed so that
commonly occurring sequences of events could be com-
bined into meta-events. Then, the meta-events were used
as the alphabet of a finite automaton. The combination of
events into meta-events, called macros in that paper, was
done manually, and though the paper did not say whether
the FAs were then also created by hand, it was implied that
they were.

We would like to automate the process of inferring fi-

1



nite automata. Something along these lines is done in [2],
where training data is used to learn hidden Markov models
of normal program behavior. This technique proved effec-
tive at the task of intrusion detection, but training (using the
Baum-Welch algorithm, see [14]) was found to be expen-
sive. This raises the question of whether simpler algorithms
might also be effective without requiring as much training.

In Section 3, we will present one algorithm for automat-
ically constructing finite automata from training data. This
algorithm builds a finite automaton describing normal pro-
gram behavior, using audit traces of non-intrusive execu-
tions for training data. The finite automaton then treats each
sequence of audit events as a string that is either accepted or
rejected; a rejection means that the execution generating the
audit events is regarded as being anomalous. It should be
noted that the inference of finite automata is not intractable
in this context, although it is intractable in a number of other
settings (see [4, 7]). What makes the problem easy in the
case of anomaly detection is that the requirements are sim-
ple. The finite automaton merely has to accept any train-
ing sequence that isn’t abnormal. Of course, it should also
reject abnormal audit-event sequences, but since there are
no abnormal audit-event sequences in the training data this
requirement cannot be formalized within the learning algo-
rithm itself. Rather, we will evaluate the performance of the
FAs empirically.

Our second algorithm, presented in Section 4, can also be
seen as constructing a finite state machine, though the con-
struction is simpler. For this second technique, deviations
from normal behavior are measured by looking at statistics
describing the program’s behavior in each state, instead of
treating each sequence of audit events as a string to be ac-
cepted or rejected by the finite automaton.

These algorithms were tested in the 1999 Lincoln Labo-
ratories intrusion detection evaluation, and the results were
briefly reported in [?]. This paper compares the perfor-
mence of these algorithms to that of � -gram macthing on a
larger corpus of training and test data, and also evaluates the
three algorithms when they are trained on varying amounts
of data.

3 An automatic technique for creating finite
automata for BSM data.

Our goal in this section is to examine the automatic cre-
ation of finite automata for host-based intrusion detection.
Since data representing intrusive behavior is not used during
training, the first goal is simply to build a finite automaton
that accepts all audit-event sequences in the training data,
but without being so generous that it accepts all data, or be-
ing so rigid that it rejects every novel audit sequence after
training.

By way of example, we could create an FA with a single

state, where every audit event results in a transition from
that state back to itself. We could also create an FA that
has no cycles and accepts exactly the audit-event sequences
occurring in the training data.

The first approach is too weak because it tends to ac-
cept any sequence of audit events, and thus fails to notice
abnormal audit-event sequences. The second approach is
probably too strong, because it rejects any sequence as be-
ing abnormal unless exactly the same sequence was seen
during training. Our goal is to create a reasonably expres-
sive FA, but one that can still generalize. Of course, this is
a qualitative requirement.

The first question is how to define the states of the au-
tomaton. The technique reported in this section associates
each state with one or more � -grams of audit events, where

� is a parameter of the learning algorithm. For example, the
FA might have a state corresponding to the event sequence
lstat, open, ioctl, and enter that state whenever
the sequence lstat, open, ioctl is seen. The idea,
however, is to be parsimonious in the creation of new states,
and not simply have one state in the FA for every � -gram of
audit events. Instead, we will have more that one � -gram
assigned to most of the states.

During training, separate automata are created for the
different programs whose audit data are available for train-
ing. As with the intrusion detection systems of [3], the train-
ing algorithm is presented with a series of � -grams taken
from non-intrusive BSM data for a given program.

During training, the audit data is split into sub-sequences
of size ����� by a sliding window. For example, with

����� and ���
	 , the first two windows created from the
sequence a, b, c, d, e would be a, b, c and b,
c, d. The first � elements of the window are used to define
a state, and the last � elements are used to label a transition
coming out of that state. The construction of the automaton
proceeds by deciding where the outgoing transitions will
lead.

This decision is made by referring to the first � audit
events in the next window, which define the next state that
the automaton should enter for this particular training se-
quence. If we define the current state to be the one defined
by the first � elements of the current window, then there are
three possibilities:

1. The current state already has an outgoing edge that cor-
responds to the last � events in the window, and that
edge leads to the correct state (i.e., the state defined by
the first � elements of the next window). In this case,
no modifications are made to the FA.

2. The current state has outgoing edges that correspond
to the last � events in the window, but none of these
edges lead to the right state. In this case, the FA may
contain the correct state (but no edge from the current
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state to the desired state), or else the FA may not even
have a state corresponding the next � -gram.

We simply create a state for the new � -gram if one
doesn’t already exist. In either case, we create a tran-
sition from the current state to the new state, and label
that transition with the last � events of the current win-
dow.

3. The current state has no outgoing edges that corre-
spond to the last � events of the window. If there is
already an state assigned to the next � -gram, then we
simply create a transition to that state, and label it with
the � events as in the previous case.

However, if the next � -gram doesn’t have any state as-
signed to it, we can assign any one of the already ex-
isting states, or create a new state, without introduc-
ing any prediction errors. Currently, the algorithm just
creates a transition back to the current state, and as-
signs the new � -gram to the current state (where it
joins whatever � -grams were assigned to that state pre-
viously).

In all three cases, the FA transitions to the state assigned
to the new � -gram, and this becomes the current state when
we examine the next window of events from the audit data.

Note that any given state may correspond to more than
one � -gram, due to the way merging is done in the third
case.

3.1 Some examples of automatically generated fi-
nite automata

The finite automata constructed by the preceding algo-
rithm depend on the amount of training data, as well as on
the values of � and � . No � -gram has more than one state
assigned to it, so there can be no more than ��� states for a
program that produces � unique audit events. (In practice,
the number of states is usually much smaller: many states
are assigned to more than one � -gram, and far fewer than ���

� -grams actually appear in the training data.) Each state has
at most ��� outgoing transitions, so the total number of tran-
sitions is bounded by �����	� . Once again, the actual number
of edges tends to be much smaller due to the limited number
of unique � -grams that actually appear in the training data.

Figure 1 shows the automata created for the lpr pro-
gram after training on data collected at MIT’s Licoln Lab-
oratories for an intrusion detection evaluation. The first au-
tomaton was created using one week’s worth of data, with

� ��

� � ��� . The second was created from the same week
of data with ��� �
� � � 	 , and the third was trained using
eight weeks of data with � � �
� � � 	 .

(To save space, these diagrams don’t have the edges la-
beled.)
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Figure 1. Finite automata constructed for lpr with �������� ��� on Week 2 of the Lincoln Labs data, constructed
with ����� ��� ��� on the same data, and constructed with
� � ����� �!� for all seven weeks of data.
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4 String Transducer

The state-based anomaly detector just described detects
things that have never happened before. In this sense, it is
like the system of [3], which raises an alarm when it sees � -
grams of audit events that were not seen in the training data.
The difference between the two systems lies the model of
normal behavior they construct from the training data.

However, neither of these systems notices statistical de-
viations from normal behavior, short of patterns that have
never been seen before at all. The second detection algo-
rithm we discuss in this paper makes an attempt to detect
subtler statistical deviations from normalcy.

A string transducer is an algorithm that associates an se-
quence of input symbols with a series of output symbols.
String transducers are most often used in computational bi-
ology and computational linguistics, where they are usu-
ally implemented using finite automata whose transitions or
states are associated with output symbols. In the current
context we use automata as well, but the input sequence is
a sequence of audit events, and the output sequence is a se-
ries of numbers describing how that sequence deviates from
normal behavior

Our use of string transducers as intrusion detectors is
based on an examination of the probabilities of the out-
put symbols at each state. During training, we estimate
the probability distribution of the symbols at each state, and
during testing, deviations from this probability distribution
are taken as evidence of anomalous behavior. (The details
of this are given in Section 4.1).

Our implementation of this idea is relatively simple. We
use a finite automaton whose states correspond to � -grams
in the BSM data. For each state, we also record information
about the successor � -grams that are observed in the training
data when the system is in that state. (These are the same
� -grams that would have been used to label the transitions
in the algorithm of Section 3.)

During training, our goal is to gather statistics about
these successor � -grams; we estimate the probability of each
� -gram by counting. (Note that the construction of this FA
is even simpler than that of the one described earlier, due
to the 	���	 correspondence between states and audit-data

� -grams.)
During actual intrusion detection, the deviation of the

successor � -grams from their expected values are, in some
sense, used as anomaly scores. Of course, the anomaly
scores are usually non-zero, but if the program is behaving
normally these deviations should average out over time.

In the ideal case, it can be shown that the anomaly scores
are uncorrelated if the probability distributions have, in fact,
been correctly estimated (this is due to the fact that the devi-
ations are then an innovations process; see [1]). That means
that if we subtract the mean anomaly score for each state

from the actual anomaly scores generated there, the result
is zero-mean noise.

If these values are integrated over a sufficiently long pe-
riod, the result should be close to zero if the program is
behaving normally. However, if abnormal program behav-
ior results in a significant deviation of the successor � -grams
from their expected values, then the resulting scores will not
integrate to zero, and this fact can be used to detect anoma-
lous behavior.

In practice, there are obviously a number of factors pre-
venting the realization of this ideal case.

1. If the probabilities of the successor � -grams have not
been accurately estimated (perhaps due to insufficient
data), then the deviations may not be uncorrelated.
Note that accurate prediction is impossible if the dis-
tribution of the � -grams depends on an unpredictable
aspect of user behavior.

2. During detection, � -grams may be encountered that do
not correspond to any known state because they were
not seen during training. This makes it impossible to
generate an anomaly score for the successor � -gram.

3. An intrusion may not result in a systematic deviation
from the expected � -gram values; in other words, the
intrusion may look normal. Although this seems un-
likely, we cannot prove that all intrusions really cause
the necessary deviations.

4. The window of integration needed to get sufficiently
low anomaly scores during normal behavior may be
large. This delays the detection of anomalies (though
if it prevented them from being detected we would ar-
guably be in case 3).

The fourth is an intrinsic problem of change detection [10];
there is an inevitable tradeoff between the time to detection
and the susceptibility to false positives. The third problem
is also, in some sense, unavoidable; it seems unlikely that
we could guarantee the detection of all intrusions without
assuming something about the nature of those intrusions,
but we cannot validate such assumptions without knowing
the future behavior of attackers. (We may, of course, be able
to make guarantees for certain classes of intrusions).

The second problem cited above is more directly related
to our our specific application. It results from having too
little training data to characterize all states. It dictates that
states should not be too highly specialized, since such spe-
cialization makes it less likely for all states to be seen during
training.

The first problem dictates a wise choice of states. For
example, it has been observed that programs go through dif-
ferent phases of behavior [2], so the probability of a given
� -gram may depend on how far along the program is in its
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execution. Thus, states should reflect the state of the pro-
gram itself. Even if the distribution of � -grams varies over
time, the distribution from a given state should be constant.
Unfortunately, this condition can best be achieved by using
highly specialized states, to avoid having two or more states
of the underlying program represented by a single state of
the automaton. Thus, the solutions to the first and second
problems are in some sense at odds. This tradeoff between
expressiveness and ease of training is also well-known in
machine learning [16].

4.1 Implementation details

As we have said, the probability densities of the suc-
cessor � -grams in a given state are estimated by counting
(that is, we simply count the number of occurrences of each
� -gram in the training data). This is a feasible approach
with BSM data because such data tends to be fairly regular;
the number of BSM � -grams is much smaller than, say, the
number of possible BSM events raised to the � th power.

We measure deviations from expected behavior by treat-
ing the estimated probability distribution as a vector, which
we first normalize with respect to the

���
metric�����	�� 
 �� �� �
��� �

for some � . When a given � -gram occurs during detection,
we treat it as a vector with a 	 in the position correspond-
ing to the actual � -gram that was seen, and a � in the other
positions. The deviation is the

���
distance between this

vector and the normalized density vector. In other words, if�� � is the estimated probability of the � th � -gram, according
to some arbitrary ordering, then the elements of the normal-
ized probability vector are given by� � � �� ������ �� �� �� �� � ��� � �
and the deviation � � , reported when the � th � -gram is seen
during detection, is given by

� � � ��� ��� �! " � �$# ��&% �(') ��� �
where # �&% � �+* 	 � � � � if � �-, ;� � � otherwise.

We treat these as summations over all possible � -grams,
though the actual implementation only has to sum over
those that were seen during training since � � is zero for the
others. But if a novel � -gram is seen during training, this

convention assures that � � is still defined, and, in fact, its
value is just 	 .

If we encounter an � -gram that does not correspond to
any state, we ignore it. We could alternatively flag it as an
anomaly, like � -gram-based detection does, but that would
mix the results of two fundamentally different intrusion de-
tection schemes into a single anomaly score. This creates
problems, because we found that the anomaly scores gener-
ated by the missing � -grams washed out the scores created
by measuring the deviations. This happens as follows: first,
the missing � -grams generate high anomaly scores for be-
nign executions. As is common practice, we have a thresh-
old that determines how large an anomaly score must be
before we signal that an intrusion is taking place. When
missing � -grams generate anomaly scores, this threshold
has to be raised in order to avoid false positives, but that
means that only the larger anomaly scores created by miss-
ing � -grams raise an alarm for intrusive sessions. Thus, the
missing � -grams dominate the performance of the intrusion
detector, and the whole method more or less reduces to � -
gram matching as implemented by [3]. Our decision to ig-
nore missing � -grams in the string transducer ensures that
we were not simply reimplementing � -gram comparison in
a different guise.

5 Experimental results

We performed experiments to compare the intrusion de-
tection systems of Sections 3 and 4 to one another and to the

� -gram-based technique of [3]. The latter technique is quite
simple: one simply records all � -grams of audit events that
occur in the training data, and during the detection phase,
the appearance of a novel � -gram is taken as evidence of
an intrusion. This technique is generally combined with
postprocessing that averages the last � anomaly scores (for
some � ), leading to a filtered anomaly score that takes on
a value between � and 	 , depending on how many alarms
were raised by the last � audit events. This allows us to
set an alarm threshold; we signal a possible intrusion only
when the filtered anomaly score exceeds this threshold. In
our experiments, we applied the same type of postprocess-
ing to the string transducer and the state-based intrusion de-
tector.

5.1 The training data

Our training data came from several sources, the most
important of which was a series simulations of a computer
network conducted by Lincoln Laboratories in 1998 and
1999. We have twelve weeks worth of this data, but at
the time these experiments were conducted we had not yet
separated intrusions from benign behavior in one week of
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the data. Some further data was supplied by Johns Hop-
kins University. Finally we discovered that we needed ad-
ditional data describing the normal behavior of three pro-
grams, eject, fdformat, and xterm, so we collected
data for these programs on our own system.

The data contains evidence of several kinds of attacks,
which can be divided into two broad classes: (1) probes and
denial-of-service attacks, and (2) unauthorized accesses and
unauthorized privilege elevations. Our systems are meant
to detect the second class of attacks, so we did not evaluate
them on attacks in the first class.

Furthermore, some attacks do not leave identifiable
traces in the audit data. For example, some attacks con-
sist of moving files to a location where they should not
be. Identifying such attacks means knowing what locations
are disallowed; in other words, the intrusion detector must
know the details of the system’s local security policy. Our
prototypes currently have no knowledge of local security
policies, so they do not detect such attacks. Another attack
involves setting up a malicious http client to transfer infor-
mation off of the system using cookies. This attack does
not involve misuse of any existing programs, so (strictly
speaking) our systems cannot detect such an attack either.
In reality, such attacks are sometimes detected because of
statistical variations between the behavior of benign users
and malicious users, but we do not know how easily an in-
truder could avoid this sort of detection. Moreover, these
systems are meant to detect program misbehavior, not pro-
file computer users. Therefore we decided that these par-
ticular attacks are out of the intended scope of the system.
As a result, just under 94% of the access and elevation-of-
privilege attacks are in the scope of our system.

There are 183 types of system calls recorded in the audit
data, and these events form the inputs to our intrusion detec-
tion system. The events are collated into sequences of audit
events generated by individual programs, and a different in-
trusion detector is trained for each program. The anomaly
score for a session is the maximum of the anomaly scores
for the programs in that session

In many papers that describe � -gram matching (such as
[9]), the input to the intrusion detection system consists of
higher-level features extracted from the raw stream of audit
data. However, the features seem to have been specified by
hand, and since our intrusion detection systems must learn
normal behavior for many programs, that approach seemed
infeasible. Therefore, the algorithms in these experiments
are trained on features read directly from the raw sequence
of audit data.

The experimental data is divided into user sessions, some
of which contain intrusions. Our intrusion detectors exam-
ine all program executions that occur in a session, and the
highest anomaly score for any of these programs is used as
the anomaly score for the session.

5.2 Training the Intrusion Detectors on All Data

To quantify the performance of a given system on a given
set of data, we measure how many benign sessions are
falsely marked as being intrusive, and measure how many
intrusive sessions are overlooked. All three systems out-
put a number between � and 	 describing how anomalous
a given session is, so the performance of any given system
depends on the threshold at which we raise the alarm. By
varying the threshold and plotting the percentage of false
alarms against the percentage of missed intrusions, we ob-
tain a plot similar to a receiver operating curve, which is a
convenient way to visualize the performance of the intru-
sion detectors.

We tested our systems using seven-fold cross validation.
In a series of seven experiments, the system was trained us-
ing all of the data except for one of first the seven weeks
of data we had from Lincoln Laboratories. The system was
then tested using the remaining week of data, in order to test
immunity to false alarms. None of the audit data reflecting
intrusive activity was used during training, so the systems
were tested on all of the intrusive data during each of the
seven cross-validation phases.

We tested each system with a number of different choices
of parameters. For example, the � -gram matcher was tested
with different choices of � , and the string transducer and
state tester were also tested with � -grams of different sizes.
This gives us less variability for the � -gram matcher than
for the string transducer or the state tester, since both of
these use two sets of � -grams whose sizes can be varied
more or less independently. However, for the state tester, we
found that the size of the � -gram being predicted made very
little difference in performance. For the string transducer,
the best performance for a given conditioning � -gram was
always obtained when the � -gram being predicted was of
length 	 . Thus, we effectively only varied one parameter for
each program when searching for the intrusion detector with
the best performance. Although our system builds an intru-
sion detector for each of many programs, the parameters for
each detector are the same on a given run. The results we
report below were obtained using the choice of parameters
that yielded the best results for each of the state tester, the

� -gram matcher, and the string transducer. For the � -gram
matcher, the best performance was obtained with � � � .
For the state tester, the best performance was seen with

� ��� , and we used ���
	 . For the string transducer, the
best performance was obtained with � � 	 � ( � � 	 ).

Figure 2 plots the false positives generated by each sys-
tem against its detection rate. Each point in the plot repre-
sents an alarm threshold. The horizontal coordinate is the
percentage of benign sessions that were incorrectly classi-
fied as intrusive, while the vertical coordinate represents the
percentage of intrusive sessions that were detected. Note
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that no technique detects more than ����� of the intrusions;
this is because some intrusions leave no evidence in the
BSM data, as mentioned above.

The performance of the � -gram matcher is slightly better
than that of the other two detectors. That is, we can choose
an alarm threshold that makes the � -gram matcher give a
better tradeoff between detection and false positives than
either of the other two techniques.

5.3 Intrusion detector performance as a function
of the quanitity of training data

Though the � -gram matcher performed better than the
other two intrusion detectors, we found that the amount of
training data had a significant affect on the relative perfor-
mance of the three techniques. To evaluate it, we performed
a series of tests where only subsets of the available data
were used during training.

In this setup, we specify what percentage of the training
data is to be used. For the sake of concreteness, assume
we want to use five percent of the data. Recall that all of
our intrusion detection schemes build a different classifier
for each program; for example, BSM data generated by the
program ps will be handled by an anomaly detector specif-
ically trained to identify abnormal ps traces. Therefore, us-
ing five percent of the data means using five percent of the
program traces available for each classifier (recall that each
trace represents one complete execution of the program in
question; we always use complete traces for training). The
BSM audit sequences generated by ps are collected, and
five percent of them are selected at random for use during
training (the actual number of audit-event sequences we use
is actually rounded up from five percent, which means that
there is always at least one sequence available for training).

This procedure was repeated (for all programs) using the
same cross-validation scheme as above. In each run, “five
percent of the training data” means five percent of the data
that would normally be available during that phase of cross-
validation. We repeated the procedure using ten percent of
the training data, then twenty percent of the training data,
and so on, for a total of twenty cross-validation runs having
seven train-and-test phases apiece.

Since training data is selected at random, we repeated
this entire procedure ten times with different random num-
ber seeds. Each time, the data for each of the three classi-
fiers was selected with the same seed, so that, for example,
all three classifiers see the same five percent of the train-
ing data during each cross-validation phase. In addition, the
random number seed is the same regardless of what per-
centage of training data is used during a given run. That
means that when we select five percent of the training data
for a given seed, and later select ten percent of the training
data from the using the same seed, the second set of data

is a superset of the first. (We shuffle the training sequences
using the random number seed, and then select the first �
sequences for training, where � depends on the requested
percentage of data.) Thus, each of the ten experiments sim-
ulates the situation that we would see if the detectors were
trained incrementally from a growing corpus of data.

In Figure 3, we plot our results with the percentage data
used for training along the horizontal axis. The vertical axis
shows the percentage of benign sessions that were classified
as intrusive, with the threshold set for “maximum” detection
(that is, detection of all the attacks that leave evidence in the
BSM traces).

Figure 3 shows the pointwise average, over ten runs, ob-
tained for the string transducer, the state-based technique,
and the � -gram matcher. We see that the results in Figure 2
were somewhat deceptive, because the � -gram matcher just
barely catches up to the string transducer when it avails it-
self of all our training data. For smaller amounts of train-
ing data, the string transducer considerably outperforms � -
gram matching; after training on five percent of the data, it
raises a false alarms for less than three percent of the benign
sessions, while the � -gram matcher does so for over thirty
percent.

The state machine, like the string transducer, has an ini-
tially low false-alarm rate, though it raises more false alarms
than the string transducer at all stages of training.

An interesting feature of learning curve for the � -gram
matcher is that it has bumps. There is a visible bump just
below the point where sixty percent of the training data is
used. There is also a bump close to the left edge of the plot
which is more visible in the ten individual plots, its position
varies somewhat so it is less visible when all the results are
averaged.

For a given alarm threshold, the false positive rate cannot
go up as more training examples are added (this is because
alarms are triggered by features that do not appear in the
database of previously observed � -grams, and that database
never shrinks). Therefore, these bumps must result from a
decrease in the alarm threshold, needed to obtain detection
of all the intrusive sessions. In other words, certain � -grams
that are useful for detecting intrusions eventually show up
in the normal data, and necessitate a decrease of the alarm
threshold in order to maintain perfect detection.

Individual runs for the state tester show even greater ir-
regularity and variability. This is largely due to the fact that
the training algorithm for the state tester depends on the or-
der in which the audit-event sequences are presented, and
the sequences were shuffled in our experiments. This re-
ordering had a considerable impact on performance at all
stages of training, and in this regard it might have been
preferable to use slower but more deterministic algorithms
such as Baum-Welch (as in [2]) or state-merging [6]. We
are currently investigating the second option.
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Figure 2. The performance of the � -gram
detector, the string transducer, and the state
tester, presented as a ROC-style curve. Var-
ious alarm thresholds are plotted with the
horizontal axis giving the percentage of be-
nign sessions that created false alarms, and
the vertical axis representing percentage of
intrusive sessions detected. The lines con-
necting the points are only for visibility.
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Figure 3. The performance of the � -
gram detector, the string transducer, and the
state tester, with varying amounts of train-
ing data. The horizontal axis represents the
percentage of available data actually used
during training, and the vertical axis rep-
resents the false-alarm rate for the lowest
alarm threshold that allowed detection of
all intrusions that left evidence in the audit
data.
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The performance of the state transducer was not only the
best of the three, but it was also much more consistent be-
tween runs. The program behavior statistics that determine
the performance of the string transducer vary only gradually
as new data is added. This makes it less susceptible to sud-
den changes in performance. In fact, all experimental runs
of the string transducer revealed monotonic improvement as
training data was added.

One final issue that should be mentioned is that, in these
experiments, we used the same parameter settings for the
learning algorithms, regardless of how much data was avail-
able (they were still the settings that led to the best perfor-
mance in the previous experiment, where all the training
data was used). Often, however, it is useful to adjust the pa-
rameters of a learning algorithm based on the richness of the
available data. For example, maybe it is always possible to
find some value of � for which � -gram matching performs
better than the other techniques, and it just happens that this
optimal value is not � unless all of the training data is used.

To briefly investigate this possibility, we performed two
more sets of experiments. First, we omitted all but the first
seven weeks of Lincoln Labs data during training. In this
experiment, the � -gram matcher did, indeed, have better
performance with � ��� , and it continued to outperform
the string transducer even with the smaller amount of data.
However, by keeping only seven weeks of the Lincoln data,
we also eliminated much of the diversity from the original
training set. (That is, the reduced data all comes from the
environment of the Lincoln Labs simulation, and none of
it comes from our own environment or that of Johns Hop-
kins.) It may be that this simplification of the environment
aided the � -gram matcher more than the string transducer.

We also tried both intrusion detection algorithms with
various parameter choices using � � � of the entire train-
ing corpus, with the random selection of training data ac-
complished in the same way as above. In this experi-
ment, we found that changing the parameters of the � -gram
matcher had very little effect on its performance (at least
for ��� ��� 	�
 ), which suggests that this algorithm can-
not, in fact, be easily fine-tuned to adjust for variations in
the amount of training data. For larger values of � , adjust-
ing the parameter of the string transducer also made little
difference. The string transducer performed considerably
better than the � -gram matcher, achieving perfect detection
with just over 	�� � � of the benign sessions being labelled as
intrusive, as opposed to roughly � � for the � -gram matcher.

6 Conclusion

In this paper we described two recently-developed al-
gorithms for intrusion detection using program behavior
traces. We empirically compared the performance of
these algorithms to another well-known intrusion detection

method that uses behavior traces as well. Although the latter
method, � -gram matching, ultimately achieved slightly bet-
ter performance that our two techniques, it was much slower
to learn, which is to say that it required a great deal more
training data to achieve false positive rates comparable to
those of our algorithms.

One open question raised by these experiments stems
from the somewhat ad-hoc nature of our first algorithm for
synthesizing finite-state machines. Could better results be
achieved with a better learning algorithm? This question
is significant, because we would like to know whether it
is always useful to model long-term dependencies in pro-
gram behavior data. A finite-state machine has the capa-
bility of modeling such long-term dependencies, while � -
gram matching technique does not. Experimental results
that were not yet available when this paper was being pre-
pared indicate that there is, in fact, a benefit to be obtained
by using more refined state-machine inference algorithms;
these results will be the subject of a future publication.
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