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ABSTRACT
In this paper, we describe the development of a fielded appli-
cation for detecting malicious executables in the wild. We
gathered 1971 benign and 1651 malicious executables and
encoded each as a training example using n-grams of byte
codes as features. Such processing resulted in more than 255
million distinct n-grams. After selecting the most relevant
n-grams for prediction, we evaluated a variety of inductive
methods, including naive Bayes, decision trees, support vec-
tor machines, and boosting. Ultimately, boosted decision
trees outperformed other methods with an area under the
roc curve of 0.996. Results also suggest that our method-
ology will scale to larger collections of executables. To the
best of our knowledge, ours is the only fielded application for
this task developed using techniques from machine learning
and data mining.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining ; I.2.6 [Artificial Intelligence]: Learning—
Concept Learning ; K.6.5 [Management of Computing
and Information Systems]: Security and Protection—
Invasive Software

General Terms: Algorithms, Experimentation, Security

Keywords: Data Mining, Concept Learning, Security,
Malicious Software

1. INTRODUCTION
Malicious code is “any code added, changed, or removed

from a software system to intentionally cause harm or sub-
vert the system’s intended function” [27, p. 33]. Such soft-
ware has been used to compromise computer systems, to
destroy their information, and to render them useless. It
has also been used to gather information, such as passwords
and credit card numbers, and to distribute information, such
as pornography, all without the knowledge of the system’s
users. As more novice users obtain sophisticated computers
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with high-speed connections to the Internet, the potential
for further abuse is great.

Malicious executables generally fall into three categories
based on their transport mechanism: viruses, worms, and
Trojan horses. Viruses inject malicious code into existing
programs, which become “infected” and, in turn, propagate
the virus to other programs when executed. Viruses come
in two forms, either as an infected executable or as a virus
loader, a small program that only inserts viral code. Worms,
in contrast, are self-contained programs that spread over a
network, usually by exploiting vulnerabilities in the soft-
ware running on the networked computers. Finally, Trojan
horses masquerade as benign programs, but perform ma-
licious functions. Malicious executables do not always fit
neatly into these categories and can exhibit combinations of
behaviors.

Excellent technology exists for detecting known malicious
executables. Software for virus detection has been quite
successful, and programs such as McAfee Virus Scan and
Norton AntiVirus are ubiquitous. Indeed, Dell recommends
Norton AntiVirus for all of its new systems. Although these
products use the word virus in their names, they also detect
worms and Trojan horses.

These programs search executable code for known pat-
terns, and this method is problematic. One shortcoming is
that we must obtain a copy of a malicious program before
extracting the pattern necessary for its detection. Obtain-
ing copies of new or unknown malicious programs usually
entails them infecting or attacking a computer system.

To complicate matters, writing malicious programs has
become easier: There are virus kits freely available on the
Internet. Individuals who write viruses have become more
sophisticated, often using mechanisms to change or obfus-
cate their code to produce so-called polymorphic viruses

[3, p. 339]. Indeed, researchers have recently discovered that
simple obfuscation techniques foil commercial programs for
virus detection [7]. These challenges have prompted some re-
searchers to investigate learning methods for detecting new
or unknown viruses, and more generally, malicious code.

Our efforts to address this problem have resulted in a
fielded application, built using techniques from machine
learning [30] and data mining [17]. The Malicious Exe-
cutable Classification System (mecs) currently detects un-
known malicious executables “in the wild”, that is, without
removing any obfuscation. To date, we have gathered 1971
system and non-system executables, which we will refer to as
“benign” executables, and 1651 malicious executables with
a variety of transport mechanisms and payloads (e.g., key-
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loggers and backdoors). Although all were for the Windows
operating system, it is important to note that our approach
is not restricted to this operating system.

We extracted byte sequences from the executables, con-
verted these into n-grams, and constructed several classi-
fiers: ibk, tfidf, naive Bayes, support vector machines
(svms), decision trees, boosted naive Bayes, boosted svms,
and boosted decision trees. In this domain, there is an is-
sue of unequal but unknown costs of misclassification er-
ror, so we evaluated the methods using receiver operating
characteristic (roc) analysis [40], using area under the roc

curve as the performance metric. Ultimately, boosted de-
cision trees outperformed all other methods with an area
under the curve of 0.996.

We delivered mecs to the mitre Corporation, the spon-
sors of this project, as a research prototype. Users interact
with mecs through a command line. They can add new
executables to the collection, update learned models, dis-
play roc curves, and produce a single classifier at a specific
operating point on a selected roc curve.

With this paper, we make three main contributions. We
show how established methods for text classification apply
to executables. We present empirical results from an ex-
tensive study of inductive methods for detecting malicious
executables in the wild. We report on a fielded application
developed using machine learning and data mining.

In the three sections that follow, we describe related work,
our data collection, and the methods we applied. Then, in
Section 6, we present empirical results, and in Section 7, we
discuss these results and other approaches.

2. RELATED WORK
There have been few attempts to use machine learning

and data mining for the purpose of identifying new or un-
known malicious code. These have concentrated mostly on
pc viruses, thereby limiting the utility of such approaches
to a particular type of malicious code and to computer sys-
tems running Microsoft’s Windows operating system. Such
efforts are of little direct use for computers running the unix

operating system, for which viruses pose little threat. How-
ever, the methods proposed are general, meaning that they
could be applied to malicious code for any platform, and
presently, malicious code for the Windows operating system
poses the greatest threat.

In an early attempt, Lo et al. [25] conducted an analy-
sis of several programs—evidently by hand—and identified
tell-tale signs, which they subsequently used to filter new
programs. While we appreciate their attempt to extract
patterns or signatures for identifying any class of malicious
code, they presented no experimental results suggesting how
general or extensible their approach might be. Researchers
at ibm’s T.J. Watson Research Center have investigated neu-
ral networks for virus detection [21] and have incorporated a
similar approach for detecting boot-sector viruses into ibm’s
Anti-Virus software [41].

More recently, instead of focusing on boot-sector viruses,
Schultz et al. [37] used data mining methods, such as naive
Bayes, to detect malicious code. The authors collected 4,301
programs for the Windows operating system and used
McAfee Virus Scan to label each as either malicious or be-
nign. There were 3,301 programs in the former category
and 1,000 in the latter. Of the malicious programs, 95%
were viruses and 5% were Trojan horses. Furthermore, 38

of the malicious programs and 206 of the benign programs
were in the Windows Portable Executable (pe) format.

For feature extraction, the authors used three methods:
binary profiling, string sequences, and so-called hex dumps.
The authors applied the first method to the smaller col-
lection of 244 executables in the Windows pe format and
applied the second and third methods to the full collection.

The first method extracted three types of resource infor-
mation from the Windows executables: (1) a list of Dy-
namically Linked Libraries (dlls), (2) functions calls from
the dlls, and (3) the number of different system calls from
within each dll. For each resource type, the authors con-
structed binary feature vectors based on the presence or ab-
sence of each in the executable. For example, if the collection
of executables used ten dlls, then they would characterize
each as a binary vector of size ten. If a given executable used
a dll, then they would set the entry in the executable’s
vector corresponding to that dll to one. This processing
resulted in 2,229 binary features, and in a similar manner,
they encoded function calls and their number, resulting in
30 integer features.

The second method of feature extraction used the unix

strings command, which shows the printable strings in an
object or binary file. The authors formed training examples
by treating the strings as binary attributes that were either
present in or absent from a given executable.

The third method used the hexdump utility [29], which
is similar to the unix octal dump (od -x) command. This
printed the contents of the executable file as a sequence of
hexadecimal numbers. As with the printable strings, the
authors used two-byte words as binary attributes that were
either present or absent.

After processing the executables using these three meth-
ods, the authors paired each extraction method with a sin-
gle learning algorithm. Using five-fold cross-validation, they
used ripper [8] to learn rules from the training set pro-
duced by binary profiling. They used naive Bayes to es-
timate probabilities from the training set produced by the
strings command. Finally, they used an ensemble of six
naive-Bayesian classifiers on the hexdump data by training
each on one-sixth of the lines in the output file. The first
learned from lines 1, 6, 12, . . . ; the second, from lines 2, 7,
13, . . . ; and so on. As a baseline method, the authors imple-
mented a signature-based scanner by using byte sequences
unique to the malicious executables.

The authors concluded, based on true-positive (tp) rates,
that the voting naive Bayesian classifier outperformed all
other methods, which appear with false-positive (fp) rates
and accuracies in Table 1. The authors also presented roc

curves [40], but did not report the areas under these curves.
Nonetheless, the curve for the single naive Bayesian classi-
fier appears to dominate that of the voting naive Bayesian
classifier in most of the roc space, suggesting that the best
performing method was actually naive Bayes trained with
strings.

However, as the authors discuss, one must question the
stability of dll names, function names, and string features.
For instance, one may be able to compile a source program
using another compiler to produce an executable different
enough to avoid detection. Programmers often use methods
to obfuscate their code, so a list of dlls or function names
may not be available.

The authors paired each feature extraction method with
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Table 1: Results from the study conducted by Schultz et al. [37]
Method tp Rate fp Rate Accuracy (%)
Signature + hexdump 0.34 0.00 49.31
ripper + dlls used 0.58 0.09 83.61
ripper + dll function used 0.71 0.08 89.36
ripper + dll function counts 0.53 0.05 89.07
Naive Bayes + strings 0.97 0.04 97.11
Voting Naive Bayes + hexdump 0.98 0.06 96.88

a learning method, and as a result, ripper was trained on a
much smaller collection of executables than were naive Bayes
and the ensemble of naive-Bayesian classifiers. Although
results were generally good, it would have been interesting to
know how the learning methods performed on all data sets.
It would have also been interesting to know if combining all
features (i.e., strings, bytes, functions) into a single training
example and then selecting the most relevant would have
improved the performance of the methods.

There are other methods of guarding against malicious
code, such as object reconciliation [3, p. 370], which involves
comparing current files and directories to past copies; one
can also compare cryptographic hashes. One can also au-
dit running programs [38] and statically analyze executables
using pre-defined malicious patterns [7]. These approaches
are not based on data mining, although one could imagine
the role such techniques might play.

Researchers have also investigated classification methods
for the determination of software authorship. Most noto-
rious in the field of authorship are the efforts to determine
whether Sir Frances Bacon wrote works attributed to Shake-
speare [13], or who wrote the twelve disputed Federalist Pa-
pers, Hamilton or Madison [22]. Recently, similar techniques
have been used in the relatively new field of software foren-

sics to determine program authorship [39]. Gray et al. [15]
wrote a position paper on the subject of authorship, whereas
Krsul [23] conducted an empirical study by gathering code
from programmers of varying skill, extracting software met-
rics, and determining authorship using discriminant analy-
sis. There are also relevant results published in the literature
pertaining to the plagiarism of programs [2, 19], which we
will not survey here.

Krsul [23] collected 88 programs written in the c program-
ming language from 29 programmers at the undergraduate,
graduate, and faculty levels. He then extracted 18 layout
metrics (e.g., indentation of closing curly brackets), 15 style
metrics (e.g., mean line length), and 19 structure metrics
(e.g., percentage of int function definitions). On average,
Krsul determined correct authorship 73% of the time. In-
terestingly, of the 17 most experienced programmers, he was
able to determine authorship 100% of the time. The least
experienced programmers were the most difficult to classify,
presumably because they had not settled into a consistent
style. Indeed, they “were surprised to find that one [pro-
grammer] had varied his programming style considerably
from program to program in a period of only two months”
[24, §5.1].

While interesting, it is unclear how much confidence we
should have in these results. Krsul [23] used 52 features
and only one or two examples for each of the 20 classes
(i.e., the authors). This seems underconstrained, especially
when rules of thumb suggest that one needs ten times more

examples than features [18]. On the other hand, it may
also suggest that one simply needs to be clever about what
constitutes an example. For instance, one could presumably
use functions as examples rather than programs, but for the
task of determining authorship of malicious programs, it is
unclear whether such data would be possible to collect or if
it even exists. Fortunately, as we discuss in the next section,
a lack of data was not a problem for our project.

3. DATA COLLECTION
As stated previously, the data for our study consisted of

1971 benign executables and 1651 malicious executables. All
were in the Windows pe format. We obtained benign exe-
cutables from all folders of machines running the Windows
2000 and xp operating systems. We gathered additional ap-
plications from SourceForge (http://sourceforge.net).

We obtained viruses, worms, and Trojan horses from the
Web site VX Heavens (http://vx.netlux.org) and from
computer-forensic experts at the mitre Corporation, the
sponsors of this project. Some executables were obfuscated
with compression, encryption, or both; some were not, but
we were not informed which were and which were not. For
one collection, a commercial product for detecting viruses
failed to identify 18 of the 114 malicious executables. Note
that for viruses, we examined only the loader programs; we
did not include infected executables in our study.

We used the hexdump utility [29] to convert each exe-
cutable to hexadecimal codes in an ascii format. We then
produced n-grams, by combining each four-byte sequence
into a single term. For instance, for the byte sequence
ff 00 ab 3e 12 b3, the corresponding n-grams would be
ff00ab3e, 00ab3e12, and ab3e12b3. This processing re-
sulted in 255,904,403 distinct n-grams. One could also com-
pute n-grams from words, something we explored and dis-
cuss further in Section 6.1. Using the n-grams from all of
the executables, we applied techniques from information re-
trieval and text classification, which we discuss further in
the next section.

4. CLASSIFICATION METHODOLOGY
Our overall approach drew techniques from information

retrieval (e.g., [16]) and from text classification (e.g.,
[12, 36]). We used the n-grams extracted from the executa-
bles to form training examples by viewing each n-gram as a
binary attribute that is either present in (i.e., 1) or absent
from (i.e., 0) the executable. We selected the most relevant
attributes (i.e., n-grams) by computing the information gain

(IG) for each:

IG(j) =
X

vj∈{0,1}

X

C∈{Ci}

P (vj , C) log
P (vj , C)

P (vj)P (C)
,
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where C is the class, vj is the value of the jth attribute,
P (vj , C) is the proportion that the jth attribute has the
value vj in the class Ci, P (vj) is the proportion that the
jth n-gram takes the value vj in the training data, P (C) is
the proportion of the training data belonging to the class C.
This measure is also called average mutual information [43].

We then selected the top 500 n-grams, a quantity we de-
termined through pilot studies (see Section 6.1), and applied
several learning methods, most of which are implemented in
weka [42]: ibk, tfidf, naive Bayes, a support vector ma-
chine (svm), and a decision tree. We also “boosted” the last
three of these learners, and we discuss each of these methods
in the following sections.

4.1 Instance-based Learner
One of the simplest learning methods is the instance-based

(ib) learner [1]. Its concept description is a collection of
training examples or instances. Learning, therefore, is the
addition of new examples to the collection. To classify an
unknown instance, the performance element finds the ex-
ample in the collection most similar to the unknown and
returns the example’s class label as its prediction for the
unknown. For binary attributes, such as ours, a convenient
measure of similarity is the number of values two instances
have in common. Variants of this method, such as ibk, find
the k most similar instances and return the majority vote of
their class labels as the prediction. Values for k are typically
odd to prevent ties. Such methods are also known as nearest

neighbor and k-nearest neighbors.

4.2 The tfidf Classifier
For the tfidf classifier, we followed a classical approach

from information retrieval [16]. We used the vector space

model, which entails assigning to each executable (i.e., doc-
ument) a vector of size equal to the total number of distinct
n-grams (i.e., terms) in the collection. The components of
each vector were weights of the top n-grams present in the
executable. For the jth n-gram of the ith executable, the
method computes the weight wij , defined as

wij = tfij × idfj ,

where tfij (i.e., term frequency) is the number of times the

ith n-gram appears in the jth executable and idfj = log d

dfj

(i.e., the inverse document frequency), where d is the total
number of executables and dfj is the number of executables
that contain the jth n-gram. It is important to note that this
classifier was the only one that used continuous attribute
values; all others used binary attribute values.

To classify an unknown instance, the method uses the
top n-grams from the executable, as described previously, to
form a vector, ~u, the components of which are each n-gram’s
inverse document frequency (i.e., uj = idfj).

Once formed, the classifier computes a similarity coeffi-
cient (SC) between the vector for the unknown executable
and each vector for the executables in the collection using
the cosine similarity measure:

SC(~u, ~wi) =

Pk

j=1
ujwij

q

Pk

j=1
u2

j ·
Pk

j=1
w2

ij

,

where ~u is the vector for the unknown executable, ~wi is the
vector for the ith executable, and k is the number of distinct
n-grams in the collection.

After selecting the top five closest matches to the un-
known, the method takes a weighted majority vote of the
executable labels, and returns the class with the least weight
as the prediction. It uses the cosine measure as the weight.
Since we evaluated the methods using roc analysis [40],
which requires case ratings, we summed the cosine mea-
sures of the negative executables in the top five, subtracted
the sum of the cosine measures of the positive executables,
and used the resulting value as the rating. In the follow-
ing discussion, we will refer to this method as the tfidf

classifier.

4.3 Naive Bayes
Naive Bayes is a probabilistic method that has a long

history in information retrieval and text classification [26].
It stores as its concept description the prior probability of
each class, P (Ci), and the conditional probability of each
attribute value given the class, P (vj |Ci). It estimates these
quantities by counting in training data the frequency of oc-
currence of the classes and of the attribute values for each
class. Then, assuming conditional independence of the at-
tributes, it uses Bayes’ rule to compute the posterior proba-
bility of each class given an unknown instance, returning as
its prediction the class with the highest such value:

C = argmax
Ci

P (Ci)
Y

j

P (vj |Ci).

For roc analysis, we used the posterior probability of the
negative class as the case rating.

4.4 Support Vector Machines
Support vector machines (svms) [5] have performed well

on traditional text classification tasks [12, 20, 36], and per-
formed well on ours. The method produces a linear classifier,
so its concept description is a vector of weights, ~w, and an
intercept or a threshold, b. However, unlike other linear clas-
sifiers, such as Fisher’s, svms use a kernel function to map
training data into a higher dimensioned space so that the
problem is linearly separable. It then uses quadratic pro-
gramming to set ~w and b such that the hyperplane’s margin
is optimal, meaning that the distance is maximal from the
hyperplane to the closest examples of the positive and neg-
ative classes. During performance, the method predicts the
positive class if 〈~w ·~x 〉−b > 0 and predicts the negative class
otherwise. Quadratic programming can be expensive for
large problems, but sequential minimal optimization (smo)
is a fast, efficient algorithm for training svms [32] and is the
one implemented in weka [42]. During performance, this
implementation computes the probability of each class [33],
and for roc analysis, we used probability of the negative
class as the rating.

4.5 Decision Trees
A decision tree is a tree with internal nodes correspond-

ing to attributes and leaf nodes corresponding to class labels.
For symbolic attributes, branches leading to children corre-
spond to the attribute’s values. The performance element
uses the attributes and their values of an instance to traverse
the tree from the root to a leaf. It predicts the class label
of the leaf node. The learning element builds such a tree by
selecting the attribute that best splits the training exam-
ples into their proper classes. It creates a node, branches,
and children for the attribute and its values, removes the
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attribute from further consideration, and distributes the ex-
amples to the appropriate child node. This process repeats
recursively until a node contains examples of the same class,
at which point, it stores the class label. Most implementa-
tions use the gain ratio for attribute selection [35], a mea-
sure based on the information gain. In an effort to reduce
overtraining, most implementations also prune induced de-
cision trees by removing subtrees that are likely to perform
poorly on test data. weka’s j48 [42] is an implementation
of the ubiquitous c4.5 [35]. During performance, j48 as-
signs weights to each class, and we used the weight of the
negative class as the case rating.

4.6 Boosted Classifiers
Boosting [14] is a method for combining multiple classi-

fiers. Researchers have shown that ensemble methods often
improve performance over single classifiers [9, 31]. Boost-
ing produces a set of weighted models by iteratively learn-
ing a model from a weighted data set, evaluating it, and
reweighting the data set based on the model’s performance.
During performance, the method uses the set of models and
their weights to predict the class with the highest weight.
We used the AdaBoost.M1 algorithm [14] implemented in
weka [42] to boost svms, j48, and naive Bayes. As the case
rating, we used the weight of the negative class. Note that
we did not apply AdaBoost.M1 to ibk because of the high
computational expense.

5. EXPERIMENTAL DESIGN
To evaluate the approaches and methods, we used strat-

ified ten-fold cross-validation. That is, we randomly parti-
tioned the executables into ten disjoint sets of equal size,
selected one as a testing set, and combined the remaining
nine to form a training set. We conducted ten such runs
using each partition as the testing set.

For each run, we extracted n-grams from the executa-
bles in the training and testing sets. We selected the most
relevant features from the training data, applied each classi-
fication method, and used the resulting classifier to rate the
examples in the test set.

To conduct roc analysis [40], for each method, we pooled
the ratings from the iterations of cross-validation, and used
labroc4 [28] to produce an empirical roc curve and to com-
pute its area and the standard error of the area. With the
standard error, we computed 95% confidence intervals [40].
We present and discuss these results in the next section.

6. EXPERIMENTAL RESULTS
We conducted three experimental studies using our data

collection and experimental methodology, described previ-
ously. We first conducted pilot studies to determine the size
of words and n-grams, and the number of n-grams relevant
for prediction. Once determined, we applied all of the clas-
sification methods to a small collection of executables. We
then applied the methodology to a larger collection of exe-
cutables, all of which we describe in the next three sections.

6.1 Pilot Studies
We conducted pilot studies to determine three quantities:

the size of n-grams, the size of words, and the number of se-
lected features. Unfortunately, due to computational over-
head, we were unable to evaluate exhaustively all methods

for all settings of these parameters, so we assumed that the
number of features would most affect performance, and be-
gan our investigation accordingly.

Using the experimental methodology described previously,
we extracted bytes from 476 malicious executables and 561
benign executables and produced n-grams, for n = 4. (This
smaller set of executables constituted our initial collection,
which we later supplemented.) We then selected the best 10,
20, . . . , 100, 200, . . . , 1000, 2000, . . . , 10,000 n-grams, and
evaluated the performance of a svm, boosted svms, naive
Bayes, j48, and boosted j48. Selecting 500 n-grams pro-
duced the best results.

We fixed the number of n-grams at 500, and varied n,
the size of the n-grams. We evaluated the same methods
for n = 1, 2, . . . , 10, and n = 4 produced the best results.
We also varied the size of the words (one byte, two bytes,
etc.), and results suggested that single bytes produced better
results than did multiple bytes.

And so by selecting the top 500 n-grams of size four pro-
duced from single bytes, we evaluated all of the classification
methods on this small collection of executables. We describe
the results of this experiment in the next section.

6.2 Experiment with a Small Collection
Processing the small collection of executables produced

68,744,909 distinct n-grams. Following our experimental
methodology, we used ten-fold cross-validation, selected the
500 best n-grams, and applied all of the classification meth-
ods. The roc curves for these methods are in Figure 1, while
the areas under these curves with 95% confidence intervals
are in Table 2.

As one can see, the boosted methods performed well, as
did the instance-based learner and the support vector ma-
chine. Naive Bayes did not perform as well, and we discuss
this further in Section 7.

6.3 Experiment with a Larger Collection
With success on a small collection, we turned our atten-

tion to evaluating the text-classification methods on a larger
collection of executables. As mentioned previously, this col-
lection consisted of 1971 benign executables and 1651 mali-
cious executables, while processing resulted in over 255 mil-
lion distinct n-grams of size four. We followed the same
experimental methodology—selecting the 500 top n-grams
for each run of ten-fold cross-validation, applying the clas-
sification methods, and plotting roc curves.

Figure 2 shows the roc curves for the various methods,
while Table 3 presents the areas under these curves (auc)
with 95% confidence intervals. As one can see, boosted j48

outperformed all other methods. Other methods, such as
ibk and boosted svms, performed comparably, but the roc

curve for boosted j48 dominated all others.

7. DISCUSSION
To date, our results suggest that methods of text classi-

fication are appropriate for detecting malicious executables
in the wild. Boosted classifiers, ibk, and a support vec-
tor machine performed exceptionally well given our current
data collection. That the boosted classifiers generally out-
performed single classifiers echos the conclusion of several
empirical studies of boosting [4, 6, 9, 14], which suggest
that boosting improves the performance of unstable clas-
sifiers, such as j48, by reducing their bias and variance

Industry Track Paper

474

Industry/Government Track Paper



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

T
ru

e 
Po

si
tiv

e 
R

at
e

False Positive Rate

Boosted J48
Boosted SVM

IBk, k = 5
SVM

TFIDF
Boosted Naive Bayes

J48
Naive Bayes

 0.8

 0.85

 0.9

 0.95

 1

 0  0.05  0.1  0.15  0.2

T
ru

e 
Po

si
tiv

e 
R

at
e

False Positive Rate

Boosted J48
Boosted SVM

IBk, k = 5
SVM

TFIDF
Boosted Naive Bayes

J48
Naive Bayes

Figure 1: roc curves for detecting malicious exe-
cutables in the small collection. Top: The entire
roc graph. Bottom: A magnification.

Table 2: Results for detecting malicious executables
in the small collection. Areas under the roc curve
(auc) with 95% confidence intervals.

Method auc

Naive Bayes 0.8850±0.0247
j48 0.9235±0.0204
Boosted Naive Bayes 0.9461±0.0170
tfidf 0.9666±0.0133
svm 0.9671±0.0133
ibk, k = 5 0.9695±0.0129
Boosted svm 0.9744±0.0118
Boosted j48 0.9836±0.0095
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Figure 2: roc curves for detecting malicious exe-
cutables in the larger collection. Top: The entire
roc graph. Bottom: A magnification.

Table 3: Results for detecting malicious executables
in the larger collection. Areas under the roc curve
(auc) with 95% confidence intervals.

Method auc

Naive Bayes 0.9366±0.0099
j48 0.9712±0.0067
tfidf 0.9868±0.0045
Boosted Naive Bayes 0.9887±0.0042
ibk, k = 5 0.9899±0.0038
Boosted svm 0.9903±0.0038
svm 0.9925±0.0033
Boosted j48 0.9958±0.0024
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[4, 6]. Boosting can adversely affect stable classifiers [4],
such as naive Bayes, although in our study, boosting naive
Bayes improved performance. Stability may also explain
why the benefit of boosting svms was inconclusive in our
study [6].

Our experimental results suggest that the methodology
will scale to larger collections of executables. The larger
collection in our study contained more than three times the
number of executables in the smaller collection. Yet, as one
can see in Tables 2 and 3, the absolute performance of all of
the methods was better for the larger collection than for the
smaller. The relative performance of the methods changed
somewhat. For example, the svm moved from fourth to
second, displacing the boosted svms and ibk.

Visual inspection of the concept descriptions yielded in-
teresting insights, but further work is required before these
descriptions will be directly useful for computer-forensic ex-
perts. For instance, one short branch of a decision tree in-
dicated that any executable with two pe headers is mali-
cious. After analysis of our collection of malicious executa-
bles, we discovered two executables that contained another
executable. While this was an interesting find, it represented
an insignificantly small portion of the malicious programs.

Leaf nodes covering many executables were often at the
end of long branches where one set of n-grams (i.e., byte
codes) had to be present and another set had to be absent.
Understanding why the absence of byte codes was important
for an executable being malicious proved to be a difficult and
often impossible task. It was fairly easy to establish that
some n-grams in the decision tree were from string sequences
and that some were from code sequences, but some were
incomprehensible. For example, one n-gram appeared in
75% of the malicious executables, but it was not part of the
executable format, it was not a string sequence, and it was
not a code sequence. We have yet to determine its purpose.

Nonetheless, for the large collection of executables, the
size of the decision trees averaged over 10 runs was about 90
nodes. No tree exceeded 103 nodes. The heights of the trees
never exceeded 13 nodes, and subtrees of heights of 9 or less
covered roughly 99.3% of the training examples. While these
trees did not support a thorough forensic analysis, they did
compactly encode a large number of benign and malicious
executables.

To place our results in context with the study of Schultz et
al. [37], they reported that the best performing approaches
were naive Bayes trained on the printable strings from the
program and an ensemble of naive-Bayesian classifiers
trained on byte sequences. They did not report areas under
their roc curves, but visual inspection of these curves sug-
gests that with the exception of naive Bayes, all of our meth-
ods outperformed their ensemble of naive-Bayesian classi-
fiers. It also appears that our best performing methods, such
as boosted j48, outperformed their naive Bayesian classifier
trained with strings.

These differences in performance could be due to several
factors. We analyzed different types of executables: Their
collection consisted mostly of viruses, whereas ours con-
tained viruses, worms, and Trojan horses. Ours consisted
of executables in the Windows pe format; about 5.6% of
theirs was in this format.

Our better results could be due to how we processed byte
sequences. Schultz et al. [37] used non-overlapping two-byte
sequences, whereas we used overlapping sequences of four

bytes. With their approach it is possible that a useful feature
(i.e., a predictive sequence of bytes) would be split across
a boundary. This could explain why in their study string
features appeared to be better than byte sequences, since
extracted strings would not be broken apart. Their approach
produced much less training data than did ours, but our
application of feature selection reduced the original set of
more than 255 million n-grams to a manageable 500.

Our results for naive Bayes were poor in comparison to
theirs. We again attribute this to the differences in data ex-
traction methods. Naive Bayes is well known to be sensitive
to conditionally dependent attributes [10]. We used over-
lapping byte sequences as attributes, so there were many
that were conditionally dependent. Indeed, after analyzing
decision trees produced by j48, we found evidence that over-
lapping sequences were important for detection. Specifically,
some subpaths of these decision trees consisted of sequen-
tially overlapping terms that together formed byte sequences
relevant for prediction. Schultz et al.’s [37] extraction meth-
ods would not have produced conditionally dependent at-
tributes to the same degree, if at all, since they used strings
and non-overlapping byte sequences.

Regarding our experimental design, we decided to pool a
method’s ratings and produce a single roc curve (see Sec-
tion 5) because labroc4 [28] occasionally could not fit an
roc curve to a method’s ratings from a single fold of cross-
validation (i.e., the ratings were degenerate). We also con-
sidered producing roc convex hulls [34] and cost curves [11],
but determined that traditional roc analysis was appropri-
ate for our results (e.g., the curve for boosted j48 dominated
all other curves).

In our study, there was an issue of high computational
overhead. Selecting features was expensive, and we had to
resort to a disk-based implementation for computing infor-
mation gain, which required a great deal of time and space
to execute. However, once selected, weka’s [42] Java imple-
mentations executed quickly on the training examples with
their 500 binary attributes.

In terms of our approach, it is important to note that
we have investigated other methods of data extraction. For
instance, we examined whether printable strings from the
executable might be useful, but reasoned that subsets of
n-grams would capture the same information. Indeed, after
inspecting some of the decision trees that j48 produced, we
found evidence suggesting that n-grams formed from strings
were being used for detection. Nonetheless, if we later de-
termine that explicitly representing printable strings is im-
portant, we can easily extend our representation to encode
their presence or absence. On the other hand, as we stated
previously, one must question the use of printable strings
or dll information since compression and other forms of
obfuscation can mask this information.

We also considered using disassembled code as training
data. For malicious executables using compression, being
able to obtain a disassembly of critical sections of code may
be a questionable assumption. Moreover, in pilot studies, a
commercial product failed to disassemble some of our mali-
cious executables.

We considered an approach that runs malicious executa-
bles in a sandbox and produces an audit of the machine
instructions. Naturally, we would not be able to completely
execute the program, but 10,000 instructions may be suf-
ficient to differentiate benign and malicious behavior. We

Industry Track Paper

476

Industry/Government Track Paper



have not pursued this idea because of a lack of auditing
tools, the difficulty of handling large numbers of interactive
programs, and the inability of detecting malicious behavior
occurring near the end of sufficiently long programs.

There are at least two immediate commercial applications
of our work. The first is a system, similar to mecs, for de-
tecting malicious executables. Server software would need
to store all known malicious executables and a comparably
large set of benign executables. Due to the computational
overhead of producing classifiers from such data, algorithms
for computing information gain and for evaluating classifica-
tion methods would have to be executed in parallel. Client
software would need to extract only the top n-grams from
a given executable, apply a classifier, and predict. Updates
to the classifier could be made remotely over the Internet.
Since the best performing method may change with new
training data, it will be critical for the server to evaluate a
variety of methods and for the client to accommodate any
of the potential classifiers. Used in conjunction with stan-
dard signature methods, these methods could provide better
detection of malicious executables than is currently possible.

The second is a system oriented more toward computer-
forensic experts. Even though work remains before decision
trees could be used to analyze malicious executables, one
could use ibk or the tfidf classifier to retrieve known ma-
licious executables similar to a newly discovered malicious
executable. Based on the properties of the retrieved ex-
ecutables, such a system could give investigators insights
into the new executable’s function. However, it remains an
open issue whether an executable’s statistical properties are
predictive of its functional characteristics, an issue we are
currently investigating and one we discuss briefly in the con-
cluding section.

8. CONCLUDING REMARKS
We considered the application of techniques from infor-

mation retrieval and text classification to the problem of
detecting unknown malicious executables in the wild. After
evaluating a variety of classification methods, results suggest
that boosted j48 produced the best classifier with an area
under the roc curve of 0.996. Our methodology resulted in
a fielded application called mecs, the Malicious Executable
Classification System, which we have delivered to the mitre

Corporation.
In future work, we plan to investigate a classification task

in which methods determine the functional characteristics

of malicious executables. Detecting malicious executables
is important, but after detection, computer-forensic experts
must determine the program’s functional characteristics:
Does it mass-mail? Does it modify system files? Does it
open a backdoor? This will entail removing obfuscation,
such as compression, if possible. Furthermore, most mali-
cious executables perform multiple functions, so each train-
ing example will have multiple class labels, a problem that
arises in bioinformatics and in document classification.

We anticipate that mecs, the Malicious Executable Clas-
sification System, is but one step in an overall scheme for
detecting and classifying “malware.” When combined with
approaches that search for known signatures, we hope that
such a strategy for detecting and classifying malicious exe-
cutables will improve the security of computers. Indeed, the
delivery of mecs to mitre has provided computer-forensic
experts with a valuable tool. We anticipate that pursuing

the classification of executables into functional categories
will provide another.
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