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Abstract

Intrusiondetectiorsystemsely ona widevarietyof observ-
abledatato distinguishbetweerlegitimateandillegitimate
activities. In this paper we studyone suc observable—
sequence®f systemcalls into the kernel of an opemat-
ing system.Using system-caldata setsgeneated by sev-
eral different programs,we compae the ability of different
datamodelingmethodgo represeninormalbehavioraccu-
ratelyandto recaynizeintrusions. e compae the follow-
ing methods: Simpleenumeation of observedsequences,
comparisonof relative frequencieof different sequences,
a rule induction technique and Hidden Markov Models
(HMMs). We discussgthe factors affectingthe performance
of eadh methodand concludethat for this particular prob-
lem,wealer methodgshanHMMs are likely suficient.

1. Intr oduction

In 1996,Forrestandothersintroduceda simpleintrusion
detectiormethodbasedn monitoringthesystencallsused
by actie, privilegedprocesse$4]. Eachprocesss repre-
sentedy its trace—the orderedist of systemcallsusedby
thatprocesdrom the beginningof its executionto the end.
This work shavedthata programs normalbehaior could
be characterizedby local patternsin its traces,and devia-
tionsfrom thesepatternscould be usedto identify security
violationsof anexecutingprocess.

Therearetwo importantcharacteristicef the approach
introducedin [4]. First, it identifiesa simple obsenable
(shortsequencesf systencalls)thatdistinguishe®etween
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normal and intrusive behaior. This obsenableis much

simpler than earlier proposals,especiallythosebasedon

standardaudit packagessuchas SunOSs BSM. Second,
the methodusedto analyze,or model, the sequencess

alsomuchsimplerthanotherproposalsit recordsonly the

presencer absencef sequencedt doesnot computefre-

qguenciesor distributions, or identify which sequencesre
mostimportant. The advantageof sucha simpleapproach
is computationaéfficiengy, butthequestiomaturallyarises
of whethermoreaccuratenodelsof the datamight be pos-
sible.

Over the past several years, mary statistically-based
learning techniqueshave beendeveloped. Several such
methodshave the potentialfor generatingmore accurate
and/ormorecompacimodelsof the system-caltata,andat
leasttwo groupshave publishedresultsof their own experi-
mentson alternatve modelsappliedto systemcalls[13, 6].
Most of the availablemethodshowever, weredesignedor
specificapplications and eachhasits own idiosyncrasies.
The goal of our paperis to comparethesevariousmethods
assystematicallyaspossibleacrossa largerandmorereal-
istic suiteof datasetsthanhasbeenusedin thepast.

2. ChoosingApplicable Methods

Thereare mary waysin which systemcall datacould
be usedto characterizanormalbehaior of programsgach
of which involveshbuilding or traininga modelusingtraces
of normal processes. In this section,we discussseveral
alternatve approacheto this task,andselectfour for more
carefulinvestigation.Thelist of methodsdiscussedhereis

1The empirical approachtaken hereignoresthe family of methods
basedn formal specificatiorof a programs legal actvities, suchas[9].



by no meansexhaustve, but it doescover thosewe believe
to bemostappropriatdor our problem.

2.1 Enumerating Sequences

Themethodglescribedn [4, 7] dependnly onenumer
ating sequencethat occurempirically in tracesof normal
behaior and subsequentlymonitoring for unknonvn pat-
terns. Two differentmethodsof enumeratiorwere tried,
eachof which definesa differentmodel,or generalization,
of the data. Therewasno statisticalanalysisof thesepat-
ternsin theearlierwork.

The original paper used lookaheadpairs [4]. The
databasef normalpatternsonsistedf alist for eachsys-
temcall of the systemcallsthatfollow it ata separatiorof
0, 1, 2, up to k systemcalls. This methodcanbe imple-
mentedefficiently, andit gave goodresultson the original
(synthetic)datasets.

The later paperreportedthat contiguoussequencesf
somefixed length gave better discriminationthan looka-
headpairs[7]. Thedatabas@f normalbehaior remained
compactandcomputationaéfficiency wasstill reasonable.
As the earliermethodwasknown astime-delayembedding
(tide), this methodwascalledsequencé¢ime-delayembed-
ding (stide). In the comparisongeportedbelow, we use
contiguoussequences.

2.2 Frequency-basednethods

Frequeng-basednethodanodelthefrequeng distribu-
tionsof variousevents.For the system-calbpplication the
eventsareoccurrence®f eachpatternof systemcallsin a
sequence.

Oneexampleof afrequeng-basednethods then-gram
vectorusedto classifytext documentg3]. Eachdocument
is representedby a vectorthatis a histogramof sequence
frequenciesEachelementcorresponds$o onesequencef
lengthn (calledann-gram), andthe valueof theelements
the normalizedfrequeng with which the n-gramoccursin
thedocumentEachhistogramvectorthenidentifiesa point
in amultidimensionakpaceandsimilardocumentareex-
pectedto have pointscloseto eachother In [3], Damashek
usedthe dot productbetweentwo histogramvectorsas a
measureof their similarity, but he pointedout that other
measuresre possible. A setof documentsanbe repre-
sentedby oneor morecentroidsof the sets individual his-
tograms,and dot productscan be taken with the resulting
centroidratherthan an individual histogramvectorto test
for membershipn theset.

Adaptingthis methodto tracesof the systemcalls used
by computeprogramss straightforvard. Oneor morecen-
troid vectorscould be usedasthe modelfor normal, and
individual traceswhosevectorsweretoo distantfrom this

centroidwould be consideredanomalous. However, this
approachis not suitablefor on-line testingbecausdrace
vectorscannotbe evaluateduntil the programhastermi-
nated. It is alsodifficult to determinewhat size vectorto
use;the spaceof all possiblesequences muchtoo large,
andwe cannotguarantedghat the subsetof sequencesb-
sened in tracesof normalbehaior is complete. Finally,
the coarseclusteringof documentsn [3] doesnot suggest
sufficient precisionto discriminatebetweemormalandin-
trusive tracesof the sameprogram.

Otherfrequeng-basedmethodsexaminesequence-
dividually, making them suitablefor on-line use. Deter
mination of whethera sequencés likely to be anomalous
is basedon empirically determinedrequenciedor that se-
guenceput the approachetaken canbe quite different,as
thenext two examplesllustrate.

HelmanandBhangogroposeaankingeachsequencéy
comparinghow often the sequences known to occurin
normaltraceswith how oftenit is expectedto occurin in-
trusions[5]. Sequencesccurringfrequentlyin intrusions
and/orinfrequentlyin normaltracesare consideredo be
more suspicious. Unfortunately frequenciesof eachse-
guencein all possibleintrusionsare not known a priori.
We must,therefore choosea frequeng distribution for ab-
normalsequenceby assumption.Several possibilitiesfor
choosinghisdistributionarementionedn [5], thesimplest
of whichis to assumehatthe abnormaldistribution is uni-
form.

The Helman and Bhangoomethod malkes several as-
sumptionghatareproblematicfor the system-calbpplica-
tion. First, it assumethatthe dataareindependenandsta-
tionary. Althoughaseriesof completgrograntracesmight
well be stationary(no orderedcorrelationsamongseparate
traces)7], thesequencewithin thetracearenot. Programs
oftenhave differentdistributionsof sequenceatthe begin-
ning of their executionthanthey do at the end, andthere
might be mary suchdistinctregionswithin the trace[10].
Also, sequencesf systencallsareclearlynotindependent,
especiallywhenthesequencesverlapasoursdo. A second
problemis thatof characterizinghe frequenciesf abnor
mal sequenceaccurately

SRI takes a different approachin its Emerald system
[8]. Ratherthanusingstaticdistributionsto definenormal
andabnormalbehaior, Emeraldcompareshort-termfre-
gueng distributions from new, unknawn traceswith the
longerterm historical distribution. Prior knowledge (or
estimation)of the abnormalfrequenciesis not required.
Thelong-termdistribution canbe continuallyupdatedyith
moreweightbeinggivento recentdata,sothat stationarity
is notrequired.This does however, allow the possibility of
anintrudermaliciouslytraining the systento shift its defi-
nition of normalcloserto the patternproducedy intrusive
behaior.



Centralto both methodsis the ideathatrare sequences
aresuspiciousWe choseo implementaminimalversionof
a frequeng-basednethodthat would allow usto evaluate
this centralidea.

2.3 Data mining approaches

Datamining approachearedesignedo determinevhat
featuresaremostimportantoutof alargecollectionof data.
In the currentproblem,theideais to discorera morecom-
pactdefinition of normalthanthat obtainedoy simply list-
ing all patternsoccurringin normal. Also, by identifying
just the main featuresof suchpatternsthe methodshould
be ableto generalizeto include normal patternsthat were
missedn thetrainingdata.

Lee andothersusedthis approacho studya sampleof
systenrcall data][13, 12]. They usedaprogramcalled“RIP-
PER” to characterizesequencesccurringin normal data
by a smallersetof rulesthatcapturethe commonelements
in thosesequencesDuring monitoring, sequencesiolat-
ing thoserules are treatedas anomalies. Becausehe re-
sults publishedin [13] on syntheticdatawere promising,
we chosethis methodfor furthertesting.

2.4 Finite StateMachines

A machindearningapproacho this problemwould con-
structa finite statemachineto recognizethe “language”of
theprogramtraces.Therearemary techniquedor building
either deterministicor probabilisticautomatafor this sort
of task,for example,[1, 16, 10]. Thesemethodsgenerally
determinethe frequencieswith which individual symbols
(systenmcallsin our case)occur, conditionedon somenum-
ber of previous symbols. Individual statesin the automa-
ton representherecenthistory of obsenedsymbolswhile
transitionsout of the statesndicatebothwhich symbolsare
likely to beproducedchext andwhattheresultingstateof the
automatorwill be. Many, but not all, of the algorithmsfor
building theseautomataare basedon the assumptiorthat
thedataarestationary

A particularly powerful finite statemachineis the hid-
denMarkov model,usedwidely in speectrecognitionand
alsoin DNA sequencenodeling[15, 14]. A hiddenMarkov
model (HMM) describesa doubly stochastigprocess.An
HMM' sstatesepresensomeunobserableconditionof the
systembeingmodeled.In eachstate thereis a certainprob-
ability of producingary of the obsenable systemoutputs
anda separaterobabilityindicatingthe likely next states.
By having differentoutputprobability distributionsin each
of the statesandallowing the systemto changestatesover
time,themodelis capableof representingionstationange-
guences.

HMMs are computationallyexpensve, but very power
ful. Thereis a greatdealof informationavailableon them,
andtheir usefulneshiasbeendemonstrateth mary areas.
For thesereasonswe decidedto useHMMs asthe finite
statemachinerepresentatie for our experiments.

3. Data Sets

The original studiesof the system-callapproachwere
conductedprimarily on syntheticdataset$ [4, 13, 7, 6].
Althoughtheearlierstudieson syntheticdatasetsweresug-
gestie,they arenot necessarilyoodpredictorsof how the
methodswill performin fieldedsystemsConsequentlywe
have useda wider variety of datasetsfor our currentstudy
Theseinclude “li ve” normaldata(tracesof programscol-
lectedduring normalusageof a productioncomputersys-
tem),differentkindsof programge.g.,programghatrunas
daemonandthosethatdo not), programshatvary widely
in their size and compleity, and differentkinds of intru-
sions(buffer overflows, symboliclink attacks,Trojan pro-
grams,and denial-of-service). We use programsthat run
with privilege (with one exception,describedbelow), be-
causemisuseof theseprogramshasthe greatestpotential
for harmto the system. Table 1 summarizeghe different
datasetsandthe programdrom which they werecollected.
All of thesedatasetsarepublicly availableandcarefullyde-

scribed at http://www.cs.unm.edu/"immsec/data-sets.html.

Intrusionsweretakenfrom public advisoriegpostedon the
Internet.

Eachtraceis thelist of systemcallsissuedby a single
procesgrom thebeginningof its executionto theend. This
is asimpledefinition,but themeaningof aprocessor trace,
variesfrom programto program. For someprograms,a
processcorrespondso a singletask; for example,in | pr
eachprintjob generatea separatdrace.In otherprograms,
multiple processearerequiredto completeatask.Iln some,
suchasnaned, asingledaemorprocessunscontinuously
monitoring events or awaiting requests,and occasionally
spavningsubprocessds handlecertaintasks.Evenin pro-
cesseshatarenotdaemonsthe numberof systemcallsper
tracevarieswidely, ascanbe seenby comparingthe data
for| pr andthatfor x| ock.

Datafor | pr were collectedat two universitiesunder
identicalconditions(OS,versionof | pr, etc.),butwith dif-
ferentusersandnetwork configurationsThe UNM normal
datasetincludesfifteen monthsof actwvity, while the MIT
datasetincludestwo weeks.Eachsetincludesalargenum-
berof normalprint jobsandasinglel pr cp symboliclink
intrusionthat consistsof 1001 print jobs. Detectionof an

2Synthetictracesarecollectedin productionervironmentsby running
apreparedscript; the programoptionsarechosersolelyfor the purposeof
exercisingthe program,andnotto meetary realusers requests.



Normaldafa Normaldafa Normaldata
Program Intrusions available usedfor training usedfor testing
Numberof | Numberof | Numberof | Numberof | Numberof | Numberof | Numberof

traces traces systencalls traces systencalls traces systemcalls
MIT | pr 1001 2,703 2,926,304 415 568,733 1,645 1,553,768
UNM | pr 1001 4,298 2,027,468 390 329,154 2,823 1,325,670
named 2 27 9,230,572 8 677,340 12 7,690,572
x| ock 2 72 | 16,937,816 72 778,661 1 16,000,000
I ogin 9 12 8,894 12 8,894 - -
ps 26 24 6,144 24 6,144 - -
inetd 31 3 541 3 541 - -
stide 105 13,726 | 15,618,237 150 246,750 13,526 | 15,185,927
sendnmi | - 71,760 | 44,500,219 4,190 2,309,419 57,775 | 35,578,249

Table 1. Amount of data available for each program. “Normal data used for training” refers to models
built with sequence length six; sequence length ten models used more training data. The same test
data were used for both sequence lengths; this includes all normal data not used for training either

set of models.

anomalyin ary of thesel001tracess considereduccess-
ful detectiornof theintrusion.

Thenaned normaldataconsistof asingledaemortrace
andtracesof its subprocessespllectedfor onemonth.The
intrusionagainstnanmed is a buffer overflow; we usedtwo
sampletracesof thisintrusion.

Datafor x| ock include71syntheticdracesandasingle
live trace. The live trace, however, is very long; x| ock
generates hugenumberof systemcalls asit continually
updatesthe users screenandit was left running for two
daysto collectthesedata. The intrusionusedhereis also
a buffer overflon. As with naned, we usedtwo sample
tracesof the sameintrusion.

Thel ogi n andps normaldatasetsarerelatively small.
Theseare simplerprogramsandlittle variationin normal
behaior is expectedrom additionaltraces.Thesmalldata
set,however, meanghatthereis insufiicient datafor thor-
oughanalysisof falsepositives.

For both | ogi n and ps, we usedTrojan intrusions,
which allow unauthorizedaccesdo the systemthrougha
built in “back-door’ A numberof traceshave beencol-
lectedfrom eachTrojan program.Someof the Trojan pro-
gram traceswere collectedfrom actual Trojan programs
installedduring a live intrusion. Thesetracesare easyto
detectbecausehe Trojan programwas a differentversion
from the programit replaced. Othertracesare for Trojan
programswe createddirectly from the installed (normal)
versionof the program. Someof the tracescorrespondo
useof the backdoorto breakinto the systemwhile others
arefrom ordinaryuserdoggingin to the Trojanedprogram
normally (without usingthe backdoor). Ideally, we would
like to detectthe presenceof Trojan codewhetheror not
it is currentlybeingusedfor unauthorizedaccessso each

traceis treatedasa separatexampleof anintrusion. How-
ever, thisis a stringenttest,asthe foreigncodeis notbeing
executed.

Thei net d programis typically startedasaforeground
processwhich initiatesa daemonprocesdo run in back-
groundandthenexits. The daemonprocessn turn, initi-
ateschild processewhich performafixed setof initializa-
tion stepsandthenexecutesomeotherprogram.Child pro-
cesseare,thereforeyerynearlyidentical. Thenormaldata
fori net d includeatraceof the startupprocessa daemon
processanda representatie child process.The intrusion
usedagainsti net d is a denial-of-serviceattackthat ties
up network connectiorresourcesAs theattackprogresses,
moreof the systemcallsrequestingesourceseturnabnor
mally and are re-issued. The intrusion data collectedin-
cludeastartupprocessadaemorprocessandseveralchild
processedyut only thedaemorprocesss expectedo shav
ary deviation from normalbehavior.

A seconddenial-of-serviceattackwe testedties up all
the memoryavailable on a system. This affectsary run-
ning programthat requestamemoryduring the denial-of-
serviceattack. In this onecase we departedrom our pol-
icy of monitoring only privileged processesand instead
tracedthe analysisprogramst i de (whichwasprocessing
thesendnai | data). The normalandintrusiondatawere
collectedwhile st i de wasprocessinghe samedata,but
thelatterwasinterruptecby the denial-of-servicattack.

The final dataset, sendmai | , consistsonly of nor
mal databecausehis versionof sendnmai | running on
a productionmail sener wasnot vulnerableto any known
sendmai | intrusions.However, we wereableto collecta
very largesetof live normaldata,andusethis for falsepos-
itive analysis. Note that thesedatawere collectedfrom a



differentversionof sendnai | thanthatusedin ourearlier
papers.

4. Experimental Design

Our objective is to compare several different data-
modeling methodsusing datafrom several different pro-
grams therebygettinga betteroverall pictureof theirrela-
tive merits. For accuratentrusiondetectionwe mustcor-
rectly classifybothintrusionsandnormaldata.Errorsin the
first category, whereintrusionsarenotidentified,arecalled
false nggatives Errorsin the secondcateyory, wherenor-
mal dataareidentifiedasanomalousare calledfalse posi-
tives We wish to minimizebothkindsof errors,or equiva-
lently, maximizetruepositvesandminimizefalsepositives.
We do not attemptto measurgerformancen termsof sys-
temusagealthoughwe do make somegenerabbsenations
aboutcomputationaéffort.

For mostof our datasetswe have only a singleintrusion
script,andeachmethodhasa singlethresholdabose which
thatintrusionis detectecandbelon which it is missed.To
get a betterpicture of the gradualtrade-of betweenfalse
positvesandfalse negativesthat often occurswith multi-
ple intrusions,we combineresultsacrossall availablepro-
grams. By using the compositeresults,we also can see
which methodscan be usedon multiple datasetswith a
singlesetof parameterandwhich requirehand-tuning.

However, using several programsalso complicatesthe
designof the experimentsFirst, we would like to usecom-
parableamountsof datafor eachprogramin building our
modelsof normal. Sincethe programsvary in compleity
and a tracedoesnot have a similar meaningin eachpro-
gram,simply choosinga fixed numberof tracesor system
calls to include would not be a good approach. Second,
we needto definea consistentmeasurdor comparingalse
positives.

Figure 1 shows the numberof unique sequencesis a
function of the total numberof sequenceseenfor one of
our datasets. The x-axis representshe sequenceseenin
chronologicabrder, from tracesaddedn theorderin which
they werecollected.At first, almostevery sequencés new,
but graduallythe numberof new sequencedropsoff. One
way of establishingiconsistenteasur@f how muchtrain-
ing datato useacrossseveral programss to seta targetfor
the slope of this growth curve. Oncethe rate of encoun-
tering new sequenceslropsbelorv somepresetvalue, we
saywe have enoughdatawith which to build our modelof
normal.

Unfortunately the growth curvesfor our datasetsare
notvery smooth.Severaltracesmight passwith no new se-
guencesandthenseveral new sequenceare encountered
closetogether This is not surprising,asa changein sys-
tem call orderaffecting one sequencgenerallyaffectsthe
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Figure 1. Typical database growth curve. The
graph shows how the size of the normal
database grows as traces are added chrono-
logicall y.

nearbysequencesis well. We consideredseveral meth-
odsfor smoothingthis curve so asto geta betterestimate
of the slope, and eventually settledon the following ap-
proach. Figure 2 shaws several different versionsof the
growth curve for the samedata. The pool of normaldata
tracesis treatedasa loop, wherethefirst tracefollows the
lasttrace.For eachcurveshavnin figure2, adifferentstart-
ing point on this loop waschosenrandomly andthenthe
traceswerereadin orderfrom that point. This allows us
to examinevariationsin the growth curve without reduc-
ing theamountof datausedor disruptingthe chronological
orderingof traces.

1000+
800;
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200;
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0 500000 1000000 1500000

Total number of sequences
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Figure 2. Alternate database growth curves
for the same data used in Figure 1. Light
lines show standar d growth curves for diff er-
ent starting points in the training data; the
dark line shows the mean.

The averageof theseindividual growth curves, shovn



asthedarlerline in figure 2, givesa smootherestimateof
therateat which the databasgrows. This is not a precise
measureput a roughway to estimatehow muchtraining
datashouldbe used. For our experimentswe selectedhe
first pointontheaveragecurve atwhichthelocal slopewas
lessthanonenew sequenceerl0tracesandremainedhat
way for atleastl0traces.We usedeachprograms average
tracelengthfor this estimate gxceptin thosecasesawvhere
a single long trace skewed the average. For x| ock, we
averagedthe lengthsof only the synthetictraces,and for
naned, we usedthe mediantracelength. We chosetwo
groupsof training tracesin this fashion,onefor sequences
of lengthsix, andanotherfor sequencesf lengthten. All
datanotincludedin thesecondlargertrainingsetwereused
for testing. Table1 shavs how muchtrainingdatawe used
for eachprogramfor sequencéengthsix.

On the testingside, false positives were measuredlif-
ferently from true positives. To detectanintrusion,we re-
quireonly thattheanomalysignal(describedelon) exceed
apresethresholdat somepointduringtheintrusion. How-
ever, makinga singledeterminatiorasto whetheranormal
traceappearsinomalousr notis insufficient, especiallyfor
very long traces. If a programis runningfor seseral days
or more,eachtime thatit is flaggedasanomalousnustbe
countedseparately The simplestway to measurethis is
to countindividual decisions. The false-positie rate then
is the percentagef decisionsin which normal datawere
flaggedas anomalous. Note that the sameapproachcan-
not be usedfor measuringrue positives. Intrusiontraces
generallyresemblenormaltracesn large part,andeachin-
dividual sequenceavithin anintrusive traceis morelikely to
benormalthannot.

5. Building modelsof normal behavior

We modeledhenormalbehaior of eachof thedatasets
describedn Section3 usingeachof thefour methodscho-
senearlier This procesgook muchlongerfor HMMs than
for the othermethods.On our largestdataset,HMM train-
ing took approximatelytwo months,while the othermeth-
odstookafew hourseach.For all but thesmallestdatasets,
HMM trainingtimeswere measuredn days,ascompared
to minutesfor the other methods. The subsectiondelon
explainthe detailsbehindeachmethod.

5.1 sequencdime-delay embedding(stide)

In sequencaime-delayembedding(stide), a profile of
normalbehaior is built by enumeratingll unique contigu-
oussequencesf a predeterminedfixed length £ thatoc-
curin thetrainingdata.We ran experimentswith sequence
lengthsof six andten. For a sequencéength of six, we
slideawindow of lengthsix acrosseachtrace,onesystem

call at a time, addingeachuniquesequencéo the normal
database.The sequenceare storedastreesto save space
andto speedup comparisonsBuilding sucha databasee-
quiresonly a single passthroughthe data,unlike someof
themethodgdescribedelow.

At testingtime, sequencefrom the testtraceare com-
paredto thosein the normal database.Any sequenceot
foundin thedatabasés calleda mismatd. Any individual
mismatchcouldindicateanomaloudehaior, orit couldbe
asequencéhatwasnotincludedin thenormaltrainingdata.

To date all of therealintrusionswe have studiedproduce
anomalousequences temporallylocal clusters. This is
cornvenientfor definingan on-line measureof anomalous
activity. We derive our on-linemeasuregr anomalysignal,
from the numberof mismatche®ccurringin atemporally
local region, calleda locality frame Thedatareportedbe-
low useda locality frameof 20 systemcalls. At eachpoint
in our testtrace,we checkwhetherthe currentsequence
is a mismatch,andkeeptrack of how mary of the last 20
sequencesvere mismatches. This Locality Frame Count
(LFC) givesus our anomalysignal. (A somevhatdifferent
approachwastaken in [7], wherethe measureof anoma-
lous behaior was basedon Hamming distancesetween
unknowvn sequenceandtheir closestmatchin the normal
database.)

We thensetathresholdon the LFC, below which traces
arestill consideredo benormal.Any timetheLFC reaches
or exceedghethresholdananomalyis recorded ThisLFC
thresholdis the primary sensitvity parametetusedin the
experimentslescribedelow; it rangefrom 1to 20. Lower
LFCstendto catchmoreintrusionsandalsogive morefalse
positives,higherLFCstendto producefewertrueandfalse
positives.

5.2 stide with frequencythreshold(t-stide)

A simpleadditionto stideallows usto testthe premise
that rare sequencesire suspicious. For eachsequenceén
the databasewe keeptrack of how oftenit hasbeenseen
in the training data. Onceall the training datahave been
processedwe thendetermineeachsequenca overall fre-
gueng. For our experiments;rare” wasdefinedasary se-
guenceaccountingor lessthan0.001%of thenormaltrain-
ing data. The“t” in “t-stide” representthe additionof this
thresholdon sequencérequencies.

Sequencefrom testtracesarecomparedo thosein the
databaseas for stide. Raresequencesas well asthose
not includedin the databaseare countedas mismatches.
Thesemismatchesreaggrgatednto locality framecounts
asdescribedearlier Again, thethresholdon locality frame
countsis the primarysensitvity parameter



5.3 RIPPER

RIPPER—RepeatddcrementaPruningto ProduceEr-
ror Reduction—isa rule learning systemdeveloped by
William Cohen[2]. It, like otherrule learningsystemsjs
typically usedfor classificatiorproblems . Trainingsamples
consistof a setof attributesdescribingheobjectto beclas-
sified,andatarmgetclassto whichthe objectbelongs.Given
enoughsuchexamples RIPPERextractsrulesof theform:

classA:-attribl= x, attrib5=y.
classB:-attrib2=z.
classC:4rue.

In this example,classA is chosenf attributes1 and5 are
x andy, respectiely; classB is chosenif attribute 2 is z;
andclassC is thedefault class.Conditionscanalsospecify
thatan attribute not equala certainvalue. (For othertypes
of data,moreconditionsarepossible.)Multiple conditions
arealwaystakento meanthatall conditionsmusthold.

For the intrusiondetectionproblem,suchclassification
is usefulonly if onehasa completesetof examplesof the
abnormalclass(eswith which to train the system.We are
primarily interestedn theapplicationto anomalydetection,
wherewe do not have both positive andnegative instances.
Leeandothers[13, 12] adaptedRIPPERto anomalydetec-
tion by usingit to learnrulesto predictsystemcallswithin
shortsequencesf programtraces.

For eachprogramwe usedalist of all uniquesequences
occurringin that programto createthe RIPPERtraining
samples. Eachsequencavasturnedinto a RIPPERsam-
ple by treatingall systemcallsexceptthelastin asequence
asattributes,andthelastasthe targetclass. (This requires
renamingthe last systemcall, as RIPPERwill not accept
classesthat look like attributes.) Similar attribute/taget
pairs were createdfor testtraces,but in that caseall se-
guenceswere used,not just a sampleof eachunique se-
guence.

RIPPERhasa difficult time learningrules for classes
aboutwhichthereis not enoughinformation,suchasa sys-
tem call that only occursat the end of a sequenceonce
[11]. Becauseahefrequencie®f eachsequencarenotbe-
ing recordedsimpleduplicationof eachsequencg timesis
effective. We replicatedeachtraining sampletwelve times
to createthetrainingfile, asdid LeeandStolfoin [12].

RIPPER takes these training samplesand forms a
hypothesis—dist of rulesto describenormal sequences.
For eachrule, aviolation scoreis establishedrom the per
centageof timesthat the rule was correctlyappliedin the
training data. For a rule whoseconditionswere met M
timesin the training dataand whosepredictionwas cor-
rectfor T' of thosetimes,the penaltyfor violating thatrule

is 100M/T. Leeandothersusedthe averageof thesevi-
olation scoresto rank a trace[12], but sucha measurds
inappropriatdor on-linetesting.We first usedamoving av-
erageof theseviolation scoresover the locality frame, but
found that gave excessie falsepositives. Instead,we call
eachsequencehat violatesa high-confidenceule a mis-
match, equivalentto the stide mismatcheslescribedear
lier. Thesemismatcheghencanbe aggreatedinto local-
ity frame counts,also describedearlier We chosehigh-
confidenceo meanthoseruleswith violation scoregyreater
than80.

5.4. Hidden Mark ov Model

StandardHMMs have a fixed numberof statesso one
mustdecideon the size of the modelbeforetraining. Pre-
liminary experimentsshaved usthata goodchoicefor our
applicationwasto choosea numberof statesroughly cor-
respondingo the numberof uniquesystemcalls usedby
the program.Most of our testprogramausean alphabebf
about40 systemcalls, hence40-stateHMMs wereusedin
mostcasesWe useda 20-stateHMM for ps andst i de, a
35-stateHMM for i net d, anda60-stattHMM for send-
mai | . The statesare fully connectedtransitionsare al-
lowedfrom ary stateto any otherstate.For eachstatethen,
we needo storetheprobabilitiesassociatedvith transitions
to eachotherstate andtheprobabilitiesassociatevith pro-
ducing eachsystemcall. For a programusing S system
calls, and hencea modelof S states,this meansroughly
252 values.

In mostcasestransitionand symbol probabilitieswere
initialized randomly and then trained using the Baum-
Welch algorithmasdescribedn [14]. Occasionallyhow-
ever, prior knowledgeis usefulin performingtheinitializa-
tion. This wasthe casewith thel pr datasets.A primary
differencebetween pr tracesis in the lengthof the doc-
umentbeingprinted. This is reflectedin the tracesasthe
numberof r ead-wr i t e pairs. We found that randomly
initializedHMMs devotedmostof thestatesandagreatdeal
of training time to modelingthe differentfrequeng distri-
butions of this particularsubsequenceAs a result, these
HMMs werelesslikely to recognizethe intrusion. How-
ever, whenthe modelwasinitialized with a predetermined
r ead stateandwr i t e statearrangedn aloop, therestof
the model stateswere availableto representtherpartsof
thetracesandaccurag improved. We assignedarge prob-
abilities to the desiredtransitionsand output systemcalls
for ther ead andwr i t e statesandlow probabilitiesfor
the alternatves. Transitionandoutputprobabilitiesfor the
otherstatesvererandomized.

During training, the probabilitieswere iteratvely ad-
justedto increasehe likelihoodthat the automatorwould
producehetracedn thetrainingset.Seseralpasseshrough



the training datawere required. To avoid over-fitting the
training data,the likelihood of the modelproducinga sec-
ond setof normaltraces(not usedin training) was period-
ically measured Whenthis secondik elihood stoppedm-
proving, trainingwasterminated.

As mentionedearlier, training an HMM is expensve.
Calculationsfor eachtracein eachpassthroughthe train-
ing datatake O(T'S?), whereT is thelengthof thetracein
systentalls(seeTablel),andsS isthenumberof stategand
symbols).Also, storageequirementarehigh. The“trellis”
of intermediatevaluesthat mustbe keptwhile performing
the calculationsfor a particulartracerequiresT'(2S + 1)
floating point values. For our longer traces,thesevalues
werewrittento amemorymappedinaryfile.

Fortunatelytestingis moreefficient. A standardvay to
testan HMM is to computethe likelihoodthatit will pro-
ducedatanotin theoriginaltrainingset.We, however, used
a simplermeasureghat (unlike the standardnethod)is not
sensitve to tracelengthandis bettersuitedto on-line use.
We usethe graphunderlyingthe HMM asa nondetermin-
istic finite automaton.We “read” a trace one systemcall
atatime, trackingwhatstatetransitionsandoutputswould
berequiredof the HMM to producethatsystemcall. If the
HMM is agoodmodelof the program,thennormaltraces
shouldrequireonly likely transitionsandoutputs while in-
trusive tracesshouldhave oneor moresystemcallsthatre-
guireunusuabktatetransitionsand/orsymboloutputs.

At agiventimet, thereis alist of currentpossiblestates.
Choosingonly the mostlikely statefor ary single system
call might not be consistentvith the bestpaththroughthe
HMM for asequencef systencalls,sowe keeptrackof all
possiblepaths.Thresholdsaresetfor “normal” statetransi-
tion andoutputprobabilities. Then,if we encounteia sys-
temcall in the tracewhich could only have beenproduced
using below-thresholdtransitionsor outputs,it is flagged
asa mismatch. Note that we could have usedthe LFC to
aggrejatethesemismatcheshbut HMM anomaliesareusu-
ally not temporally clumped, so we thoughtit more fair
to countindividual mismatches.For our experiments the
samethresholdwasusedfor both statetransitionsandout-
puts.This parametewasthe primarysensitvity parameter
with thresholdssaryingfrom 0.01to 0.0000001 Note that
HMMs are makinganomalydecisionsat eachsystemcall,
ratherthanon sequenceasin theotherthreemethods.

Thetimeto checkeachsystenctall depend®nthemodel
sizeandthe size s of the currentlist of valid states. The
latter tendsto stay very smallwith normaltraces,but can
includeupto all S statesafterananomalyhasbeenidenti-
fied. For eachcurrentvalid state ourimplementatiorof the
programtakesO(S) to decidewhetherthereis ananomaly
ornot. If s = S, this meansO(S?) to processone sys-
temcall. Thesetimescouldbeimprovedby convertingthe
modelto a betterrepresentationf the automatoroncethe

testingprobabilitythresholdsareknown.

6. Results

We testedeachof the four datamodelingmethodson
eachof thedatasetg(tracesof Unix programspatseveraldif-
ferentsensitvity thresholdsFalsepositivesarereportedor
normaldatanot usedduringtraining,andtrue positvesare
reportedfor tracesof anomaloudehaior. We first present
the overall results,andthendiscussaccurag on individual
datasets.

To geta pictureof how well the detectionmethodsper
formonavarietyof datawefirstaveragedheresultsacross
all the datasets. Figure 3 shows theseaverageresultsfor
eachcombinationof datamodeling methodand sensitv-
ity threshold. A differentsymbolis usedto denoteeach
method,and eachpoint shavs performanceat a particular
threshold.For HMMs, we distinguishbetweerresultswith
randomly-initializedHMMs andthoseusingHMMs initial-
izedto includehumanknowledgeof the modeledorogram.

In Figure 3, the y-axis represent®verall ability to de-
tectanomalies.As mentionedearlietr ary above-threshold
signalanywherein the intrusive trace(s)countsas correct
detectionof the intrusion. The x-axis represent$alsepos-
itives,measuredn anindividual decisionbasisratherthan
by traces Falsepositvesareshavn asa fractionof thetotal
numberof sequencegor systemcalls)in atraceof normal
behaior, andthereforecanrangefrom 0 to 1. Thefigure,
however, shavs only the region from 0 to 0.001which is
of primary interest. As a very rough estimate tracesare
often on the order of a thousandsystemcalls long. Iden-
tifying onein a thousandsequencesgor systemcalls, for
HMMs) asanomalouss roughly equivalentto identifying
eachtrace as anomalous. Of course,this doesnot hold
everywhere becausef the vastdifferencedn tracesmen-
tionedearlier However, it doessuggesthatfor practicality
false-positie ratesshouldbewell belon 0.001.Perfeciper
formancewouldbecorrectdetectiorof all intrusionsandno
falsepositives,representebly pointsin theuppereft corner
of thefigure.

For mary of the datasets,the individual true-positve
ratewaseitherone,if theintrusion(s)wassuccessfullyde-
tected,or zero, becausehere are only two datasetsfor
which someintrusion tracesare harderto recognizethan
others.Thismakesthetrue-positve averagea simplerepre-
sentatiorof how mary intrusionsaredetected Thenormal
data,however, aremorevaried. With differencesetween
falsepositivesthatspanseveralordersof magnitudetheav-
erageis heavily influencedby the worstresults. Thus,we
alsoshav the medianscoresn the insetof figure 3. Note
thatthe scalefor falsepositivesis muchsmalleronthis fig-
ure,asthemedianis significantlylowerthantheaveragefor
all methodsandthresholds (t-stideresultsdo not shov up
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Figure 3. Composite results for each method on all data sets, sequence length 6. Each point rep-

resents performance at a particular threshold.
identified.

are the fraction of system calls corresponding

True-positive values are the fraction of intrusions
For the sequence-based methods, false positives are the fraction of sequences giving
mismatc hes at or above the specified locality frame count threshold.

For HMMs, false positives

to state transitions or outputs below the specified

probability threshold. Points labeled “HMM” are for only randoml y-initializ ed HMMs, while those for
“HMM+" use the speciall y-initializ ed HMMs designed to handle Ipr data. No t-stide points appear in
the median plot because the false positives are off the scale. Results for four HMM thresholds all

map to the single median point shown.

onthis new scale;althought-stidemedianresultsarelower

thantheircorrespondingneansthey arenotaslow asthose
for theothermethods) Many of plottedpointsonthey-axis
of the inset (mediantrue positives) are 1.0, becausestide
andbothHMM methodscorrectly detecta majority of the
intrusion tracesat all thresholds. RIPPERS true positive

rates,however, drop off graduallywith increasingthresh-
old, while its falsepositvesdrop rapidly; this accountgor

thepointsrunningdown they-axis.

The compositepicture shovn in figure 3 givesonly a
rough outline of the data. Figure 4 shaws the relation-
shipbetweerthresholdsaandtrue or falsepositivesin more
detail. As the sensitvity thresholdis relaxed, fewer se-
guencegor systemcalls) areidentifiedasanomalousn all
tracesaffectingbothtrueandfalsepositives.“Relaxed” for
thesequence-basedethodaneansanincreasan the LFC
neededo flagananomalywhile it meansa decreasén the
minimumprobabilityfor anHMM to generat@normalsys-
temcall. The RIPPERcurvesaresteepebecausdrIPPER

rarely generatedigh LFCs. BecauseRIPPERS rulesde-
pendonly onafew of thesystencallsin asequencejotall
sequencem ananomalougpartof thetraceareclassifiedas
anomalous.

We canusetheresultsshavn in figure 4 to choosegood
thresholdgor eachmethod.Thedefinitionof “good,” how-
ever, is notfixed. On onesystemit maybe moreimportant
to maximizetrue positives, while on anothey minimizing
false positves may be key. For the moment,we choose
“good” to meanan averagetrue-positve rate above 95%.
HMMs, stideandt-stideall have at leastone thresholdat
whichtheaveragetrue-positve rateis 96.9%,missingonly
two of thel ogi n intrusiontraces RIPPERS closesmatch
is atrue-positve rateof 95.3%,missingthreeof thel ogi n
intrusiontraces. Using thesethresholdswe now turnto a
comparisorof the correspondindalse-positre rates.

Figure 5 shaws the false-positre rate for eachmethod
on eachof the six normaltestsets,using thresholdscho-
senasdescribedabore. Valuesfor one datasetvary over
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HMM results are for randoml y-initializ ed HMMs only.

ordersof magnitude(note the logarithmic scaleon the y-
axis). Thereis somecorrelationbetweenlong tracesand
low false-positre rates(ignoring the named daemonfor
themoment) but the numberof misclassifiechormaltraces
still varieswidely betweerprograms.More importantthan
tracelengtharethe compleity of a programandthe vari-
ability in its usage.Thesendmai | programis largerand
morecomplicatedhantheotherprogramsproducingraces
with alargervariety of systemcallsandsequencgatterns,
soit is not surprisingthatit is moredifficult to model. By
contrastxl ock andst i de are muchsimplerprograms,
which do not interactwith a network. They alsogave our
leastrealisticdatasets—xI| ock becaus¢hetestdatacome
from just one abnormallylong trace,andst i de because
it is anapplicationprogram. Thetwo | pr datasetswere
producedby the sameprogram,but the UNM false posi-
tivesarehigherfor all methods.We speculatehatbecause
the UNM datawerecollectedover amuchlongerperiodof
time, they reflectmore changesn network configurations
anduserbehaior thanthe MIT data.

It is possiblethat we simply did not use enoughtrain-
ing datato characterizeéhe more complex datasetsade-
guately eventhoughour training setsizesweredetermined
by the variability of systemcall patterns(seeSection4).
Thesendnmi | trainingsetwaslargerthanary otherpro-
gramstraining set,andthel pr training setsuseda larger
percentagef theavailabledata.Yetsendmai | andUNM
| pr hadtheworstfalse-positre rates.

Resultsacrossmodeling methodsfor a particulardata

setaremoresimilarthanresultsfor the samemethodacross
differentdatasets. Althoughit is clearthatt-stide consis-
tently performsbelow the othermethodsnoneof the other
methodss a clearwinner. We would needto betterunder
standwhy false-positie ratesvary so much betweendata
setsheforewe could conclusvely identify one methodas
best. Thatis, our datasuggesthatthereis no single best
choicefor all the datasets. However, noneof the methods
(otherthant-stide)would bea badchoice.

All of the resultspresentedn figures3, 4, and5 were
computedisingasequencéength(window size)of six, and
the correspondinghoiceof training data. Resultsfor se-
guencelengthten are qualitatively similar, but therearea
few pointsworth noting. We expectedthe resultsfor the
sequence-basedethodgo be similar for thetwo sequence
lengthsbecauseave chosethe size of thetraining setbased
on the sequencdength. The training set chosenfor se-
guencelengthten was muchlarger thanthat for sequence
lengthsix, reflectingthe factthattherearemary morepos-
sible sequencesf lengthten thanof lengthsix. RIPPER
andstideaverageresultsappeaito beslightly betterfor se-
guencelength six, despitetraining on lessdata, possibly
becausehe smallersequenceallow bettergeneralization.
However, HMMs do not dependon the sequencdength;
HMM accurag wasbetterfor mostdatasetson the larger
trainingset.

However, thesetrendsin the averagebehaior do not
hold for all programs Eachmethodhassomeprogramsor
which sequencéengthsix falsepositive ratesarelowerand
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othersfor which they arehigher This is likely dueto the
factthatourresultsdependsomevhatonwhichtracesor se-
guencesreincludedin thetrainingset. A differentchoice
of trainingdata,evenif theamountof datawerethe same,
would yield differenttestresultsin somecases.We have
not attemptedo measurehis variation or obtainan error
estimatdor thefalsepositives. Thecomparisonsnadehere
aresuggestie, ratherthantestsof statisticalsignificance.

7. Discussion

Intrusiondetections animportantandactive areaof re-
search. Variousresearchgroupshave suggestedanethods
thatlook promisingon at leastone setof data. But in or-
derto choosdrom amongthesedifferentmethodsyve need
goodcomparisondetweerthemon a varietyof data.Such
comparisongrenot easy Differencesn how the methods
work andlarge variationsin the amountandtypesof data
bothcomplicatedbur study

One suchdifferenceis in the way anomalysignalsare
generated. The sequence-basedethodstend to produce
multiple mismatcheseven for a single misplacedsystem

call, becausehat systemcall affects multiple sequences.

BecauseHMMs, as usedhere, checkonly a single sys-
tem call at a time, they automaticallyproducefewer mis-
matches. This biasesthe resultsin favor of HMMs. An
alternatve thatseemsnorefair atfirst is to comparepeaks
A traceregion wherelocality frame countsareall abose 0
shavs up asa peakin a graphof the anomalysignalover
time. Sucha peakmight be equivalentto a single HMM
anomaly But the size of the locality frame might cause

multiple anomaliego belumpedtogethelin onesuchpeak.
Perhapscontiguousmismatchesvould be a better defini-
tion of peak However, in eithercase,it is impossibleto
calculatea percentagéor falsepositives, becausehereis
no notion of how mary suchpeaksare possiblein a given
trace.

Regardlessof how the false positives are calculated,
moretestdatawould improve our confidencen theresults.
Althoughwe have collecteddatafor a spectrunof different
kinds of programsandintrusions,we still have arelatively
smallnumberof datasets. Eachindividual datasetcarries
too muchweightin the final outcome,and addingresults
for one more dataset might changethe compositeresults
enoughto favor othermethods.

Studiessuchasourscanalwaysbeconductednorethor-
oughly. As with collectingdata,thereareno predetermined
stoppingcriteria. Eachmodelingmethodhasa numberof
parametershataffect anomalysignals,but only a few rep-
resentatie variationswereinvestigatecere. Also, thereis
arandomelementto both RIPPERandHMMSs, so results
for thesemethodsshouldideally be averagedver multiple
trials.

For thesereasons,we cannot definitively determine
whichmethodis best.However, we canmake somegeneral
statementsaboutwhich propertiesof the datawerehelpful
or harmfulfor eachof themethods.

We purposelychosemethodghat could handlediscrete
data,but the large numberof distinct systemcalls usedis
a problemfor somemethods. In training an HMM, the
time for eachpassis roughly proportionalto the squareof
the alphabetize (humberof differentsystemcalls). More



comple programsusingmore systemcalls requiresignifi-

cantly longertraining times. On the testingside, eachde-
cisionin the currentimplementatiorrequiresa numberof

testsdirectly proportionalto the numberof distinct system
calls. By contrast,in stideandt-stide,the numberof sys-
temcallsis only anindirectfactorin trainingandtesttimes,
becauseof the way the dataare stored. The searchtime

for a sequencén the databasalepend<n the numberof

branchedn the sequencdrees. Although the numberof

possiblebranchesat eachlevel is equalto the numberof

systemcalls, the numberencountereéh practiceis signifi-

cantlyfewer. Thesemethodsscaledramaticallybetterwith

thenumberof systencallsused.

Scalingwith thelengthof thetraceds anotherfactor All
of themethodshave trainingandtesttimesthatarelinearin
the length of the trace. However, the training algorithms
for HMMs andRIPPERmake multiple passeshroughthe
trainingdata,whereastideandt-stiderequireonly asingle
passto build their normal databasesAlso, as mentioned
earlier HMMs muststoreintermediatedatawhile training,
with the numberof floatingpoint valuesproportionatlto the
tracelength multiplied by the numberof states. For long
tracesthisis very expensve.

The numberof uniquesequencem a datasetis not di-
rectly relatedto thetracelength.In fact,longertracesoften
repeata smallnumberof sequencemary times. As men-
tioned earliet the primary differencebetweenl pr traces
is the numberof read-wri t e pairs. Also, in the long
x| ock live trace,the bulk of the dataconsistof the same
five systemcallsrepeatedverandover. Thisis onereason
why RIPPERIs trainedon only the uniquesequencesand
not on the raw data. Otherwise,thosefew very common
sequencewould dominate,andfew or no ruleswould be
extractedfor the othersequenceslt alsosuggests prob-
lemfor thefrequeng-basednethodsWith afew sequences
accountingfor a large percentagef the data,frequencies
of othernormal sequencesendto look insignificant,and
can be flaggedas anomalous. However, thesecommon
sequenceslo not dominateevery trace;in the shorterse-
guencedrequenciesare more evenly distributed. Because
of this, simple methodsfor comparingrare and common
sequenceareinsufficient, althoughmoresophisticatedp-
proachesould perhapsmake betteruseof the frequeny
information.

Eachmethodwe usedwas designedo take adwvantage
of thelocality of intrusions. The sequencéasedmethods,
usinglocality frameaggreyatesof the mismatchcountsall
focusonthelocal historyof systemcalls. AlthoughHMMs
havethepotentialto capturesomdong-termhistoryaswell,
the way we usedthem also concentratean local events.
This is partly becauseof our choiceof model size; more
stateswould berequiredto give the HMMs a longermem-
ory.

In theserelatively small HMMs, eachstate might be
usedto characterizenultiple partsof the traces. A single
stateproducingprimarily r ead systemcalls, for example,
might representseveral different programstatesin which
readingdatais required.Transitionsout of thatstatemight
reflectthe differentpossibilitiesfor goingontowri t e or
to cl ose or to anotherr ead. Thereis a potentialhere
for missinganomaliesbecaus&suchstatetransitionamight
malke it possibleto mix prefixesandsufixesthatdo notgo
together However, thereis alsoa potentialfor bettergener
alizationthanthat offeredby the sequence-basedethods.
As an example,if the training datainclude examplesof a
systemcall beingusedone,three,or four timesin arow, an
HMM will likely acceptatraceusingthatsystemcall twice
in arow. The sequencdasedmethods(with the possible
exceptionof RIPPER)would identify at leastsomemis-
matches.In the datawe have studied,suchsequencesare
alwaysfalsepositives,anddo not contritute to identifying
anomalies.

An additionalfactorin evaluatingmethodss thedegree
to which training canbe automated.The ability to addhu-
man knowledgeto the model might be helpful, but such
knowledgeshouldnotberequired.

8. Conclusions

We comparedfour methodsfor characterizingnormal
behaior anddetectingintrusionsbasedon systemcallsin
privilegedprocessesEachmethodwastestedon the same
suiteof datasets,consistingof differenttypesof programs
anddifferentintrusiontechniques.On this testsuite, three
of thefour methodgerformedadequatelyHiddenMarkov
models,generallyrecognizedas one of the mostpowerful
datamodelingmethodsn existence gave thebestaccurag
on average althoughat high computationatosts. Surpris-
ingly, the much simpler sequencdime-delayembedding
methodcomparedavorablywith HMMs. We concludehat
for this problem,the systemcall dataare regular enough
for even simple modelingmethodsto work well. The av-
erageresultsindicatethat it might be possibleto achieve
increasediccurag with HMMs, provided significantcom-
putationalresourcesireavailableto trainandrunthem.

However, no one methodconsistentlygave the bestre-
sultson all programs,and resultsbetweenprogramsvar-
ied morethanresultsbetweermethods.Variationsin false
positves were due more to the compleity of the traced
programsandtheir ervironmentsthanto differencesn the
analysismethods Althoughtherearemultitudesof alterna-
tive methodsthat were not tested,our resultsdemonstrate
that for this problem, several methodsperformwell. We
believe that the choiceof datastream(shortsequencesf
systemcalls)is a moreimportantdecisionthanthe particu-
lar methodof analysis.



Historically, mary computationallysophisticatedneth-
ods have beenappliedto the intrusion-detectiorproblem,
yettherearefew well-acceptedolutionsin widespreadise.
Onelessonfrom this paperis that perhapsa disproportion-
ateamountof attentionhasbeendirectedto thedatamodel-
ing problem,andthatequalattentionshouldbe paidto con-
sideringwhatarethemosteffective datastreamso monitor.
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