
An Immunological Approach to Change Detection:
Algorithms, Analysis and Implications

Patrik D’haeseleer
Dept. of Computer Science
University of New Mexico
Albuquerque, NM, 87131

patrik@cs.unm.edu

Stephanie Forrest
Dept. of Computer Science
University of New Mexico
Albuquerque, NM, 87131

forrest@cs.unm.edu

Paul Helman
Dept. of Computer Science
University of New Mexico
Albuquerque, NM, 87131

helman@cs.unm.edu

Abstract

We present new results on a distributable change-
detection method inspired by the natural immune system.
A weakness in the original algorithm was the exponential
cost of generating detectors. Two detector-generating
algorithms are introduced which run in linear time. The
algorithms are analyzed, heuristics are given for setting
parameters based on the analysis, and the presence of
holes in detector space is examined. The analysis pro-
vides a basis for assessing the practicality of the algo-
rithms in specific settings, and some of the implications
are discussed.

1. Introduction

It is impractical to find and patch every security hole
in a large computer system. Thus, the need for a more
comprehensive approach to security is increasing. Any
single protection mechanism is likely vulnerable to
some class of intrusions. For example, relying on a
protection mechanism that is designed for known types
of intrusion implies vulnerability to novel intrusion
methods. It is our belief that a multi-faceted approach is
most appropriate, in which, similar to natural immune
systems, both specific and non-specific protection
mechanisms play a role.

This paper is concerned with one aspect of our over-
all strategy: the very general problem of change detec-
tion. The method discussed is non-specific, in the sense
that it is not specifically aimed towards certain well-
known attacks, as opposed to, for example, one using
known signatures. It is also general in the sense that it
could be used for a wide variety of change-detection
problems, including those requiring some tolerance of
noise, or involving dynamic streams of data (such as
activity patterns in running processes [7]). On the other
hand, it might not always be as efficient as some of the
knowledge-intensive special-purpose mechanisms for
detecting specific kinds of changes or known attacks. Its
strength, however, is its generality; it potentially could

 To appear at the 1996 IEEE Symposium on Security and Privacy.

be applied in many settings as a safety net to catch
changes that might otherwise go undetected.

The change-detection method we are studying was
inspired by the generation of T-cells in the immune
system. In the thymus, T-cells with essentially random
receptors are generated, but before they are released to
the rest of the body, those T-cells that match self pro-
teins are deleted [9, 10]. Similarly, our method distin-
guishes self strings (the protected data or activities)
from nonself strings (foreign or malicious data or activi-
ties) by generating detectors for anything that is not in
the set of self strings. This principle of trying to match
anything that has not previously been encountered we
call "negative detection."

Many methods for change detection rely on a central-
ized detection protocol, i.e., each object has to be
checked in its entirety, and the monitor has to contain
all the information about the original objects. Our
method on the other hand is inherently distributable:

• Small sections of an object can be checked for
change independently.

• Different independently generated detector sets
(running on different machines for example) can be
used to achieve a higher detection rate for a single
object. The failure rate decreases exponentially with
the number of independent detector sets used.

• The individual detectors in the detector set can be run
independently as well, for instance in a scheme with
autonomous agents (such as the one presented in [1]),
where each agent would contain one or a few de-
tectors.

We think this distributability property is crucial
because it allows each copy of the algorithm to use a
unique set of detectors. Having identical protection
algorithms can be a major vulnerability in large net-
works of computers because an intrusion at one site
implies that all sites are vulnerable.

The negative detection method was introduced in [6].
Our current emphasis is on extending the theoretical
basis of the method and addressing the important ques-
tion of practicality, including (i) the feasibility of
generating detectors, (ii) determining how to choose
parameters for the algorithm, and (iii) discussing the

implications for real-world problems. This paper pre-
sents algorithmic and analytical results that enable us
to address these questions. The original algorithm sim-
ply generated random detectors and then censored the
ones that matched self strings (according to a prede-
fined matching rule). We present two new algorithms,
both of which are more efficient at generating detectors.
Section 2 gives an overview of these algorithms, their
time and space complexity and some of the formulas
and parameter bounds derived from them. Section 3
compares results obtained with the different algorithms
and formulas, both on randomly generated files and on a
real binary file. Section 4 touches on some of the prac-
tical issues, including guidelines on applying the
method, how to choose the parameters, and the formu-
las involved. Section 5 presents conclusions and
outlines areas for further study.

Matches

Matches

MatchedBy

S

N

N'
C

RD

C

U dU

detected

undetected

holes

self strings

Figure 1: Sets of strings and their relations. String
space U and detector space Ud are drawn sepa-
rately for clarity, even though U=Ud for this paper.
P is MatchedBy Q iff Q contains all the detectors
matching any string in P. Q Matches P iff P con-
tains all the strings matched by any detector in Q.
S: self strings; N: nonself strings; C: candidate
detectors; R: detector repertoire chosen from C; N´:
detectable nonself strings; D: detected nonself
strings. Not indicated are the set of holes H=N-N´,
and the set of undetected nonself strings F=N´-D.

Currently we restrict ourselves to the case where both
self strings and detectors are strings of length l over an
alphabet of size m. In this paper, the alphabet is usually
binary (m=2). Self consists of an unordered set of these
strings (a multiset, because strings can occur more than
once). Figure 1 shows the relevant sets of strings and
how they relate to each other. The goal of our method is
to find a detector set R that matches as many of the
nonself strings in N as possible, without matching any
of the self strings in S. We define the failure probability
Pf as the probability that a random nonself string will
not be matched by any of the detectors in R. We further

define the matching probability Pm as the probability
that a randomly chosen string and detector match
according to the specified matching rule. To simplify
the notation, we will write NX for the size (i.e. cardi-
nality) X of a set of strings X. In particular, NS is the
size of the self set and NR is the detector set size.

2. Detector generating algorithms

This section describes three different algorithms for
generating detector sets: the original exhaustive gener-
ating algorithm and two new algorithms, based on
dynamic programming, which run in linear time with
respect to the size of the input. See [6] for an exposition
of the exhaustive detector generating algorithm (2.1).
For more details on the linear time algorithm (2.2), see
[8] and [3]. This last report also covers the greedy algo-
rithm (2.3) and the algorithm for counting the holes
(2.4), including some examples and a derivation of the
time and space complexities.

2.1. Exhaustive detector generating algorithm

This algorithm mirrors most closely the generation of
T-cells in the immune system. Candidate detectors are
drawn at random from Ud and checked against all strings
in S. If they fail to match any of the self strings, they
are kept as valid detectors. This process of random
generation and checking against S is repeated until the
required number of detectors is generated.

This algorithm requires generating a number of can-
didate detectors (NR0

: initial detector repertoire size,
before negative selection). that is exponential in the
size of self (for a fixed matching probability Pm) [2]:

N
P

P PR
f

m m
NS0 1

=
−
⋅ −

ln()

()
 .

For independent detectors, we can approximate the
failure probability Pf achieved by NR detectors by:

P Pf m

NR≈ −()1 . (1)

For Pm sufficiently small and NR sufficiently large,
this gives:

NR ≈ − ln Pf() Pm . (2)

The assumption that the detectors are independent is
not entirely valid. As NS or Pm increases, the candi-
date detector set (C in Figure 1) will shrink., so the
detectors chosen become less independent. Overlap
among the detectors decreases the amount of string
space covered, resulting in a higher failure probability
Pf than (1) would indicate.

The time complexity of this algorithm is proportional
to NR0

, the number of candidate detectors that need to
be examined, and NS (because each string may have to
be compared against all self strings). Space complexity
is determined by NS:

time: O
P

P P
Nf

m m
N SS

−
⋅ −

⋅






ln()

()
,

1

space: O l NS⋅().

2.2. Linear time detector generating algorithm

The generate-and-test algorithm described above is
inefficient because most of the candidate detector
strings are rejected. However it does work for arbitrary
matching rules. For specific matching rules we might be
able to find a more efficient detector generating algo-
rithm. Here, we describe a two-phase algorithm for the
“r-contiguous-bits” matching rule (two l -bit strings
match each other if they are identical in at least r con-
tiguous positions) that runs in linear time with respect
to the size of the input (for fixed matching parameters l
and r). In Phase I, we solve a counting recurrence for
the number of strings unmatched by strings in S
(candidate detectors, set C in Figure 1). In Phase II, we
use the enumeration imposed by the counting recur-
rence to pick detectors randomly from this set of candi-
date detectors.

We will adopt the following notation:

s denotes a bit string.

ŝ denotes s stripped of its first (leftmost) bit.

s⋅ b , where b ∈ {0,1} , denotes s appended with b. In
particular, ŝ ⋅ b is s stripped of its first bit and appended
with b.

A template of order r is a size l string consisting of l-r
“blank” symbols (represented by asterices here) and r
fully specified contiguous bits. In particular, a template
ti,s, is that template in which the r specified bits start at
position i and are given by the r-bit string s. For exam-
ple, with l=6, r=3, s=010: t2,s=*010**.

A string (or template) matches a string if they are
identical (no blanks) in at least r contiguous positions.

A right (left) completion of a template t is that tem-
plate with all the blanks to the right (left) replaced by
bits. For example: *01011 is a valid right completion
for *010**.

a,b(
�

] stands for the integer interval (a+1)...b.

Phase I: Solving the counting recurrence
For bit strings s of length r and for 1≤ i ≤ (l − r +1),

let C i [s] = the number of right completions of ti,s

unmatched by any string in S. Each entry Ci [s] in the
array corresponds to an order r template ti,s, i In essence,
these templates enumerate all the possible ways two
strings can match each other over r contiguous bits. In
particular, for i=l-r+1, ti,s consists of l-r blanks, followed
by r consecutive bits. There are no blanks to the right,
so the only right completion of such a template is the
template itself. Therefore Cl-r +1[s] will be zero if the
template tl-r+1,s is matched in S, one otherwise:

Cl−r+1[s] = 0,if tl−r+1,s is matched in S
1, otherwise

î
For 1≤ i < (l − r +1), we can calculate the number of

unmatched right completions based on the number of
unmatched right completions at i+1. If ti,s is directly
matched in S, C i [s] is zero. Otherwise, we can sub-
divide the right completions of ti,s into those with a 0 bit
directly following the r significant bits of s, and those
with a 1 bit there. These are exactly the number of right
completions for ̂s ⋅ 0 and ŝ ⋅1 respectively:

Ci [s] =
0, if ti,s is matched in S
Ci+1[ŝ.0] + Ci+1[ŝ.1], otherwise



î

For example, with l=6, r=3, suppose s1 = 110100 is
one of the strings in S, then the following templates are
directly matched by this string: 110*** , *101** ,
010* and *100. Therefore, C1[110] = C2[101] =
C3[010] = C4[100] = 0. Suppose string s2 = 100101 is
also in S. The template **110* is not directly matched
by s1 nor s2. However, because both ***100 and
***101 are matched in S (by s1 and s2 respectively),
**110* will not have any unmatched right completions
either: C3[110] = C4[100] + C4[101] = 0. This can
easily be verified: **110* has two right completions:
**1100 and **1101. The first one is matched by s1,
the second by s2.

Phase II: Generating strings unmatched by S
Note that as the recurrence progresses from column

Cl-r+1[.] of the C array to column C2[.], the remaining
blanks in the right completions are gradually filled up,
and for C1[.], the right completions are fully specified l-
bit strings. Therefore, C1[s] denotes the number of un-
matched l-bit binary strings starting with the r-bit binary
string s. The total number of strings unmatched by S is

T = C1[s]
s
∑ .

C1[.] can be viewed as a partitioning of the space of
unmatched strings into partitions of size C1[s] for each
initial r-bit string s. Of all the unmatched strings starting
with s, we know that C2[ŝ.0] have a 0 bit next, while
C2[ŝ.1] have a 1 bit next, so C2[.] can be viewed as a
further partitioning of this space. Similarly for C3[.] to
Cl-r+1[.]. After partitioning according to Cl-r+1[.], each par-
tition consists of one single l-bit string. We can there-
fore impose an explicit numbering from 1 to T on the
unmatched strings, based on the natural order of bit
strings. Given this explicit numbering, we can generate
NR random integers in {1..T} and retrieve the corre-
sponding strings. For a number k ∈ {1..T} , we find the
kth unmatched string uk in the following way:

First, do a binary search on C1[.] to find s1 such that

P1 = C1[s] < k
s<s1

∑ ≤ Q1 = C1[s]
s≤s1

∑ .

All unmatched strings in (P1,Q1] have s1 as their
leading r bits. The string uk we are looking for is in the

partition of unmatched strings numbered (P1+1)...Q1,
therefore the first r bits of uk are given by s1.

Now we can determine for each i = 2...(l − r +1) the
bit at position (r+i-1) of uk, by checking in which parti-
tion k falls. For example, to determine the bit at
position r+1, we can partition the interval further into
(P1,P1 + C2[ŝ1.0]] and (P1 + C2[ŝ1.0],Q1], corresponding
to the strings with either a 0 or 1 bit coming next. We
add a bit b1=0 if k is in the first interval, b1=1 bit if k is
in the second one. We then set P2 and Q2 using:

Pi = Pi-1, if bi−1 = 0
Pi−1 + Ci [ŝi−1.0], if bi−1 = 1



î

and

Qi = Pi−1 + Ci [ŝi−1.0], if bi−1 = 0
Qi-1, if bi−1 = 1



î

Let s2 = ŝ1 ⋅ b1. k is now in the interval (P2 ,Q2] ,
which we can split up into intervals (P2 ,P2 + C3[ŝ2 .0]]
and (P2 + C3[ŝ2 .0],Q2] . Bit b2, will be determined by
whether k falls in the first or second interval. Further bit
positions of uk are determined similarly.

The principle data structure used in this algorithm
consists of the large (l − r) × 2r C array representing all
the possible ways two strings can match over r contigu-
ous bits. This has an impact on the time and space
complexity of the algorithm:

time: O l r N O l r O l NS
r

R−() ⋅() + −() ⋅() + ⋅()2 ,

space: O l r r−() ⋅()2 2 .

The above algorithm runs in time linear in the size of
the self set and detector set (for given parameters l and
r). This is in contrast to the exhaustive detector generat-
ing algorithm, which ran in time exponential to the size
of the self set, but required essentially only constant
space. The linear time algorithm still requires time and
space exponential in the length r of the matching
region, which may present a problem if we need to
choose long strings (l) and matching regions (r).

2.3. Greedy detector generating algorithm

We can achieve a better coverage of the string space
with the same number of detectors (or a smaller detec-
tor set for the same amount of coverage) by not select-
ing the detectors at random, but placing them as far
apart as possible. The greedy algorithm we developed
tries to do exactly that. At each step it picks one of the
detectors that will match as many as possible of the as
yet unmatched nonself strings.

To construct the C array in Phase I of the previous
algorithm we chose to examine the strings from right to
left (from Cl-r+1[.] to C1[.]). We can also go through the
strings from left to right, constructing a second array C´
starting at C´1[.] and calculating the following levels
using a similar recurrence relation as for C. Because
Ci [s] represents the number of nonmatching right com-

pletions for template ti,s and C´i [s] the number of non-
matching left completions, Di [s] = Ci [s] × ′Ci [s] repre-
sents the number of unmatched fully specified bit
strings corresponding to this template.

If a given template has a zero entry in D , we know
that all strings containing that template will match
some string in S. Conversely, if we restrict ourselves to
picking templates with nonzero entries in D when
constructing bit strings, we know those strings will not
be matched by any string in S.

Phase I: Generate D arrays: DS and DR

The algorithm uses two different D arrays, called DS

and D R, the first one based on the self set S and the
second one based on the current state of the detector set
R. The DS array tells us which templates we are allowed
to choose from when constructing detectors. We will
call the templates that have nonzero entries in this DS

array valid detector templates.

Phase II: Generating strings unmatched by S
The second array DR, based on the current detector

set R, will indicate how many strings for each template
are not yet matched by the previously generated detec-
tors. For each new detector to be generated, we then try
to select the templates matching the most unmatched
strings. We have to update this array DR each time a
new detector is generated, so it will generally be
cheaper to just keep the CR and C´R arrays around and
update these incrementally. Because we begin with R
being empty, we can initialize CR and C´R with their
maximum values: C sR i

l r i
,

()[] = − + −2 1 and ′ = −C sR i
i

,
()[] 2 1

(corresponding to D sR i
l r

,
()[] = −2).

For each new detector, we search through DR for the
valid detector template with the largest entry. If there is
a tie between templates, we choose one at random.
Starting from this template, we then traverse the DR

array to the left and to the right, each time choosing to
add a 0 or 1 bit to the starting template depending on
which represents the template with the highest number
of strings not yet matched by R (while still restricting
ourselves to valid detector templates). Next, we have to
update the CR and C´R arrays to reflect that a new
detector has been added to R. We can do this incremen-
tally, by setting those entries in CR and C´R to zero that
directly match the detector, and recalculating the
appropriate entries.

We repeat this process of picking a detector and
updating CR, C´R and DR until all valid detector tem-
plates have zero entries in DR. At that point, for any
template that is not in S there are no more strings that
have not yet been matched by a detector, i.e., we have
covered all strings that can possibly be covered by
detectors. We call this a complete detector repertoire.

This algorithm also has the attractive property that
we can keep a running count of the number of nonself
strings that are still unmatched by any detector. For a

given acceptable failure probability Pf we can simply
keep generating detectors until we reach the corre-
sponding number of unmatched nonself strings (or until
we run out of candidate detectors, which would mean
that there are too many holes to be able to reach the
desired Pf).

At best, we can spread the detectors apart such that
no two detectors match the same nonself string. This
gives us an absolute lower bound on the number of
detectors needed [12]:

N P PR f m≥ −()1 . (3)

Looking at the structure of the template array we can
get another estimate for NR. Each detector generated
matches one of the 2r templates in each of the (l-r)
columns of the template array, and sets the correspond-
ing count there to zero. We can zero out all the entries
in a column with at most 2r detectors:

NR
r≤ 2 .

This formula does not take into account the entries in
the template array already zeroed out by matching self
strings. If we assume the self strings are independent,
each template has a chance (1− 2−r)NS of not matching
any of the NS self strings. The estimate for NR then
becomes:

NR ∝ 2r ⋅ 1− 2−r()NS . (4)

Because we need to update the template array each
time a new detector is generated, the time complexity
is quite a bit higher than for the previous algorithm,
although the space complexity is of the same order:

time: O l r Nr
R−() ⋅ ⋅()2 ,

space: O l r r−() ⋅()2 2 .

2.4. Counting the holes

Even though the above algorithm is capable of con-
structing a complete detector repertoire, this does not
necessarily mean it can construct a detector set capable
of recognizing all non-self strings, i.e., all strings not in
S. Depending on the matching rule used and the strings
in S, there may be some nonself strings, called “holes,”
for which it is impossible to generate valid detectors.
For example, if S contains two strings s1 and s2 that
match each other over (r -1) contiguous bits, they can
induce two other strings h1 and h2 that cannot be
detected because any candidate detector would also
match either s1 or s2, as shown below:

s

s

a a b b c c

a a b b c c

h

h

a a b b c c

a a b b c c

k k k r k r l

k k k r k r l

k k k r k r l

k k k r k r

1

2

1 1 1

1 1 1

1

2

1 1 1

1 1 1

:

:

...

...

:

:

...

...

+ + − +

+ + − +

+ + − +

+ + − +

′ ′ ′ ′
⇓

′ ′
′ ′ ll

where ai , ′ai , bi , ci , and ′ci are single bits.
A similar argument shows that we also can have

holes using a Hamming distance matching rule (where
two strings match if their Hamming distance is less than
or equal to a fixed radius r). In fact, almost all practical
matching rules with a fixed matching probability can be
expected to exhibit holes [4, 5]. However, we can elimi-
nate holes altogether by choosing a matching rule with
a variable matching radius, such that potential holes are
filled by detectors with high specificity.

Because holes will never be detected by any detec-
tor, they imposes a lower bound on the failure probabil-
ity Pf we can achieve, whether we use a single set of
detectors or several independent detector sets generated
for the same matching rule. It is therefore advisable in a
distributed setting to choose a different matching rule
(or simply different parameters) for each machine, so
each will have a different set of holes which are likely
covered by some other machines. On the other hand, we
can take advantage of the position of these holes to
provide a certain level of noise tolerance in our detec-
tion method: because holes are close to self strings, we
might not really care if they go undetected. Many other
change-detection algorithms (such as checksums and
message digests) are sensitive to any change in the
data and therefore not applicable when a certain
amount of noise tolerance is required.

Running the greedy algorithm until all valid detectors
have been used up would tell us exactly how many non-
self strings cannot be detected. In [3] we developed a
more efficient algorithm for counting the exact number
of holes, similar to the way the number of detector
strings not matched by S are counted in the linear time
algorithm. Its space and time complexities are similar:

time: O l r N O l rS
r−() ⋅() + −() ⋅()2 ,

space: O l r r−() ⋅()2 2 .

The reasonably short running time makes this a use-
ful tool in discovering appropriate settings for the l and
r parameters of the matching rule. At the very mini-
mum, we want the number of holes NH to be small
enough to allow the desired failure probability Pf :
NH ≤ Pf ⋅ 2l . If we stick close to this upper bound on
the allowed number of holes, almost all valid detectors
will be needed to cover the very last nooks and crannies
of the detectable nonself string space. If the number of
holes is much smaller than this, we may need substan-
tially fewer detectors for the same Pf . The smaller the
fraction of non-zero entries there are in the template
array, the more holes there will be (because holes con-
sist solely of templates that have zero entries in the
template array). The template array becomes sparse if
NS >> 2r , because each of the NS self strings can
match one of the 2r templates. In order to get only a
small number of holes, we may want to use

NS ≤ 2r . (5)

LS

(a)
NS

(b)
l

(c)
r

(d)
Pm

(e)

indep.
Pf =0.1

(f)

greedy
complete

(g)

estimate
complete

(h)

greedy
Pf =0.1

(i)

optimal
Pf =0.1

(j)

entropy
Pf =0.1

(k)

number
of holes

(l)
500B 250 16 10

9
8

0.00391
0.00879
0.01953

589
262
118

793
320
88

802
314
96

374
212
(*)

230
102
46

52 634
4438

21076
1KB 250 32 11

10
9
8

0.00562
0.01172
0.02441
0.05078

410
196
94
45

1796
821
378
89

1813
802
314
96

313
153
76

(*)

160
77
37
18

26 2649
24911

2150714
5.1815e+08

500 16 11
10
9

0.00171
0.00391
0.00879

1347
589
262

1610
632
155

1604
628
193

829
445
(*)

526
230
102

104 882
3854

24937
2KB 500 32 12

11
10
9

0.00269
0.00562
0.01172
0.02441

856
410
196
94

3584
1668
772
201

3625
1604
628
193

650
316
159
(*)

335
160
77
37

52 4787
52318

2420706
4.6564e+08

1000 16 12
11
10

0.00073
0.00171
0.00391

3154
1347
589

3204
1258
340

3207
1257
385

1856
1233

(*)

1233
526
230

208 1353
5428

23933
4KB 1000 32 13

12
11
10

0.00128
0.00269
0.00562
0.01172

1799
856
410
196

7144
3304
1516
378

7251
3207
1257
385

1352
659
328
(*)

703
335
160
77

104 8475
85798

3991790
5.2296e+08

Table 1: Repertoire sizes and number of holes for different configurations. (a): file size in bytes, (b), (c),
(d): parameters chosen for the matching rule. (e): corresponding matching probability Pm for the r-
contiguous-bit matching rule. (f): NR calculated according to formula (2), for independent detectors. (g):
size of complete detector repertoire generated with the greedy algorithm. (h): estimate for (g) based on
formula (4). (i): NR generated by greedy algorithm until Pf ≤ 0.1 ((*) means that Pf ≤ 0.1 could not be
achieved). (j): lower bound on (i) based on formula (3). (k): entropy-based lower bound on (h).1 (l):
number of holes present.

3. Results and analysis

In this section we use the algorithms and analysis
from section 2 to explore which parameter settings are
practical. Subsection 3.1 looks at results obtained for
relatively small randomly generated self sets, and draws
some conclusions from comparisons between different
algorithms and formulas. Subsection 3.2 looks at a much
larger real-world example and examines how the failure
probability scales with detector set size and matching
length r.

3.1. Repertoire sizes using different algorithms

Table 1 shows detector repertoire sizes obtained with
the different algorithms using randomly generated self
files and a number of different parameter sets (NS, l
and r), as well as some upper and lower bounds
predicted by the formulas presented in the previous
sections. We have arbitrarily chosen Pf =0.1 as an
acceptable failure rate. Because the algorithm might be
able to cover more of the total nonself string space with
a smaller set of detectors if there is a structure to the
self strings, independent self strings will tend to be a

worst case situation for estimating NR (ignoring the
effect of the holes on the achievable Pf).

When we compare the results in columns (f) and (i),
we see that the greedy algorithm generates a detector
set that is from 8% to 41% smaller than the size pre-
dicted for the independently chosen detectors. Also note
that formula (2) indicates that the desired Pf should be
reachable with a detector set of a certain size, although
there might be so many holes in the string space that
this Pf is unreachable, as indicated by the entries
marked “(*)” in (i). For the linear time and the exhaus-
tive algorithm, there is no guarantee that a detector set
of the size indicated by (2) will achieve the specified
Pf . This is not a problem for the greedy algorithm,
because we can continue generating detectors until Pf

exceeds the specification.
With a greedy selection of detectors, the last detec-

tors generated will only match a small number of as yet
unmatched nonself strings, and will therefore not have a
significant effect on Pf . This means that when going

1References [4, 5] show that for a set of independent self strings,
the following is a lower bound on the number of detectors needed:
NR ≥ NS ⋅ log2 1 Pf() l ⋅ log2 (m) (6). This bound is based on the

amount of information that needs to be stored in R about S.

from Pf = 0.1 to Pf = minNR
(Pf), quite a large number

of extra detectors may have to be added to match all of
the tiny unmatched regions of nonself string space. This
explains the large difference in detector set size be-
tween, for example, 90% detection rate and the maxi-
mum detection rate (complete repertoire).

Both (3) and (6) (columns (j) and (k) in Table 1) are
indeed effective lower bounds on the size of the detec-
tor set needed for a failure probability of Pf =0.1. The
entropy-based lower bound is less strict, partially
because it does not take the properties of the matching
rule into account. The lower bound in column (j) is
based on optimal spacing of the detectors, which is pre-
cisely what the greedy algorithm tries to achieve, so we
could view column (j) as the optimal detector set size
for the greedy algorithm. Interestingly, when the greedy
algorithm aims for an optimal detector set size that is
smaller or almost equal to the size indicated by the
entropy-based lower bound (i.e., (j) (k)≤), it is unable
to do so (entry in (i) is “(*)”) because the number of
holes in the string space (column (l)) is too large with
respect to the desired Pf . This suggests that

1− Pf() Pm ≥
NS ⋅ log2 1 Pf()

l ⋅ log2 (m)
(7)

is an interesting lower bound on the value for Pm (and
therefore r) given NS, l and Pf .

Within one set of rows with the same NS and l , we
see that the repertoire size decreases with matching
length r . However, the number of holes in string space
seems to increase in an exponential fashion with
decreasing r up to the point where we can no longer
find an adequate detector set for the acceptable failure
probability Pf . Since Pm increases exponentially with
(l-r), a smaller matching length means that each detec-
tor matches more strings, so fewer detectors are needed.
However, each self string will also match more detec-
tors, so the space of candidate detectors becomes
smaller and the number of holes due to interaction
between self strings gets larger. For the smallest r for
which we can construct an adequate detector set R, a
large number of the nonself strings not matched by R
are holes. As mentioned before, using different match-
ing lengths at the same time would allow us to combine
matching all nonself strings and covering most of the
nonself string space by a small number of detectors.

By looking at rows with the same LS, we can get an
idea of the effect of choosing a shorter or longer string
length to split the data up in self strings. For instance,
the rows with NS=250 and l=32 are generated for the
same data as the rows with NS=500 and l=16. Similarly
for NS=500, l=32 and NS=1000, l=16. We see that with
a longer string length l, a smaller number of detector is
needed to achieve Pf = 0.1. If we look at how much
space is taken up by the detector set (NR × l), the
larger string length still comes out ahead. Note that with
the larger string length the number of holes in the string
space is substantially larger (for the same values of r).

This is due to the fact that the string space itself is
much larger as well. However, the fraction of string
space occupied by holes is smaller for larger l because
the self strings are spaced farther apart and therefore
interact with each other less. This means that for a
larger string length l, we can choose r smaller and still
have an acceptable detector set. This is exactly oppo-
site to what we would expect if we wanted to keep the
matching probability Pm constant.

3.2. Pf versus NR for a real data file

(a)

(b)

Figure 2: Pf versus NR for a binary file. (a): linear
scale for NR; (b): log scale for NR.

Figure 2 shows how Pf varies with NR for a binary
file (GNU emacs v19.25.2 SGI binary, 3.2MB). The data

for each value of r was derived from a single large
detector set generated with the linear time algorithm
(one million detectors for r=16 and r=18; 5 million de-
tectors for r=19). 1000 nonself strings were checked
against each of these detector sets, and for each nonself
string we recorded the first detector to match the string.
We can then derive the probability of success (1-Pf) as
the cumulative histogram over these values. Note that
this means that the points in each curve are not com-
pletely independent. However, this approach gives us a
reasonable approximation for a much smaller computa-
tional effort.

The figure shows a sharp drop in the failure probabil-
ity for the first couple of hundred thousand detectors.
This is due to the probabilistic nature of coverage of the
string space by detectors. We would expect this decline
to be even more pronounced if we were to generate the
detectors using the greedy algorithm, because then the
detectors chosen first are those which cover as many
nonself strings as possible. The decline in Pf is sharper
for smaller values of r, and therefore for larger matching
probabilities, because each detector matches a larger
fraction of string space, so most of the space is covered
by a small number of detectors. However, as the detec-
tor set size increases, Pf levels off at a higher level for
smaller r because there are more holes.

Note also that for each detector set size there is an
optimal value for r . In general, if we want to have a
smaller detector set, we will have to use a smaller
value for r (such that each detector matches more non-
self strings). Similarly, for each value of Pf there is an
optimal value for r . As the acceptable failure rate de-
creases, we will have to go to larger values of r (more
specific detectors) and larger detector sets.

Finally, if we want to exploit the fact that the failure
probability decreases exponentially with an increasing
number of machines, each of which is running its own
detector set, we may already be satisfied with Pf ≈ 0.5.
Figure 2 shows that this can be achieved with a reper-
toire as small as 30,000 to 120,000 detectors. This is
quite an achievement given that the original self file
contains about one million strings.

4. Summary of formulas, practical issues and
rules of thumb

This section gives a summary of the appropriate for-
mulas for the r-contiguous-bits matching rule, and gives
step-by step instructions on how to choose the matching
rule parameters for a real data stream.

4.1. Choosing the alphabet size

The larger the alphabet size used, the harder it
becomes to make an optimal choice for the matching
length r . This is due to the fact that for the matching
rules considered here, the matching probability

Pm ∝ m−r [11, 13]. Assuming that Pm has to stay within
certain bounds for the detection algorithm to perform
efficiently, the range of acceptable values for r be-
comes very narrow with increasing alphabet size.

For some applications, however, a non-binary alpha-
bet may be more appropriate. For example, [6] de-
scribes an experiment in which a C program compiled
for a RISC architecture was checked for changes. Each
opcode was mapped into one of 104 symbols (m=104).
An important area of future investigation is to study the
performance of different size alphabets, especially in
those cases where a non-binary alphabet is most natural.

4.2. Choosing the string length

First, we determine a lower bound for l by requiring
that the self strings should occupy only a fraction of the
total string space:

NS ≈ LS l ≤ 2l .

Table 2 illustrates some values for LS and the corre-
sponding lower bounds for l.

LS 384 2K 10K 49K 229K 1M 4.7M 21M 92M 403M

l 6 8 10 12 14 16 18 20 22 24

Table 2: LS versus lower bound for l

Note that this is not an exact lower bound for l ,
because splitting up the data into l -bit strings may
cause many duplicate strings, so NS ≤ LS l . If we want
to know the exact lower bound for l (or if the data to be
checked for changes is not a fixed size file but rather a
continuous stream of data) we can explicitly count the
number of unique l-bit strings for different values of l.

The second step in selecting string length is to
determine whether there exists a natural string length
imposed by the data. For instance, if the data to be pro-
tected is a database consisting of a series of 4-byte
records, then a multiple of four bytes would be an
obvious string length to try because it preserves the
structure of the data. If the data does not exhibit any
natural string length, we might still be able to find by
inspection certain recurring features that we want to be
able to capture. The string length will have to be longer
than these features for them to be preserved in the self
strings. Finally, there will be an upper bound to the
string length, imposed by the generating algorithms.
Increasing l usually also means r has to be increased
(certainly if we want the matching probability to remain
constant). However, for large l and r the algorithms
described in this report become computationally very
expensive.

4.3. Choosing the matching length

To keep the number of holes low, we want to pick r
such that NS

r≤ 2 (5). Again, we might want to replace

NS in this formula by the number of unique l-bit strings
that appear in the data.

As illustrated by Table 1, formula (7) gives an
approximate upper bound on Pm (and thus a lower
bound on r, for a given string length l) in order to be
able to construct a detector repertoire for the acceptable
failure probability Pf :

1− Pf() Pm ≥
NS ⋅ log2 1 Pf()

l ⋅ log2 (m)
 . (7)

Finally, after a minimum value for r has been cho-
sen, we may want to count the exact number of holes
present in the string space. If this exceeds the accept-
able number of holes of NH ≤ Pf ⋅ 2l , we choose a
smaller matching probability (i.e. larger r) and try
again. In general, because we don’t have an exact pro-
cedure to determine the optimal values for l and r , a
number of valid combinations may have to be tried and
weighed against each other in terms of ease of construc-
tion of the detector set, size of the resulting detector
set, attainable failure probability, etc.

4.4. Choosing the number of detectors

Above we have seen a number of lower bounds and
estimates for NR under different assumptions. We will
go through these one by one, from the least tight lower
bounds to what we expect to be the best estimates.

If the parameters of the self set and matching rule are
such that generating the detectors using the greedy
algorithm is too expensive, we can use the linear time
algorithm to select a set of detectors independently
chosen from the candidate detectors. If we assume the
detectors chosen are also independent of each other
with respect to the total string space, we get the lower
bound from (2):

NR ≈ − ln Pf() Pm . (2)

This last independence assumption usually doesn’t
hold: because of the limited number of candidate detec-
tors, there will be more overlap between detectors than
we would expect from strings chosen independently
from the entire string space. If this is the case, the num-
ber of detectors needed to achieve Pf can be quite a
bit larger than the value indicated by (2). We may have
to estimate the actual Pf a posteriori over a sample of
nonself strings.

If we use an algorithm that attempts to spread out the
detectors, such as the greedy algorithm, the minimum
number of detectors needed to achieve an acceptable
Pf is given by (3):

NR ≥ 1− Pf() Pm . (3)

This is an absolute lower bound, in the sense that it
is impossible to cover that much of string space with
fewer detectors. However, depending on the structure
present in the self data, it may be hard to pick detectors

that are spread apart optimally. Note that if we have
chosen r according to formula (7), using this lower
bound for NR will automatically imply that we also sat-
isfy the entropy lower bound (6). Using (3) to calculate
the number of detectors needed for the greedy algorithm
is only interesting in terms of getting a ballpark figure
for NR to evaluate whether the parameters l and r have
been chosen efficiently. If we are satisfied with the
estimate we simply run the greedy algorithm until it
reaches exactly the desired Pf . If we are interested in
achieving the minimum possible failure probability Pf ,
we can construct a complete detector repertoire by run-
ning the greedy algorithm till exhaustion. (4) provides a
fairly close estimate for the size of the complete detec-
tor set for independent self strings:

NR ∝ 2r ⋅ 1− 2−r()NS . (4)

4.5. Detection scheme

One area that we have not yet examined closely is
how best to implement the actual detection scheme
once an appropriate detector set has been generated.
Here are some possible examples:

• Maximum security: every string needs to be checked
against the entire detector set. Other, more conven-
tional, change-detection algorithms may be more
appropriate in this case.

• Intermittent checking: every so often a small number
of strings can be checked against a small number of
detectors chosen at random from the detector set. This
relies on the probabilistic nature of this change-detec-
tion method. It assumes that if a change is unde-
tected, it will be detected during some other check,
or on another machine. This might not be acceptable
if a single occurrence of the change can be fatal.

• Weighted detection: detectors can be chosen more
frequently depending on previous performance, based
on known expected changes (known failure modes,
virus signatures, etc.), or in order to get a homoge-
neous coverage of nonself string space (some areas of
nonself string space may be covered by more detec-
tors than others).

• Distributed detection: the detector set is split up over
a number of autonomous agents (see [1]) each doing
checks in parallel. This is also the scheme used in the
real immune system, where each T-cell corresponds
to a single detector.

• Distributed independent detection: each agent has a
detector set generated independently from all other
agents. This is similar to a population of individuals
with immune systems. The advantage is that holes in
one individual’s immune system can be covered by
another’s, so an infection cannot spread through the
entire population. A similar setup can be used to
protect a whole network of computers.

5. Conclusion

The linear time algorithm has made it practical to
construct efficient detector sets for large data sets. The
space requirements for this construction algorithm are
substantial. However, this space is only needed once, to
calculate the detector set, and can be discarded after-
wards. The greedy algorithm allows us to sacrifice some
of the speed of detector generation in exchange for a
more compact detector set and a failure probability
guaranteed to be below the acceptable Pf . We have
also made significant improvements towards quantifying
the range of acceptable values for the different para-
meters associated with the detection method, to the
point that we can give guidelines for setting up a detec-
tion system like this for any given data set.

The distributed nature of this algorithm is promising
for networked and distributed computing environments.
As a very general-purpose change-detection method it
can supplement more specific, and therefore more
brittle, protection mechanisms. We imagine a layered
computer immune system, with specific protection
mechanisms against well known or previously encoun-
tered intrusions, and non-specific protection mecha-
nisms like the one presented here to intercept those
intrusions that evade the specific mechanisms.

There are a number of remaining issues to be exam-
ined. Here are the most important ones:

• It might be possible to derive more exact formulas for
non-random data by looking at some measures of the
self strings (entropy, average number of nonzero
entries in the template arrays, number of holes etc.)

• It is possible to construct a linear time algorithm for
the Hamming distance matching rule. This matching
rule might give improved performance because it
does not limit the length of the matching templates
and should therefore be able to capture larger struc-
tures in the self strings.

• From a security point of view, it might be useful to
have a matching rule for which it is provably hard to
construct (and thus to forge) a detector set. Can we
come up with matching rules based on some NP-
complete problems for instance?

• The effect of using negative detection as opposed to
positive detection is not very well understood. More
research would be needed to clarify this issue.

6. Acknowledgments:

The authors thank Dipankar Dasgupta, Derek Smith,
Ron Hightower and Andrew Kosoresow for their useful
suggestions and critical comments. The idea of a com-
puter immune system grew out of a collaboration with
Dr. Alan Perelson through the Santa Fe Institute. This
work is supported by grants from the National Science

Foundation (grant IRI-9157644), Office of Naval
Research (grant N00014-95-1-0364), Interval Research
Corporation, General Electric Corporate Research and
Development, and Digital Equipment Corporation.

References:

[1] M. Crosbie and G. Spafford, "Defending a Computer
System using Autonomous Agents", in Proceedings of
the 18th National Information Systems Security
Conference, 1995.

[2] R. J. De Boer and A. S. Perelson, “How diverse should
the immune system be?” in Proceedings of the Royal
Society London B, v.252, London, 1993.

[3] P. D’haeseleer, “Further efficient algorithms for generat-
ing antibody strings”, Technical Report CS95-3, The
University of New Mexico, Albuquerque, NM, 1995.

[4] P. D’haeseleer, “A change-detection algorithm inspired
by the immune system: Theory, algorithms and tech-
niques”, Technical Report CS95-6, The University of
New Mexico, Albuquerque, NM, 1995.

[5] P. D’haeseleer, “An Immunological Approach to Change
Detection: Theoretical Results”, accepted to the 9th
IEEE Computer Security Foundations Workshop, 1996.

[6] S. Forrest, A. S. Perelson, L. Allen and R. Cherukuri,
“Self-nonself discrimination in a computer”, in Proceed-
ings of the 1994 IEEE Symposium on Research in Secu-
rity and Privacy, Los Alamitos, CA: IEEE Computer
Society Press, 1994.

[7] S. Forrest, S. A. Hofmeyr, A. B. Somayaji and T. A.
Longstaff, “A sense of self for UNIX processes”, submit-
ted to the 1996 IEEE Symposium on Security and
Privacy, 1995.

[8] P. Helman and S. Forrest, “An efficient algorithm for
generating random antibody strings”, Technical Report
CS-94-07, The University of New Mexico, Albuquerque,
NM, 1994.

[9] J.W. Kappler, N. Roehm, P. Marrack, "T cell tolerance
by clonal elimination in the thymus." in Cell, 49:273-
280, 1987.

[10] W. E. Paul, Ed., Fundamental Immunology, Raven Press
Ltd. New York, 88-90, 1989.

[11] J. K. Percus, O. E. Percus and A. S. Perelson,
“Probability of Self-Nonself discrimination” in
Theoretical and Experimental Insights into
Immunology, 1992.

[12] A. S. Perelson and G. F. Oster, “Theoretical Studies of
Clonal Selection: Minimal Antibody Repertoire Size
and Reliability of self-nonself Discrimination” in
Journal of Theoretical Biology, 1979.

[13] J. V. Uspensky, Introduction to Mathematical Proba-
bility, McGraw-Hill, NY, 1937.

