
SNORTRAN: An Optimizing Compiler for Snort Rules

Sergei Egorov
esl@fidelissec.com

Gene Savchuk
savchuk@fidelissec.com

Fidelis Security Systems, Inc.
www.fidelissec.com

Abstract
We developed an optimizing compiler for intrusion detection rules popularized by an

open-source Snort Network Intrusion Detection System (www.snort.org). While Snort and
Snort-like rules are usually thought of as a list of independent patterns to be tested in a
sequential order, we demonstrate that common compilation techniques are directly
applicable to Snort rule sets and are able to produce high-performance matching engines.
SNORTRAN combines several compilation techniques, including cost-optimized decision
trees, pattern matching precompilation, and string set clustering. Although all these
techniques have been used before in other domain-specific languages, we believe their
synthesis in SNORTRAN is original and unique.

Introduction
Snort [RO99] is a popular open-source Network Intrusion Detection System (NIDS). Snort is

controlled by a set of pattern/action rules residing in a configuration file of a specific format. Due
to Snort’s popularity, Snort-like rules are accepted by several other NIDS [FSTM, HANK].

In this paper we describe an optimizing compiler for Snort rule sets called SNORTRAN that
incorporates ideas of pattern matching compilation based on cost-optimized decision trees
[DKP92, KS88] with setwise string search algorithms popularized by recent research in high-
performance NIDS detection engines [FV01, CC01, GJMP]. The two main design goals were
performance and compatibility with the original Snort rule interpreter.

The primary application area for NIDS is monitoring IP traffic inside and outside of firewalls,
looking for unusual activities that can be attributed to external attacks or internal misuse. Most
NIDS are designed to handle T1/partial T3 traffic, but as the number of the known vulnerabilities
grows and more and more weight is given to internal misuse monitoring on high-throughput
networks (100Mbps/1Gbps), it gets harder to keep up with the traffic without dropping too many
packets to make detection ineffective. Throwing hardware at the problem is not always possible
because of growing maintenance and support costs, let alone the fact that the problem of making
multi-unit system work in realistic environment is as hard as the original performance problem.

Bottlenecks of the detection process were identified by many researchers and practitioners
[FV01, ND02, GJMP], and several approaches were proposed [FV01, CC01]. Our benchmarking
supported the performance analysis made by M. Fisk and G. Varghese [FV01], adding some
interesting findings on worst-case behavior of setwise string search algorithms in practice.

Traditionally, NIDS are designed around a packet grabber (system-specific or libcap) getting
traffic packets off the wire, combined with preprocessors, packet decoders, and a detection engine
looking for a static set of signatures loaded from a rule file at system startup. Snort [SNORT] and

1

Firestorm [FSTM] use similar techniques to interpret those rules at run time: rules are
preprocessed at startup time and their internal representation in a form of multidimensional tree-
like data structure is used at run time. Snort goes a long way to make detection based on this
structure effective; common attributes are identified and used to funnel the matching process into
the respective subtrees, different kinds of attribute predicates are implemented as pointers to
functions chosen at startup time etc.

While these techniques are valuable and yield good results (Snort’s matching engine is one of
the fastest in the NIDS space), they fall short of what is available in other domains. Ten years of
research in Domain-Specific Languages provided us with the tools and methods to replace
Snort’s ad-hoc precompilation with a full-scale compiler capable of comprehensive analysis of a
complete rule set, cost-based optimization of attribute evaluation, and balancing of string sets for
effective string matching at run time.

Preliminary Benchmarks
To raise interest in our approach, we present the benchmarks of a SNORTRAN-generated

detection engine, and compare them with original Snort engine. Benchmarks are in no way a
reflection of real performance in all situations, but they are easy to reproduce and can motivate
further research in this area.

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

98
_T
ra
in
in
g_
W
1_
M
on

98
_T
ra
in
in
g_
W
1_
Tu
e

98
_T
ra
in
in
g_
W
1_
W
ed

98
_T
ra
in
in
g_
W
1_
Th
u

98
_T
ra
in
in
g_
W
1_
Fr
i

98
_T
ra
in
in
g_
W
2_
M
on

98
_T
ra
in
in
g_
W
2_
Tu
e

98
_T
ra
in
in
g_
W
2_
W
ed

98
_T
ra
in
in
g_
W
2_
Th
u

98
_T
ra
in
in
g_
W
2_
Fr
i

98
_T
es
tin
g_
W
1_
M
on

98
_T
es
tin
g_
W
1_
Tu
e

98
_T
es
tin
g_
W
1_
W
ed

98
_T
es
tin
g_
W
1_
Th
u

98
_T
es
tin
g_
W
1_
Fr
i

98
_T
es
tin
g_
W
2_
M
on

98
_T
es
tin
g_
W
2_
Tu
e

98
_T
es
tin
g_
W
2_
W
ed

98
_T
es
tin
g_
W
2_
Th
u

98
_T
es
tin
g_
W
2_
Fr
i

99
_W
1_
M
on
_I
n

99
_W
1_
M
on
_O
ut

99
_W
1_
Tu
e_
In

99
_W
1_
Tu
e_
O
ut

99
_W
1_
W
ed
_I
n

99
_W
1_
W
ed
_O
ut

99
_W
1_
Th
u_
In

99
_W
1_
Th
u_
O
ut

99
_W
1_
Fr
i_
In

99
_W
1_
Fr
i_
O
ut

Overall Speedup Factor Decode() Speedup Original Snort (baseline)

Fig.1. Relative performance of SNORTRAN-based Snort system

Our benchmarks measured two things: overall Snort performance (including all standard
preprocessors, complete set of rules, and the fast output plugin), and engine performance (time
spent in the function Detect). We used captured tcpdump traffic provided by MIT’s Lincoln
Lab as a part of DARPA-sponsored IDS evaluations performed in 1998 and 1999 [LL99]. This
traffic has been generated to imitate statistical characteristics of real traffic observed at the Air
Force computer center in order to test various characteristics of IDS systems. The set of rules
used was taken from the default Snort 1.8.7 distribution; we turned on all the rules in the
distribution, including rules turned off by default. The total amount of rules in our tests was 1603.

2

The chart on Fig.1 demonstrates that in our tests SNORTRAN-generated detection engine has
an average speedup factor of 4.5. This speedup is reflected in overall Snort performance, but
overall benefits are about 3.5 on average.

Snort mks/packet SNORTRAN mks/packet

0.00
5.00
10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00

98
_T
ra
in
in
g_
W
1_
M
on

98
_T
ra
in
in
g_
W
1_
Tu
e

98
_T
ra
in
in
g_
W
1_
W
ed

98
_T
ra
in
in
g_
W
1_
Th
u

98
_T
ra
in
in
g_
W
1_
Fr
i

98
_T
ra
in
in
g_
W
2_
M
on

98
_T
ra
in
in
g_
W
2_
Tu
e

98
_T
ra
in
in
g_
W
2_
W
ed

98
_T
ra
in
in
g_
W
2_
Th
u

98
_T
ra
in
in
g_
W
2_
Fr
i

98
_T
es
tin
g_
W
1_
M
on

98
_T
es
tin
g_
W
1_
Tu
e

98
_T
es
tin
g_
W
1_
W
ed

98
_T
es
tin
g_
W
1_
Th
u

98
_T
es
tin
g_
W
1_
Fr
i

98
_T
es
tin
g_
W
2_
M
on

98
_T
es
tin
g_
W
2_
Tu
e

98
_T
es
tin
g_
W
2_
W
ed

98
_T
es
tin
g_
W
2_
Th
u

98
_T
es
tin
g_
W
2_
Fr
i

99
_W
1_
M
on
_I
n

99
_W
1_
M
on
_O
ut

99
_W
1_
Tu
e_
In

99
_W
1_
Tu
e_
O
ut

99
_W
1_
W
ed
_I
n

99
_W
1_
W
ed
_O
ut

99
_W
1_
Th
u_
In

99
_W
1_
Th
u_
O
ut

99
_W
1_
Fr
i_
In

99
_W
1_
Fr
i_
O
ut

Fig.2. Time-per-packet in microseconds for original and SNORTRAN-

generated detection engines

Time-per-packet measurements shown on Fig. 2 reflect the speed of the detection function
alone. To put this in context, our experiments show that 1Gbit traffic amounts to one packet sent
about every 8 microseconds (your mileage may vary). This means that even on fast stock
hardware (in these benchmarks we used 2Ghz Pentium IV-based system with 1GB RAM),
SNORTRAN-based system in its current form will lose some packets (regular Snort will lose a
lot more). Tuning the system to get top performance from every component can help to get under
the desired 8 microseconds per packet.

It is hard to compare our results to results of research systems described in [FV01] and
[CC01] because of their authors’ focus on benchmarking setwise algorithms, not full detection
engines, and use of specially selected rule sets. The total Snort run time improvements measured
by the Silicon Defense team using a benchmarking method similar to ours were modest: 1.02 to
1.18 times Snort’s performance on 800+ rules / Defcon 8 traffic (improvements in content
matching itself were from 1.3 to 3.32) [CC01]. Experimental results of M. Fisk and G. Varghese
[FV01] are more diverse: they range from negative improvement (per-protocol string sets) to 1.52
times on balanced mix of setwise algorithms; local traffic was matched against 800+ rules of
Snort 1.8.6 distribution. Pure content matching improvements were about 4.6 (HTTP rules vs.
HTTP traffic).

The above SNORTRAN benchmarks are preliminary—many optimizations are yet to be
implemented and the values of various static and dynamic parameters most probably represent
just a local minimum in the parameter space. Nevertheless, as demonstrated by these benchmarks,
SNORTRAN produces matching engines that are better than and in many cases significantly
better than engines currently used in Snort and Firestorm. Most importantly, it demonstrates that
Snort-like rules can be compiled into efficient matching engines, competitive with ones encoded
in “procedural” domain-specific languages like NFR’s N-code [NFR97].

3

Not just string search
The importance of fast string search is a common theme in most articles dedicated to NIDS

performance1. Profiling of Snort done by several authors attributes 30% time on average to the
string search, making it the single most expensive procedure in the whole Snort program. While
this is generally true, we have to consider other factors at play before deciding the best way to
proceed:

• Percentage of time spent in Snort’s implementation of Boyer-Moore string search varies
with traffic significantly: the largest number we have seen was 80% (heavy http traffic
with all rules turned on), while the smallest number was less then 1% (in
98_Testing_W1_Fri, 80% of the load is shifted to stream4 preprocessor).

• A network under attack behaves quite differently from a “normal” network, so one has to
choose what to optimize for: there is a trade-off between sensitivity on normal traffic (no
dropped packets) and quality/volume of alerts under attack.

• Rule sets are not created equal. Small changes to rules can lead to disproportional
performance gains or losses.

Our profiling of Snort on various data sets (Lincoln Lab [LL98] and Defcon [CCTF] traffic)
lead us to believe that Snort has four major performance bottlenecks:

• Stream4 preprocessor (heavy load in some situations)

• Header matching (heavy load on small and non-TCP packet attacks)

• Content matching (heavy load in HTTP- reach traffic)

• Output plug-ins (heavy load on any large-volume attack)

SNORTRAN focuses on bottlenecks 2 and 3; together they account for 80% of the total
execution time on “normal” traffic when matched against the full Snort 1.8.7 rule set (~1600
rules). Output plug-in overload is a Snort-specific problem that is likely to go away with version
1.9. Stream4, stream reassembly and stateful analysis in general are topics of our future research.

Compiler Structure
There are five phases in SNORTRAN compiler:

1. Parsing

2. Attribute normalization

3. Creation of the optimal decision tree

4. String set clustering

5. Code generation.

1 In this article we differentiate between performance as raw speed, and effectiveness as percentage of
detected attacks; in traditional IDS model, effectiveness is simply a derivative of performance (fewer
dropped packets) and rule set quality (more high-quality rules).

4

We assume that the reader is familiar with basic compiler construction methods, so we will
concentrate on domain-specific phases (2-4).

Attribute Normalization
Snort-style intrusion detection rules consist of a header containing common IP/TCP/UDP

checks (protocol, ports, IP addresses), followed by a list of options specifying additional tests
such as content string. SNORTRAN converts rules to an internal representation suitable for
correlation analysis. In this representation, each rule is transformed into an attribute vector (two
vectors for bidirectional rules).

All attribute vectors have the same length, equal to the total number of supported tests. In
most cases there is one-to-one correspondence between attributes and individual options or
header tests, for example, source port is a single attribute made from a part of the header, packet
size is another single attribute made from an option, and content string is a single attribute made
from several options specifying various parameters of string search.

Attribute values are normalized to exhibit a uniform set-like behavior; they can include one
another, be disjoint, intersect etc. After converting all rules to attribute vectors, SNORTRAN
builds a lattice of relations between attribute values for each supported attribute (vector index),
reflecting the internal structure of the value space. The lattices range from very simple (all values
are the same) to very complex (numerical ranges including smaller numerical ranges up to
individual numbers). The shape of the lattice serves as a measure of variability of the
corresponding attribute and is used to rank attributes according to their importance in the
detection process.

Attribute ranking is based on estimates of entropy (an uncertainty function) as a measure of
information gained in performing a particular test or series of tests. Entropy takes into account
probabilities of possible outcomes and gives a measure of importance of a test in comparison with
other candidate tests (see [ASH65] for details on entropy in information theory).

Creation of the Optimal Decision Tree
When attribute vectors are built and attributes are ranked, SNORTRAN creates a decision

tree by iterating through ranks and attribute vectors. For each rank, the compiler chooses a set of
candidate tests and orders them based on change in entropy, which is basically an amount of
“uncertainty” dispelled by each test (intuitively, the best test is the one dividing the search space
in half). Entropy dispelled by a test is weighted before comparison with other tests; weighting
allows the compiler to take into account other factors such as mutual correlation between tests
and cost of performing the test.

Correlation is measured with the help of the relation lattices calculated on the previous phase.
Cost is measured by making an estimate of processor time needed to perform the test (we use
standard Pentium instruction timing information, making educated guesses in complex cases).

At any stage of decision tree building, the dominant test is the one that has the largest value
of weighted entropy delta. When the dominant test is chosen, the compiler adds the corresponding
node to the decision tree, and descends recursively to the subtrees corresponding to possible
outcomes of the test. Each outcome is processed in a context remembering the outcomes of the
parent tests, thus eliminating redundant tests down the road and keeping the tree size small. In a
new context, new values of entropy deltas are calculated, and so forth.

5

The decision tree built on this stage contains several types of nodes corresponding to the
supported kinds of run-time tests; current version of SNORTRAN supports simple conditional
branches, multi-way branches (table jumps), and calls to dispatch functions. This tree serves as a
blueprint for subsequent stages of the compilation.

String Set Clustering
Due to the importance of effective content matching, SNORTRAN pays special attention to

content matching attributes. Its task is to combine content matches that can be performed
simultaneously into optimal groups. Content groups are formed by bringing together patterns that
are likely to be used together at run time and may benefit from parallel matching. The compiler
considers the following factors:

• Setwise string matching algorithms (variations of Aho-Corasick, Commentz-Walter and
generalizations of Boyer-Moore algorithms) have different performance characteristics,
partially dependent on characteristics of the string set to be matched, such as the length of the
shortest string.

• Large groups tend to cause many unnecessary tests (only a subset of test results is needed by
subsequent tests). Unnecessary tests affect setwise algorithms directly (by increasing the
number of run-time comparisons) and indirectly (by making larger skips impossible). On the
other hand, for well-balanced groups extra tests may incur little or no overhead.

• Small groups with significant variability are ineffective due to common factors affecting the
performance of setwise algorithms (the details are given below). Extreme examples are
singleton groups that are better served by the Boyer-Moore-Horspool algorithm, and groups
of two or three strings with one short string causing noticeable drop in setwise performance.

The information gathered on previous stages is used to provide estimates for probability of
co-occurrence of two strings in same-packet run-time tests. SNORTRAN calculates a hash of
decision tree path leading to a particular node and uses this hash to define the similarity on
pattern strings. Other factors affecting the similarity function are common prefixes / suffixes,
similar length, and basic parameters of pattern search (case sensitivity, offset and depth options).
Given this similarity function and the total set of strings, the compiler utilizes a simple clustering
algorithm to calculate optimal string clusters.

Dynamic Worst-case Avoidance
Authors’ benchmarking of various setwise matching algorithms provided useful insights into

differences between the original problem solved by those algorithms and realities of NIDS packet
matching.

Setwise algorithms were designed to find positions of all matches of each string in the string
set by scanning the full length of the target string. This formulation of the problem is similar but
not equivalent to what Snort needs: it looks for the information on which strings of the set are
present in the target string. Answers provided by setwise algorithms contain information Snort
doesn’t use and this information doesn’t come for free.

A simple example of worst-case behavior is demonstrated by Lincoln Lab’s traffic file with
oversized ICMP packet attack. The attack contains a large volume of 1K packets with all-zeroes
content. The pattern set matched against this content contains a 20-byte-long all-zeroes pattern
from “ICMP Nemesis v1.1 Echo” rule (one of nine patterns). Setwise algorithms will look

6

for every place where this all-zeroes pattern matches the all-zeroes content because all patterns
are matched together; this means that even when the first match of the zeroes pattern is
discovered at offset 0, it still will affect the matching of all other patterns until the end of the
packet. Although some setwise algorithms take internal repeats into account and may not fall
back to 1-byte skip, practical setwise performance is noticeably worse than that of a naïve Boyer-
Moore-Horspool loop that looks for a single occurrence of each pattern.

Setwise algorithms do exactly what Snort needs in a single, but very important case: when no
matches are found in the packet. When one or more matches are found, benefits of proceeding
with setwise match diminish up to the point when setwise algorithms run several times slower
than simple Boyer-Moore-Horspool loop. SNORTRAN-generated engines use this heuristic as
well as comparisons of relative performance of Aho-Corasick, Commentz-Walter and
generalizations of Boyer-Moore algorithms on different kinds of string sets and target strings
(short target strings have their own specifics) to switch between algorithms when the size of the
target string becomes known and on-the-fly when matches show up.

Some of the implementations we used in our benchmarks were written by the authors (two
variants of setwise Boyer-Moore-Horspool), others were adapted from various sources, including
strmat package [STMT] (Aho-Corasick, setwise Boyer-Moore) and GNU grep [GREP]
(Commentz-Walter). Although dynamic switching between algorithms proved beneficial in our
testing, is not yet benchmarked systematically and requires further research.

Compiler Output
SNORTRAN utilizes the freely available GCC compiler on the backend. Driving GCC allows

for many GCC-specific optimizations such as global register allocation. The resulting code is
linked with string search algorithms and utility procedures to produce a library used by modified
version of Snort. Snort modifications are localized in the rules.c file and are quite simple:
Snort’s implementation of Detect() is replaced by a call to our engine with the same interface.

In addition to the detection engine in a library form, the compiler produces a filtered version
of the configuration/rules file with all rules removed. This file contains all the information
required for the Snort host: plug-in specifications, alert classification table etc. To support
effective spooling of alerts and logs, SNORTRAN generates rule map file in Barnyard-
compatible format. Information in this file complements the “unified” Snort output.

Snort Compatibility
A detection engine produced by the compiler is a functional equivalent of Snort’s own Detect

function and in most cases generates exactly the same events given the same input traffic. Some
incompatibilities still exist, though; overlapping patterns can lead to differences in events due to
differences in internal order of matches and Snort’s “first match wins” policy. As Snort shifts
towards “report all matches” model, this difference will disappear.

Another source of incompatibility is SNORTRAN’s missing support for advanced Snort
features like per-rule alert configuration (“ruletype” declarations), modification of the default
order of event processing (“config order”), and activate/dynamic rules. The importance of
these omissions is subject for discussion; we will just note that none of these features are used
neither by the default Snort configuration nor by the rule sets supplied by the Whitehats
community database [WHTS].

7

Future Directions
We plan to continue benchmarking and tuning the compiler and the runtime library, add more

optimizations, improve Snort compatibility. Improving compiler’s performance and lowering its
memory requirements is also high on our To Do list; getting inside practical limits in this regard
will allow the compiler to reside on the Snort box and be used interactively.

Since SNORTRAN is fully independent of Snort itself, it is easy to adapt it to other similar
IDS systems; our next target is Firestorm [FSTM]. We will investigate the preprocessor
bottleneck and possibilities for better load balancing on multiprocessor hardware.

References
[LL99] MIT Lincoln Laboratory, 1998/1999 DARPA Off-Line Intrusion Detection

Evaluation, http://www.ll.mit.edu/SST/ideval/

[CCTF] The Shmoo Group, Capture the Capture The Flag, http://www.shmoo.com/cctf/

[ASH65] R. B. Ash, Information Theory, Dover Publications, NY, 1965

[DKP92] S. Debray, S. Kannan, M. Paithane, Weighted Decision Trees, Proceedings of the
Joint International Conference and Symposium on Logic Programming, Washington,
USA, 1992.

[KS88] S. Kliger and E. Shapiro, A Decision Tree Compilation Algorithm for FCP, Proc.
Fifth Int. Conf. on Logic Programming, Seattle, Aug. 1988, pp. 1315--1336. MIT
Press.

[FV01] M. Fisk and G. Varghese. Fast content-based packet handling for intrusion detection.
Technical Report CS2001-0670, University of California, San Diego, Department of
Computer Science and Engineering, June 2001.

[CC01] J. McAlerney, C. Coit, S. Staniford. Towards faster pattern matching for intrusion
detection. DARPA Information Survivability Conference and Exposition, 2001.

[RO99] Martin Roesh. Snort: Lightweight intrusion detection for networks, in Proceedings of
the 13th Systems Administration Conference. 1999, USENIX.

[GJMP] S. Gossin, N. Jones, N. McCurdy, R. Persaud, Pattern Matching in Snort

[ND02] N. Desai, Increasing Performance in High Speed NIDS, 2002

[NFR97] M. Ranum, K. Landfield, M. Stolarchuk, M. Sienkiewicz, A. Lambeth and E. Wall,
Implementing a generalized tool for network monitoring, Proc. LISA '97, USENIX
11th Systems Administration Conference, San Diego, 1997.

[SNORT] Snort.org, http://www.snort.org

[FSTM] Firestorm NIDS, http://www.scaramanga.co.uk/firestorm/

[HANK] Hank NIDS, http://hank.sourceforge.net/

[WHTS] Whitehats, arachNIDS, http://www.whitehats.com/ids/

[STMT] Dan Gusfield, Strmat package, http://www.cs.ucdavis.edu/~gusfield/strmat.html

[GREP] GNU Grep, Free Software Foundation, http://www.gnu.org/software/grep/grep.html

8

http://www.ll.mit.edu/SST/ideval/
http://www.snort.org/
http://www.scaramanga.co.uk/firestorm/
http://www.whitehats.com/ids/
http://www.cs.ucdavis.edu/~gusfield/strmat.html
http://www.gnu.org/software/grep/grep.html

	SNORTRAN: An Optimizing Compiler for Snort Rules
	Introduction
	Preliminary Benchmarks
	Not just string search
	Compiler Structure
	Attribute Normalization
	Creation of the Optimal Decision Tree
	String Set Clustering

	Dynamic Worst-case Avoidance
	Compiler Output
	Snort Compatibility
	Future Directions
	References

