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Abstract 
We developed an optimizing compiler for intrusion detection rules popularized by an 

open-source Snort Network Intrusion Detection System (www.snort.org). While Snort and 
Snort-like rules are usually thought of as a list of independent patterns to be tested in a 
sequential order, we demonstrate that common compilation techniques are directly 
applicable to Snort rule sets and are able to produce high-performance matching engines. 
SNORTRAN combines several compilation techniques, including cost-optimized decision 
trees, pattern matching precompilation, and string set clustering. Although all these 
techniques have been used before in other domain-specific languages, we believe their 
synthesis in SNORTRAN is original and unique. 

Introduction 
Snort [RO99] is a popular open-source Network Intrusion Detection System (NIDS). Snort is 

controlled by a set of pattern/action rules residing in a configuration file of a specific format. Due 
to Snort’s popularity, Snort-like rules are accepted by several other NIDS [FSTM, HANK].  

In this paper we describe an optimizing compiler for Snort rule sets called SNORTRAN that 
incorporates ideas of pattern matching compilation based on cost-optimized decision trees 
[DKP92, KS88] with setwise string search algorithms popularized by recent research in high-
performance NIDS detection engines [FV01, CC01, GJMP]. The two main design goals were 
performance and compatibility with the original Snort rule interpreter. 

The primary application area for NIDS is monitoring IP traffic inside and outside of firewalls, 
looking for unusual activities that can be attributed to external attacks or internal misuse. Most 
NIDS are designed to handle T1/partial T3 traffic, but as the number of the known vulnerabilities 
grows and more and more weight is given to internal misuse monitoring on high-throughput 
networks (100Mbps/1Gbps), it gets harder to keep up with the traffic without dropping too many 
packets to make detection ineffective. Throwing hardware at the problem is not always possible 
because of growing maintenance and support costs, let alone the fact that the problem of making 
multi-unit system work in realistic environment is as hard as the original performance problem. 

Bottlenecks of the detection process were identified by many researchers and practitioners 
[FV01, ND02, GJMP], and several approaches were proposed [FV01, CC01]. Our benchmarking 
supported the performance analysis made by M. Fisk and G. Varghese [FV01], adding some 
interesting findings on worst-case behavior of setwise string search algorithms in practice. 

Traditionally, NIDS are designed around a packet grabber (system-specific or libcap) getting 
traffic packets off the wire, combined with preprocessors, packet decoders, and a detection engine 
looking for a static set of signatures loaded from a rule file at system startup. Snort [SNORT] and 
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Firestorm  [FSTM] use similar techniques to interpret those rules at run time: rules are 
preprocessed at startup time and their internal representation in a form of multidimensional tree-
like data structure is used at run time. Snort goes a long way to make detection based on this 
structure effective; common attributes are identified and used to funnel the matching process into 
the respective subtrees, different kinds of attribute predicates are implemented as pointers to 
functions chosen at startup time etc. 

While these techniques are valuable and yield good results (Snort’s matching engine is one of 
the fastest in the NIDS space), they fall short of what is available in other domains. Ten years of 
research in Domain-Specific Languages provided us with the tools and methods to replace 
Snort’s ad-hoc precompilation with a full-scale compiler capable of comprehensive analysis of a 
complete rule set, cost-based optimization of attribute evaluation, and balancing of string sets for 
effective string matching at run time. 

Preliminary Benchmarks 
To raise interest in our approach, we present the benchmarks of a SNORTRAN-generated 

detection engine, and compare them with original Snort engine. Benchmarks are in no way a 
reflection of real performance in all situations, but they are easy to reproduce and can motivate 
further research in this area. 
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Fig.1.  Relative performance of SNORTRAN-based Snort system 

Our benchmarks measured two things: overall Snort performance (including all standard 
preprocessors, complete set of rules, and the fast output plugin), and engine performance (time 
spent in the function Detect). We used captured tcpdump traffic provided by MIT’s Lincoln 
Lab as a part of DARPA-sponsored IDS evaluations performed in 1998 and 1999 [LL99]. This 
traffic has been generated to imitate statistical characteristics of real traffic observed at the Air 
Force computer center in order to test various characteristics of IDS systems. The set of rules 
used was taken from the default Snort 1.8.7 distribution; we turned on all the rules in the 
distribution, including rules turned off by default. The total amount of rules in our tests was 1603. 
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The chart on Fig.1 demonstrates that in our tests SNORTRAN-generated detection engine has 
an average speedup factor of 4.5. This speedup is reflected in overall Snort performance, but 
overall benefits are about 3.5 on average. 

Snort mks/packet SNORTRAN mks/packet
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Fig.2.  Time-per-packet in microseconds for original and SNORTRAN-

generated detection engines 

Time-per-packet measurements shown on Fig. 2 reflect the speed of the detection function 
alone. To put this in context, our experiments show that 1Gbit traffic amounts to one packet sent 
about every 8 microseconds (your mileage may vary). This means that even on fast stock 
hardware (in these benchmarks we used 2Ghz Pentium IV-based system with 1GB RAM), 
SNORTRAN-based system in its current form will lose some packets (regular Snort will lose a 
lot more). Tuning the system to get top performance from every component can help to get under 
the desired 8 microseconds per packet.  

It is hard to compare our results to results of research systems described in [FV01] and 
[CC01] because of their authors’ focus on benchmarking setwise algorithms, not full detection 
engines, and use of specially selected rule sets. The total Snort run time improvements measured 
by the Silicon Defense team using a benchmarking method similar to ours were modest: 1.02 to 
1.18 times Snort’s performance on 800+ rules / Defcon 8 traffic (improvements in content 
matching itself were from 1.3 to 3.32) [CC01]. Experimental results of M. Fisk and G. Varghese 
[FV01] are more diverse: they range from negative improvement (per-protocol string sets) to 1.52 
times on balanced mix of setwise algorithms; local traffic was matched against 800+ rules of 
Snort 1.8.6 distribution. Pure content matching improvements were about 4.6 (HTTP rules vs. 
HTTP traffic). 

The above SNORTRAN benchmarks are preliminary—many optimizations are yet to be 
implemented and the values of various static and dynamic parameters most probably represent 
just a local minimum in the parameter space. Nevertheless, as demonstrated by these benchmarks, 
SNORTRAN produces matching engines that are better than and in many cases significantly 
better than engines currently used in Snort and Firestorm. Most importantly, it demonstrates that 
Snort-like rules can be compiled into efficient matching engines, competitive with ones encoded 
in “procedural” domain-specific languages like NFR’s N-code [NFR97]. 

 

 

 

 

3



Not just string search 
The importance of fast string search is a common theme in most articles dedicated to NIDS 

performance1. Profiling of Snort done by several authors attributes 30% time on average to the 
string search, making it the single most expensive procedure in the whole Snort program. While 
this is generally true, we have to consider other factors at play before deciding the best way to 
proceed: 

• Percentage of time spent in Snort’s implementation of Boyer-Moore string search varies 
with traffic significantly: the largest number we have seen was 80% (heavy http traffic 
with all rules turned on), while the smallest number was less then 1% (in 
98_Testing_W1_Fri, 80% of the load is shifted to stream4 preprocessor).  

• A network under attack behaves quite differently from a “normal” network, so one has to 
choose what to optimize for: there is a trade-off between sensitivity on normal traffic (no 
dropped packets) and quality/volume of alerts under attack. 

• Rule sets are not created equal. Small changes to rules can lead to disproportional 
performance gains or losses. 

Our profiling of Snort on various data sets (Lincoln Lab [LL98] and Defcon [CCTF] traffic) 
lead us to believe that Snort has four major performance bottlenecks: 

• Stream4 preprocessor (heavy load in some situations) 

• Header matching (heavy load on small and non-TCP packet attacks) 

• Content matching (heavy load in HTTP- reach traffic) 

• Output plug-ins (heavy load on any large-volume attack) 

SNORTRAN focuses on bottlenecks 2 and 3; together they account for 80% of the total 
execution time on “normal” traffic when matched against the full Snort 1.8.7 rule set (~1600 
rules). Output plug-in overload is a Snort-specific problem that is likely to go away with version 
1.9. Stream4, stream reassembly and stateful analysis in general are topics of our future research. 

Compiler Structure 
There are five phases in SNORTRAN compiler:  

1. Parsing  

2. Attribute normalization  

3. Creation of the optimal decision tree  

4. String set clustering 

5. Code generation.  

                                                 
1 In this article we differentiate between performance as raw speed, and effectiveness as percentage of 
detected attacks; in traditional IDS model, effectiveness is simply a derivative of performance (fewer 
dropped packets) and rule set quality (more high-quality rules). 

 

 

 

 

4



We assume that the reader is familiar with basic compiler construction methods, so we will 
concentrate on domain-specific phases (2-4). 

Attribute Normalization 
Snort-style intrusion detection rules consist of a header containing common IP/TCP/UDP 

checks (protocol, ports, IP addresses), followed by a list of options specifying additional tests 
such as content string. SNORTRAN converts rules to an internal representation suitable for 
correlation analysis. In this representation, each rule is transformed into an attribute vector (two 
vectors for bidirectional rules).  

All attribute vectors have the same length, equal to the total number of supported tests. In 
most cases there is one-to-one correspondence between attributes and individual options or 
header tests, for example, source port is a single attribute made from a part of the header, packet 
size is another single attribute made from an option, and content string is a single attribute made 
from several options specifying various parameters of string search.  

Attribute values are normalized to exhibit a uniform set-like behavior; they can include one 
another, be disjoint, intersect etc. After converting all rules to attribute vectors, SNORTRAN 
builds a lattice of relations between attribute values for each supported attribute (vector index), 
reflecting the internal structure of the value space. The lattices range from very simple (all values 
are the same) to very complex (numerical ranges including smaller numerical ranges up to 
individual numbers). The shape of the lattice serves as a measure of variability of the 
corresponding attribute and is used to rank attributes according to their importance in the 
detection process. 

Attribute ranking is based on estimates of entropy (an uncertainty function) as a measure of 
information gained in performing a particular test or series of tests. Entropy takes into account 
probabilities of possible outcomes and gives a measure of importance of a test in comparison with 
other candidate tests (see [ASH65] for details on entropy in information theory). 

Creation of the Optimal Decision Tree 
When attribute vectors are built and attributes are ranked, SNORTRAN creates a decision 

tree by iterating through ranks and attribute vectors. For each rank, the compiler chooses a set of 
candidate tests and orders them based on change in entropy, which is basically an amount of 
“uncertainty” dispelled by each test (intuitively, the best test is the one dividing the search space 
in half).  Entropy dispelled by a test is weighted before comparison with other tests; weighting 
allows the compiler to take into account other factors such as mutual correlation between tests 
and cost of performing the test.  

Correlation is measured with the help of the relation lattices calculated on the previous phase. 
Cost is measured by making an estimate of processor time needed to perform the test (we use 
standard Pentium instruction timing information, making educated guesses in complex cases). 

At any stage of decision tree building, the dominant test is the one that has the largest value 
of weighted entropy delta. When the dominant test is chosen, the compiler adds the corresponding 
node to the decision tree, and descends recursively to the subtrees corresponding to possible 
outcomes of the test. Each outcome is processed in a context remembering the outcomes of the 
parent tests, thus eliminating redundant tests down the road and keeping the tree size small. In a 
new context, new values of entropy deltas are calculated, and so forth. 
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The decision tree built on this stage contains several types of nodes corresponding to the 
supported kinds of run-time tests; current version of SNORTRAN supports simple conditional 
branches, multi-way branches (table jumps), and calls to dispatch functions. This tree serves as a 
blueprint for subsequent stages of the compilation.  

String Set Clustering 
Due to the importance of effective content matching, SNORTRAN pays special attention to 

content matching attributes. Its task is to combine content matches that can be performed 
simultaneously into optimal groups. Content groups are formed by bringing together patterns that 
are likely to be used together at run time and may benefit from parallel matching. The compiler 
considers the following factors: 

• Setwise string matching algorithms (variations of Aho-Corasick, Commentz-Walter and 
generalizations of Boyer-Moore algorithms) have different performance characteristics, 
partially dependent on characteristics of the string set to be matched, such as the length of the 
shortest string. 

• Large groups tend to cause many unnecessary tests (only a subset of test results is needed by 
subsequent tests). Unnecessary tests affect setwise algorithms directly (by increasing the 
number of run-time comparisons) and indirectly (by making larger skips impossible). On the 
other hand, for well-balanced groups extra tests may incur little or no overhead. 

• Small groups with significant variability are ineffective due to common factors affecting the 
performance of setwise algorithms (the details are given below). Extreme examples are 
singleton groups that are better served by the Boyer-Moore-Horspool algorithm, and groups 
of two or three strings with one short string causing noticeable drop in setwise performance. 

The information gathered on previous stages is used to provide estimates for probability of 
co-occurrence of two strings in same-packet run-time tests. SNORTRAN calculates a hash of 
decision tree path leading to a particular node and uses this hash to define the similarity on 
pattern strings. Other factors affecting the similarity function are common prefixes / suffixes, 
similar length, and basic parameters of pattern search (case sensitivity, offset and depth options). 
Given this similarity function and the total set of strings, the compiler utilizes a simple clustering 
algorithm to calculate optimal string clusters. 

Dynamic Worst-case Avoidance 
Authors’ benchmarking of various setwise matching algorithms provided useful insights into 

differences between the original problem solved by those algorithms and realities of NIDS packet 
matching. 

Setwise algorithms were designed to find positions of all matches of each string in the string 
set by scanning the full length of the target string. This formulation of the problem is similar but 
not equivalent to what Snort needs: it looks for the information on which strings of the set are 
present in the target string. Answers provided by setwise algorithms contain information Snort 
doesn’t use and this information doesn’t come for free. 

A simple example of worst-case behavior is demonstrated by Lincoln Lab’s traffic file with 
oversized ICMP packet attack. The attack contains a large volume of 1K packets with all-zeroes 
content. The pattern set matched against this content contains a 20-byte-long all-zeroes pattern 
from “ICMP Nemesis v1.1 Echo” rule (one of nine patterns). Setwise algorithms will look 
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for every place where this all-zeroes pattern matches the all-zeroes content because all patterns 
are matched together; this means that even when the first match of the zeroes pattern is 
discovered at offset 0, it still will affect the matching of all other patterns until the end of the 
packet. Although some setwise algorithms take internal repeats into account and may not fall 
back to 1-byte skip, practical setwise performance is noticeably worse than that of a naïve Boyer-
Moore-Horspool loop that looks for a single occurrence of each pattern. 

Setwise algorithms do exactly what Snort needs in a single, but very important case: when no 
matches are found in the packet. When one or more matches are found, benefits of proceeding 
with setwise match diminish up to the point when setwise algorithms run several times slower 
than simple Boyer-Moore-Horspool loop. SNORTRAN-generated engines use this heuristic as 
well as comparisons of relative performance of Aho-Corasick, Commentz-Walter and 
generalizations of Boyer-Moore algorithms on different kinds of string sets and target strings 
(short target strings have their own specifics) to switch between algorithms when the size of the 
target string becomes known and on-the-fly when matches show up.  

Some of the implementations we used in our benchmarks were written by the authors (two 
variants of setwise Boyer-Moore-Horspool), others were adapted from various sources, including 
strmat package [STMT] (Aho-Corasick, setwise Boyer-Moore) and GNU grep [GREP] 
(Commentz-Walter). Although dynamic switching between algorithms proved beneficial in our 
testing, is not yet benchmarked systematically and requires further research. 

Compiler Output 
SNORTRAN utilizes the freely available GCC compiler on the backend. Driving GCC allows 

for many GCC-specific optimizations such as global register allocation. The resulting code is 
linked with string search algorithms and utility procedures to produce a library used by modified 
version of Snort. Snort modifications are localized in the rules.c file and are quite simple: 
Snort’s implementation of Detect() is replaced by a call to our engine with the same interface. 

In addition to the detection engine in a library form, the compiler produces a filtered version 
of the configuration/rules file with all rules removed. This file contains all the information 
required for the Snort host: plug-in specifications, alert classification table etc. To support 
effective spooling of alerts and logs, SNORTRAN generates rule map file in Barnyard-
compatible format. Information in this file complements the “unified” Snort output. 

Snort Compatibility 
A detection engine produced by the compiler is a functional equivalent of Snort’s own Detect 

function and in most cases generates exactly the same events given the same input traffic. Some 
incompatibilities still exist, though; overlapping patterns can lead to differences in events due to 
differences in internal order of matches and Snort’s “first match wins” policy. As Snort shifts 
towards “report all matches” model, this difference will disappear. 

Another source of incompatibility is SNORTRAN’s missing support for advanced Snort 
features like per-rule alert configuration (“ruletype” declarations), modification of the default 
order of event processing (“config order”), and activate/dynamic rules. The importance of 
these omissions is subject for discussion; we will just note that none of these features are used 
neither by the default Snort configuration nor by the rule sets supplied by the Whitehats 
community database [WHTS]. 
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Future Directions 
We plan to continue benchmarking and tuning the compiler and the runtime library, add more 

optimizations, improve Snort compatibility. Improving compiler’s performance and lowering its 
memory requirements is also high on our To Do list; getting inside practical limits in this regard 
will allow the compiler to reside on the Snort box and be used interactively.  

Since SNORTRAN is fully independent of Snort itself, it is easy to adapt it to other similar 
IDS systems; our next target is Firestorm [FSTM]. We will investigate the preprocessor 
bottleneck and possibilities for better load balancing on multiprocessor hardware. 

References 
[LL99] MIT Lincoln Laboratory, 1998/1999 DARPA Off-Line Intrusion Detection 

Evaluation, http://www.ll.mit.edu/SST/ideval/ 

[CCTF] The Shmoo Group, Capture the Capture The Flag, http://www.shmoo.com/cctf/ 

[ASH65] R. B. Ash, Information Theory, Dover Publications, NY, 1965 

[DKP92] S. Debray, S. Kannan, M. Paithane, Weighted Decision Trees, Proceedings of the 
Joint International Conference and Symposium on Logic Programming, Washington, 
USA, 1992. 

[KS88] S. Kliger and E. Shapiro, A Decision Tree Compilation Algorithm for FCP, Proc. 
Fifth Int. Conf. on Logic Programming, Seattle, Aug. 1988, pp. 1315--1336. MIT 
Press. 

[FV01] M. Fisk and G. Varghese. Fast content-based packet handling for intrusion detection. 
Technical Report CS2001-0670, University of California, San Diego, Department of 
Computer Science and Engineering, June 2001. 

[CC01] J. McAlerney, C. Coit, S. Staniford. Towards faster pattern matching for intrusion 
detection. DARPA Information Survivability Conference and Exposition, 2001. 

[RO99] Martin Roesh. Snort: Lightweight intrusion detection for networks, in Proceedings of 
the 13th Systems Administration Conference. 1999, USENIX. 

[GJMP] S. Gossin, N. Jones, N. McCurdy, R. Persaud, Pattern Matching in Snort 

[ND02] N. Desai, Increasing Performance in High Speed NIDS, 2002 

[NFR97] M. Ranum, K. Landfield, M. Stolarchuk, M. Sienkiewicz, A. Lambeth and E. Wall, 
Implementing a generalized tool for network monitoring, Proc. LISA '97, USENIX 
11th Systems Administration Conference, San Diego, 1997. 

[SNORT] Snort.org, http://www.snort.org 

[FSTM] Firestorm NIDS, http://www.scaramanga.co.uk/firestorm/ 

[HANK] Hank NIDS, http://hank.sourceforge.net/ 

[WHTS] Whitehats, arachNIDS, http://www.whitehats.com/ids/ 

[STMT] Dan Gusfield, Strmat package, http://www.cs.ucdavis.edu/~gusfield/strmat.html 

[GREP] GNU Grep, Free Software Foundation, http://www.gnu.org/software/grep/grep.html 

 

 

 

 

8

http://www.ll.mit.edu/SST/ideval/
http://www.snort.org/
http://www.scaramanga.co.uk/firestorm/
http://www.whitehats.com/ids/
http://www.cs.ucdavis.edu/~gusfield/strmat.html
http://www.gnu.org/software/grep/grep.html

	SNORTRAN: An Optimizing Compiler for Snort Rules
	Introduction
	Preliminary Benchmarks
	Not just string search
	Compiler Structure
	Attribute Normalization
	Creation of the Optimal Decision Tree
	String Set Clustering

	Dynamic Worst-case Avoidance
	Compiler Output
	Snort Compatibility
	Future Directions
	References


