
Increasing Performance in High Speed NIDS
A look at Snort’s Internals

Neil Desai

ndesai01@tampabay.rr.com

Introduction

The increasing of network utilization and the weekly increase in the number of critical
application layer exploits means Network Intrusion Detection Systems (NIDS) designers must
find ways to speed up their attack analysis techniques when monitoring a fully-saturated network
and maintaining a good false positive to false negative ratio.
 While increasing the CPU speed and RAM of the NIDS will help deal with more content
analysis there is a point where the amount of money spent on the new hardware will not be
proportional to the increase in speed of the content analysis. In general there are only a few
things a user can do to help the NIDS keep up with today’s demands, such as limiting the amount
of attacks that the NIDS looks for or load balancing via a layer 7 switch. The rest is up to the
NIDS developers.

Bottlenecks

There are four main areas that take up a considerable amount of time in the current

version (1.8.3) of snorti, but only one of them gives a considerable amount of performance
increase while maintaining the portability of snort.

1. Getting the packet off the wireii. == Snort uses libpcap to get the packets off the

wire. Libpcap is almost the standard for grabbing packets off the wire and is
used by many protocol-decoding applications. The libpcap library is good for
most applications but does not lend itself well to high-speed data acquisition
because only one libpcap function can be used at any one time. The snort
community could develop custom drivers that would be OS- and possibly NIC-
specific, but that would severely hinder the portability of snort.

2. Clearing out data structures. == Every packet that comes in has to be stored in
some type of data structure. This also means that all of these data structures
need to be cleared out to make room for other packets. According to Marty
Roesch, some of this could be tweaked by a little “code tightening and
rethinking some of our base assumptions.”iii

3. Pattern matching. == The snort community has looked at implementing
different pattern matching algorithms to improve the speed of snort on
saturated networks at high speeds. By implementing a different algorithm snort
2.0 will have about a 500 percent increase in performanceiv.

4. Checksum verification. == To help verify the integrity of the packet snort
verifies all protocol checksums. This means that for every packet snort must

compute the checksum and then verify that it matches the current packet’s
checksum.

Performance can also be affected by preprocessors and the parameters that they are loaded with.
The parameters that are specified to the preprocessor can also affect the false-positive ratio and
the effectiveness of NIDS evasion techniques. We will take a brief look at how preprocessors can
affect performance. An in-depth discussion of how to effectively configure preprocessors is
outside the content of this paper. Each preprocessor has a different area of responsibility (i.e.
frag2 => IP fragmentation reassembly, stream4 => TCP reassembly/stateful inspection,
http_decode => normalize HTTP requests, etc.) the performance gained or lost would be specific
to:

1. The type of traffic that the NIDS monitors. This would also include the amount of
traffic for a particular protocol.

2. The parameters that are specified to the preprocessor. The parameters will determine
things like what port(s) to look for, how much memory to use, how long to hold onto
the information, etc.

Proper configuration of the preprocessors will take some time to fine tune. This would involve
the person installing the NIDS to have:

1. A good understanding of the network that is being monitored. This would include
protocols, applications and traffic patterns.

2. An in-depth understanding of the protocols on the network. The NIDS installer
should be able to do protocol analysis on the traffic to determine thresholds, false-
positives, etc.

3. Knowledge of the preprocessors and how they work and how they can be configured.
Some of the preprocessors are as easy as just defining them (i.e. frag2,
telnet_decode). Some preprocessors only take a few arguments that won’t require
much protocol analysis of the network because they are straight forward (i.e.
rpc_decode, http_decode, unidecode). Then there are the ones that will take a lot of
time and research to fine tune (i.e. stream4, stream4_reassemble, spade).

Brief History of Snort and Pattern Matching

 In earlier days, snort used brute force pattern matching which was very slow and was
seen as a place where performance could be improvementv. The first thing done to boost
performance was implementing a partial Boyer-Moore pattern matching algorithm. After a
couple of months a full implementation of Boyer-Moore was implementedvi. Next was the
implementation of a “2-dimentional linked list with recursive node walking,” which gave snort a
200 to 500 percent performance increasevii. Then snort developers rewrote the detection engine
to include a “linked-list-of-function-pointers”, also called a “three-dimensional linked list”,viii
which is where snort is today.

Overview of Snort Rules

Figure 1. Snort rule.

alert udp $EXTERNAL_NET any -> $HOME_NET 177 (msg:"MISC xdmcp query";
content: "|00 01 00 03 00 01 00|";reference:arachnids,476;
classtype:attempted-recon; sid:517; rev:1;)

Snort rules are broken into two pieces; the rule header and the rule option(s). The rule
header is everything up to the first parentheses. The rule option(s) are everything within the
parentheses. The rule header can be loosely mapped to the RTN (Rule Tree Node) and the rule
options can be loosely mapped to the OTN(s) (Optional Tree Node).

There are 35 keywords in snort 1.8.3 that can be used in the rule option(s), 20 of which
will be used in the OTN’s. Of the 20 items that will be in the rule options, 17 will be either a
true/false (i.e. equal to or not equal to) value or greater than/lower than value. The snort engine
can easily pass this information through the linked list with little overhead. Most of the
computational overhead comes from the use of the following three keywords: content, content-
list and uricontent. Each of these keywords calls the pattern-matching engine to parse the data
portion of the packet for a particular pattern. Because of the overhead that the pattern-matching
engine causes it is the last part of the rules option(s) that is checked. Of the 1270 rules, 1086
rules contain either the “content” or “uricontent” keyword1.

Rule Parsing and Detection Engine

When snort initializes and parses the rules it creates a separate rule tree for TCP, UDP,

ICMP and IP. Within each rule tree there will be a separate three-dimensional linked list of
RTNs (dimension one) and OTNs (dimension two) and function pointers (dimension three). The
RTNs will include the IP address information and port information.

Figure 2. An example of the chain header (RTN).

Src ANY

Dst HOME_NET
Src_P ANY
Dst_P 21

Src ANY
Dst HOME_NET

Src_P ANY
Dst_P 23

Src ANY
Dst HOME_NET

Src_P ANY
Dst_P 25

Src ANY
Dst HOME_NET

Src_P ANY
Dst_P 80

When snort sends a packet through the detection engine it first sees what IP protocol the
current packet is so that it can send it to the correct rule treeix. Once the packet is sent to the
correct tree for evaluation it will be checked against each RTN, from left to right, until a match is
found. When checking the RTNs, snort will first look at the IP addresses and then the port
information, if necessaryx. If an RTN is found that matches the current packet, then it goes down
the OTNs one by one to see if a match can be found. Each OTN is not checked for every option

1 $ls *.rules | wc -l
 33
 $egrep -v "^#" *.rules | egrep [a-z] | wc -l
 1270
 $egrep -v "^#" *.rules | egrep content | wc -l
 1086

that is available because it would be a waste of resources to check for things that do not exist (i.e.
checking for content on a non-content packet). Instead each OTN has a linked list of function
pointers (dimension three) to the tests that need to be carried out for that particular OTN.

Figure 3. An example of chain headers (RTNs) and chain options (OTN’s).

Src ANY

Dst HOME_NET
Protocol TCP
Src_P ANY
Dst_P 21

Src ANY
Dst HOME_NET

Protocol TCP
Src_P ANY
Dst_P 23

Src ANY
Dst HOME_NET

Protocol TCP
Src_P ANY
Dst_P 25

Src ANY
Dst HOME_NET

Protocol TCP
Src_P ANY
Dst_P 80

flags:A+
content:".forward"

flags:A+
content:"_RLD"

flags:A+
content:"HELP "

flags:A+
uricontent:".ida"

flags:A+
content:"cwd

~root"

flags:A+
content:"to su

root"

flags:A+
content:"vrfy

decode"

flags:A+
uricontent:"ps%20"

flags:A+
content:"MKD

AAAAAA"

flags:A+
content:"4Dgifts"

flags:A+
content:"|0a|Croot|

0d0a|Mprog"

flags:A+
uricontent:"wget

%20"

flags:A+
content:"pass -

iss@iss"

flags:A+
content:"|FF F6 FF

F6 FF FB 08 FF
F6|"

flags:A+
content:"mail

from|3a20227c|"

flags:A+
uricontent:"uname

%20-a"

flags:A+
content:"CWD ..."

flags:A+
content:"OutOfBox

"

flags:A+
content:"reply-
to|3a| a~.`/bin/"

flags:A+
uricontent:"/bin/

chmod"

Snort uses the Boyer-Moore pattern-matching algorithm when attempting content
matching on the packet payload.xi. This pattern-matching algorithm is one of the most efficient
algorithms for string matching and is often used for the “search” and/or “replace” commands
within a text editorxii. The Boyer-Moore algorithm is good for a single string search, but when
dealing with a NIDS a single packet can partially match many different rules and for each rule
the algorithm will have to be run. For example, a packet is matched for the pattern
/cfdocs/cfmlsyntaxcheck.cfm (web-coldfusion.rules shown below) and the next 15 OTNs all
contain the same /cfdocs/ directory in the beginning of the pattern. After searching the current
packet it is certain that /cfdocs/ does not appear anywhere in the packet. The next 15 OTN
searches will all fail but are performed anyway.

A new pattern-matching algorithm was needed to help overcome this shortcoming.
Silicon Defense did some initial research on this matter and tested a new algorithm that uses the

best aspects of the Boyer-Moore algorithm and the Aho-Corassick algorithm to gain a significant
performance boost over the current Boyer-Moore algorithmxiii.

 Figure 4. Partial contents of web-coldfusion.rules:

/cfdocs/cfmlsyntaxcheck.cfm
/cfdocs/exampleapp/
/cfdocs/exampleapp/email/application.cfm
/cfdocs/exampleapp/email/getfile.cfm
/cfdocs/exampleapp/publish/admin/addcontent.cfm
/cfdocs/exampleapp/publish/admin/application.cfm
/cfdocs/examples/cvbeans/beaninfo.cfm
/cfdocs/examples/mainframeset.cfm
/cfdocs/examples/parks/detail.cfm
/cfdocs/expeval/
/cfdocs/expeval/displayopenedfile.cfm
/cfdocs/expeval/exprcalc.cfm
/cfdocs/snippets/
/cfdocs/snippets/evaluate.cfm
/cfdocs/snippets/fileexists.cfm
/cfdocs/snippets/gettempdirectory.cfm

Overview of the Boyer-Moore Algorithm

Before going into the basics the following is a layout of the terminology.

1. Pattern to match will be noted as P.
2. Text to match against (payload) will be noted as T.
3. The length of pattern (P) will be noted as LP.
4. The length of text (T) will be noted as LT.
5. The first and last character of P will be noted as P1 and PLP respectively.
6. The first and last character of T will be noted as T1 and TLT respectively.
7. When initially matching up the P and T the last character in P, PLP, will match up

with TLP.

Pattern to look for: EXAMPLE
Text to look in: HERE IS A SIMPLE EXAMPLE2

With a naïve pattern-matching algorithm P would be searched in T as follows:

1. Align the left end of P with the left end of T so that P1 and T1 are aligned (Figure 5).

2 Moore, Strother J. The Boyer-Moore Fast String Searching Algorithm, http://www.cs.utexas.edu/users/moore/best-
ideas/string-searching/index.html, (18 Feb 2002).

http://www.cs.utexas.edu/users/moore/best-ideas/string-searching/index.html
http://www.cs.utexas.edu/users/moore/best-ideas/string-searching/index.html

Figure 5.

P1 PLP
 EXAMPLE

 HERE IS A SIMPLE EXAMPLE
 T1 TLP TLT

2. Match the characters of P against T from left to right until either a mismatch of

characters occurs or P is exhausted. In this case P1 = E and T1 = H and
E ≠ H (Figure 5).

3. If a mismatch occurs the algorithm will shift P one character to the right and start the
matching process again (Figure 6). This time P1 = “E” will be aligned with T2 = “E”.
Since “E” = “E” it will check P2 = “X” against T3 = “R”. Since “X” ≠ “R” it will shift
P one character to the right and start all over again.

Figure 6.

 P1 PLP
 EXAMPLE

HERE IS A SIMPLE EXAMPLE
 T2 TLT

4. The above process will continue until either a complete match of P if found in T or

until PLP shifts past the right end of TLT.

In the above case it took the naïve algorithm 28 attempts to find a match. As you can see
this is a “brute force” matching algorithm that can take a long time to either make a match or
determine that a match cannot be made. This is similar to the way that snort started off with its
pattern matching techniques.
The Boyer-Moore algorithm has three strengths that are not contained in the naïve algorithm that
make it efficient and very good even in a worst-case scenario.

1. Right to left scan. This is in contrast to the naïve method that scans from left to right.
The left end of P is still aligned with the left end of T but the matching starts on the
right end of P and moves left until a mismatch occurs (Figure 7).

Figure 7.

P1 PLP
 EXAMPLE

 HERE IS A SIMPLE EXAMPLE
 T1 TLP TLT

2. Bad character shift. The first match attempt will start at PLP = “E” and

TLP = “S” (Figure 7). Like many advanced pattern-matching algorithms Boyer-Moore
preprocesses the pattern and gains heuristic information. It will use this information

to compute the amount to shift P to the right. The algorithm has to determine the
right-most character in P that it can match in T. In this case it would be the letter “E”
(Figure 8).

Figure 8.

 P1

 EXAMPLE
PLP

 HERE IS A SIMPLE EXAMPLE
 T1 TLP TLP + 9 TLT

3. Good Suffix shift. Once this match is made the algorithm will start matching at the

right end of P. This time PLP = “E” will match TLP + 9 = “E” (Figure 8). Now it will
match PLP-1 = “L” against TLP + 8 = “L”. Again we have a match so PLP-2 = “P” will be
matched against TLP + 7 = “P”. This is also a match so it will attempt PLP-3 = “M”
against TLP + 6 = “M”. Since it is still matching it will attempt PLP-4 = “A” against TLP +

5 = “I”. This time a mismatch occurs. Because of the preprocessing of the pattern it
has found that T contains the string “MPLE” and it will look for the next occurrence
of that string in T . Then it will shift P to the right so that the string “MPLE” of P will
be aligned with the next occurrence of the string “MPLE” in T (Figure 9).

Figure 9.

 P1

 EXAMPLE
PLP

 HERE IS A SIMPLE EXAMPLE
 T1 TLP TLT

4. Once this shift is complete the matching of characters will start again from the right

of P. In this case when every character of P is matched to T starting at PLP = “E” and
TLT = “E” a full match occurs.

With the Boyer-Moore algorithm the above search took only 12 attempts before a

successful match was detected. This is more than twice as fast as the brute force method.

Aho-Corasick_Boyer-Moore Hybrid

While the name would imply that the new algorithm is a mix between the Aho-Corasick

and Boyer-Moore algorithms it really is not. It is a “Boyer-Moore like algorithm applied to a set
of keywords held in an Aho-Corassick like keyword tree that overlays common prefixes of the
keywords.”3. This new algorithm takes the best characteristics of both the Boyer-Moore and
Aho-Corasick algorithms.

3 Coit, Jason and Staniford, Stuart and McAlerney, Joe. (21 June 2001),
http://www.silicondefense.com/software/acbm/speed_of_snort_06_21_2001.pdf page 3, (19 Feb 2002)

http://www.silicondefense.com/software/acbm/speed_of_snort_06_21_2001.pdf

1. Similarities:

a. Boyer-Moore -> Bad character shift.
b. Aho-Corasick -> Keyword tree.

2. Variances:
a. Boyer-Moore -> Instead of using the original good suffix shift the new

algorithm will use the good prefix shift.
b. Boyer-Moore -> While the packet (text, T) will be searched from right to left,

the tree (pattern, P) will be searched from left to right.
c. Aho-Corasick -> Instead of building a tree based on suffixes this tree will be

built on prefixes.

By looking at our original problem (Figure 4) we have 16 different rules that share some
common information. If we had loaded just those 16 rules in the AC_BM keyword tree it would
look very different (Figure 10).

 Figure 10. Partial web-coldfusion.rules.

/cfdocs/
ex

peval/

ample
app/

s/

email/
application.cfm

getfile.cfm

publish/admin/a
ddcontent.cfm

pplication.cfm
cybeans/beaninfo.cfm

mainframeset.cfm
parks/detail.cfm

displayopenedfile.cfm
expracalc.cfm

snippets/
fileexists.cfm

gettempdirectory.cfm

cfmlsyntaxcheck.cfm

evaluate.cfm

At first glance this tree may look more confusing than Figure 4, but once you study this
tree you can see how efficient it is. A mismatch can eliminate many rules from being searched
that will eventually fail. With a normal Aho-Corasick keyword tree the pattern would be
searched for one character at a time like the naïve algorithm. With the addition of the Boyer-
Moore good prefix shift and bad character shift, the algorithm can quickly determine if a match
occurs or the current packet does not match any current patterns. This algorithm is outlined in
Dan Gusfield’s “Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology” as a “Boyer-Moore Approach to Exact Set Matching.”

The AC_BM algorithm shows a slight performance increase when used in non-content
matching rules, but difference really shows when it comes to content matching rules. In snorts
current implementation the number of content matching rules will significantly affect the
performance and will not scale well. This is why new pattern matching algorithms have been
researched and show promise.

Current Issues

Even though the new algorithm has better performance for content matching rules it does
have some areas that either should be improved upon or taken into account when implementing
the AC_BM version of snort.

First, since AC_BM starts the matching at the right end of the packet and moves to the
left end of the packet it may trigger a different rule than the original Boyer-Moore algorithm
when the same packet is sent to the respective algorithm for analyzing. For example, if you have
two rules that only differ by the content that is searched for:

 Rule 1 content: Firstpartofpacket
 Rule 2 content: Lastofpacket
 Packet Data (Text): FirstpartofpacketandthentheLastofpacket

When the packet data is sent to the Boyer-Moore algorithm it will trigger on rule 1. When
the same packet data is sent to the AC_BM algorithm it will trigger on rule 2. This is a result of
the different directions in which each algorithm examines the packet data. If the AC_BM
algorithm were set up to examine the packet data from left to right, like Boyer-Moore, it would
get rid of the anomaly. The only reason that it was not done in the initial implementation of snort
with AC_BM is that it was a proof of concept implementation.

Like many other products (Cisco access-lists, CheckPoint FireWall-1 rules, etc.) snort is
a “first rule match wins” type of architecture. The problem that arises is with the AC_BM
keyword tree is the first match will be the shortest match, which may not be the right match.
When AC_BM builds the keyword tree it loses the ordering of the rules. The ordering of the
rules is what allows the current version of snort to find the longest match.

This longest match rule is preferred for applications like IP routing (EIGRP, OSPF, BGP-
4) and regular expressions. With the longest match rule, the most specific rule will always be
triggered. Hankxiv takes it a bit further. Hank alerts to all matches. This type of alerting gives the
NIDS administrator, or whoever looks at the alerts, more information than most NIDS today.
This will change in snort 2.0, which will move toward a “last-exit”xv match. Basically this will
make snort look for the longest match and make it more accurate.

The only thing kept in the AC_BM keyword tree is the content for which to search. They
had to figure out a way to keep the various non-content options. Since the AC_BM
implementation was only meant as a proof of concept, they (Silicon Defense) had to either
change the preprocessing of the rules or change the way that snort organized the RTNs and
OTNs. To keep snort as close to the original architecture as possible they chose to change the
way that snort imported the rules. To do this they separated the content and non-content rules
and handled the option rule checking differently depending on the type of rule. In doing the rule
separation they also changed the way that content rules are handled. In the original snort all
options are checked first before Boyer-Moore is called to check the content. In snort with
AC_BM all the other options are checked after AC_BM is called to the check the content of the
rules.

Protocol Analysis

 When most people think of a NIDS they think of pattern matching. There is another way
to implement NIDS though, and that is through protocol analysis. Protocol analysis products
have been around for many years and have the ability to analyze the data (real time) for the user
so that they can quickly determine what problems are occurring on their network. By taking this
to the next level you would get a protocol analysis NIDS.
 The architecture for a protocol analysis NIDS is very different from a pattern matching
NIDS. The protocol analysis NIDS will decode each packet according the protocol specification.
It will then it will check each field to make sure that it conforms to the standard. If it doesn’t then
the NIDS will flag the packet accordingly. For packets that conform to the standards but are still
an exploit (i.e. showcode.asp, /bin/sh) the NIDS can do a pattern match in the particular field that
needs to be checked instead of the entire packet. BlackICE takes a different approach to the
pattern matching issues that could be a bottleneck. In the case of a HTTP packet the user can
specify the text to match for in the URI. For example in the packet below BlackICE would split
the URI into separate components, in this case “SAMPLE” and “showcode.asp”. Then it would
do an exact match for each component in a list of exploitable components. Since it does an exact
match and not a pattern match it can determine if the component is a match or not quicker.

Snort started to become protocol aware when the keyword “uricontent” was added. This
gave snort users the ability to search only the URI portion of a HTTP packet instead of the entire
packet/payload (Figure 11).

 Figure 11.

HTTP - Hyper Text Transfer Protocol
 Command: GET
 URI: /SAMPLE/showcode.asp
 Version: HTTP/1.1..

Accept: */*..
Referer: http://www.victim.com/..
Accept-Language: en-us..
Accept-Encoding: gzip, deflate..
User-Agent: Mozilla/4.0 (compatible; MSIE 5.0; Windows NT; DigExt)..
Host: www.victim.com..
Connection: Keep-Alive..
Cookie: RoxenUserID=0x673b30....

The performance increase from this methodology will all depend on many factors, like packet
size, field size, components to check for, etc.
 One of the big drawbacks of a protocol analysis NIDS is that every vendor implements
the protocol according to how they interpret the RFC. This can cause false positives if the NIDS
developers are validating the packets differently than a vendor that has traffic that is seen by the
NIDS.
 The second drawback is that if someone finds a way to evade the protocol analysis NIDS
the decoding engine will have to be rewritten. For example when Rain Forest Puppy came out
with Whiskerxvi it had some very new and interesting IDS evasion techniques. While users who
ran snort could easily update the signatures so that they could catch someone scanning them with
Whisker, NetworkICE’s BlackICE had to be rewritten to catch these exploits. In the end though

the developers of BlackICE addressed the issue (evasion techniques) and not the program
(Whisker). By addressing the techniques and not the program the developers will be able to
develop a NIDS that can not only alert to the current NIDS evasion techniques but also to other
similar techniques that have taken advantage of the same issues within that protocol.
 The third drawback for a protocol analysis NIDS is how it deals with a packets that it
does not have a decode for. This could be as simple as sending the user an alert that the NIDS
has seen a packet that it does not know how to decode or it could attempt to run some heuristics
on the packet to see if it is a protocol that is knows about, but is listening on a different port.
 The strength of a protocol analysis NIDS is that exploits that are new should be easier to
catch since it does not rely on matching a known pattern. Evasion techniques like polymorphic
shellcode, URL encoding, session splicing, etc. are still easy for the protocol analysis NIDS to
detect for the same reason.

Depending on the network architecture, regulations and level or paranoia you might want
to run a NIDS inside of your network. This could be a simple as a single NIDS watching a major
portion of your network or as complicated as a distributed NIDS environment with each NIDS
configured to watch traffic that is specific to that particular segment. By placing the NIDS on the
LAN you run into many more situations where a protocol analysis NIDS would be the
appropriate tool. Below I will outline some areas that would be best suited for a protocol analysis
NIDS.

1. Most large companies run some sort or interior routing protocol to keep the
network up and running. Most of these routing protocols update via multicast
(OSPF, EIGRP) or broadcast (RIP, IGRP). In the past few years there have
been utilities (irpasxvii, nemesisxviii, nmapxix) written that will either gain
information from these types of protocols or spoof these protocols. With these
types of utilities an attacker could seriously disrupt the network by injecting
bad routes or DoSing nodes with bad packets. Even worse an attacker could
spoof a gateway and capture the packets as it redirects the packets to the correct
gateway. Network engineering departments are usually not concerned with
security and see security as a nuisance. Because of this attitude, plus the false
sense of security of being behind a firewall, attacks on the routers and routes
can be easy to execute and hard to detect. A NIDS might be able to detect
routing protocols, but it does not have any way of knowing of what types of
protocols are suppose to be running or how they are suppose to be configured.
For example if you have EIGRP as your only routing protocol and you run only
one AS, 50, you would have a hard time detecting an EIGRP packet that had a
different AS. Even harder would be to look for route injection or modification.

2. Not all security professionals take layer two spoofing seriously. Some people
are still under the assumption that if you are in a 100% switched environment
that you are safe from sniffers and other packet capture software. Enter dsniffxx
and ARP0cxxi. These two tools give the attacker the ability to fool switches into
sending the attacker packets that it is not suppose to. Since these two tools only
work on the LAN not many people focus on detecting these attack methods.
While the protocol analysis NIDS would not see anything wrong with the way
that the packets are constructed it may have some sort of anomaly detection
function built into it to help with these types of attacks.

Stateful Inspection

 The term stateful inspection has long been associated with firewalls. When dealing with
firewalls, stateful inspection usually deals only with layer 4 protocols (i.e.TCP, UDP). Firewalls
have having to become more protocol aware as new protocols are developed that take advantage
of a setup channel and a data channel. An early example of this is the FTP protocol. FTP utilizes
a two separate connections, one for control information (TCP port 21) and one for data transfer
(TCP 20). When a firewall sees a FTP connection (TCP port 21) to a FTP server it knows to
open up a dynamic rule that would allow the data connection (TCP port 20) from the server back
to the client. This dynamic rule will be torn down depending on the information in the control
connection (i.e BYE command).

In the early days NIDS developers did not worry about the state that a connection was in
to determine how a packet should be handled. Starting with fragrouterxxii NIDS developers have
had to worry about packet reassembly at the IP layer. When fragrouter first came out it was able
to evade many of the NIDS on the market. Snort added what is now know as the frag2
preprocessor to handle these types of evasion techniques. Some commercial NIDS only alert the
NIDS administrator that fragmented IP packets have been detected but it doesn’t reassemble the
fragmented packets.

Then hackers came out with tools like stickxxiii and snotxxiv. These tools could be used to
overload the NIDS with packets that match NIDS rules and overload the NIDS administrator
with a lot of false positives. This took advantage of the fact that most pattern matching NIDS
only looked in the current packet to see if it matched a rule. These tools don’t even setup a TCP
session properly (i.e Three Way Handshake) before sending the data. They just send just enough
data to trip the NIDS by using existing snort rules to generate the forged packets. To take care of
this DoS against the NIDS itself the snort community added the stream4 preprocessor with the
“-z est” option. This allows snort to track the state of the TCP connection before sending the
packets to the detection engine. Since packets generated via stick and snot don’t establish a TCP
connection they would not get sent to the detection engine. Depending on how the stream4
preprocessor is setup snort could alert the NIDS administrator that it has seen a TCP packet that
is not part of an existing connection.

Protocol Analysis NIDS developers take the term stateful inspection differently. They are
aware how certain protocols are suppose to act and react and can watch each protocol
“statefully”. By tracking not only the stimuli but also the response, the protocol analysis NIDS
can do a better job at determining if the attack is successful. In the case of a HTTP exploit a
pattern matching NIDS would alert you to the fact that is saw a packet that matched a rule, but a
protocol analysis NIDS would be able to tell you with a certain amount of accuracy if the attack
was successful or not by watching the HTTP message generated by the server.

Where are we now and where do we go from here?

The research done by Silicon Defense is also closely followed by research done by a joint
effort of Mike Fisk and George Varghese. They implemented a new algorithm called Setwise
Boyer-Moore-Horspool. Their results were different from those of Silicon Defense, but still
showed that with a different pattern matching algorithm snort and other devices that need high
speed pattern capabilities would be less susceptible to a DoS of the device due to the slow

pattern matching algorithm. They noted that a special algorithm that would change from a
standard Boyer-Moore-Horspool to a Setwise Boyer-Moore-Horspool to an Aho-
Corasick_Boyer-Moore depending on the size of the patterns to search for performed better than
any other variant.

Todd Lewis, author of Hank, liked the idea of AC_BM and took it a bit further. Instead of
implementing what had already been done by Silicon Defense he took a step back and looked at
what areas of AC_BM could be improved upon and implemented the changes. Silicon Defense
noted their issues with memory consumption and shortest pattern match and these issues are
implemented differently in Hank. Hank triggers all rules that match and has a more memory-
efficient AC_BM implementation.

We have only touched the surface of what can be done to increase the performance of
NIDS in regards to pattern matching there is still a lot more room for research in this area.

NIDS developers are still at odds over which NIDS technology is better (pattern-
matching (snort 1.x, ISS RealSecure) or protocol analysis (ISS Sentry –formerly NetworkICE
Sentry). Newer NIDS implementations (ISS 7.0, snort 2.0xxv) seem to be combining the best of
both worlds. The combination of a protocol analysis engine and a pattern matching engine would
capture the strengths of both worlds and make a NIDS that is fast, hard to evade and able to catch
new (zero day) exploits.

Acknowledgments
Thanks to the following people who made sure that the paper is technically correct:

1. Marty Roesch: www.snort.org , Made sure that everything about snort was correct
Helped with the understanding of snort at the code level.

2. Jason Coit: www.silicondefense.com , Made sure that the information and examples
describing the pattern matching algorithms was correct.

3. Fyodor Yarochkin: Helped with the understanding of snort at the code level and in
describing the preprocessors.

4. Robert Graham: www.robertgraham.com , Helped in understanding protocol analysis
and it’s place in NIDS.

i Roesch, Marty.(30 Jul 2001),http://archives.neohapsis.com/archives/sf/ids/2001-q3/0228.html(2 Feb 2002)
ii Roesch, Marty.(16 Aug 2001),http://opensores.thebunker.net/pub/mirrors/blackhat/presentations/bh-usa-
01/MartyRoesch/bh-usa-01-Marty-Roesch.ppt slide 38, (16 Feb 2001).
iii Roesh, Marty.(30 Jul 2001),http://archives.neohapsis.com/archives/sf/ids/2001-q3/0228.html(2 Feb 2002)
iv Roesch, Marty.(30 Jul 2001),http://opensores.thebunker.net/pub/mirrors/blackhat/presentations/bh-usa-
01/MartyRoesch/bh-usa-01-Marty-Roesch.ppt slide 33, (16 Feb 2001).
v Roesch, Marty. (06 Mar 1999) ChangeLog distributed with snort 1.8.3, www.snort.org (26 Feb 2002).
vi Roesch, Marty. (13 Oct 2001), mstring.c version 1.15, www.snort.org. (26 Feb 2002).
vii Roesch, Marty. (01 Aug 1999) ChangeLog distributed with snort 1.8.3, www.snort.org, (26 Feb 2002).
viii Roesch, Marty.(30 Jul 2001), http://opensores.thebunker.net/pub/mirrors/blackhat/presentations/bh-usa-
01/MartyRoesch/bh-usa-01-Marty-Roesch.ppt slide 23, (16 Feb 2001).
ix Roesch, Marty. (26 Oct 2001),EvalPacket function in rules.c version 1.86, www.snort.org, (26 Feb 2002).
x Roesch, Marty. (26 Oct 2001), EvalHeader function in rules.c verson 1.86, www.snort.org, (26 Feb 2002).
xi Roesch, Marty. (6 Nov 2001), SnortUsersManual.pdf page 17 section 2.3.9 version 1.8.3 www.snort.org, (26 Feb
2002).
xii Charras ,Christian and Lecroq, Thierry, Handbook of Exact String-Matching Algorithms, http://www-igm.univ-
mlv.fr/~lecroq/string/node14.html#SECTION00140, (28 Feb 2002).

http://www.snort.org/
http://www.robertgraham.com/
http://archives.neohapsis.com/archives/sf/ids/2001-q3/0228.html
http://www.blackhat.com/presentations/bh-usa-01/MartyRoesch/bh-usa-01-Marty-Roesch.ppt
http://www.blackhat.com/presentations/bh-usa-01/MartyRoesch/bh-usa-01-Marty-Roesch.ppt
http://archives.neohapsis.com/archives/sf/ids/2001-q3/0228.html
http://archives.neohapsis.com/archives/sf/ids/2001-q3/0228.html
http://www.blackhat.com/presentations/bh-usa-01/MartyRoesch/bh-usa-01-Marty-Roesch.ppt
http://www.blackhat.com/presentations/bh-usa-01/MartyRoesch/bh-usa-01-Marty-Roesch.ppt
http://www.snort.org/
http://www.snort.org/
http://www.snort.org/
http://opensores.thebunker.net/pub/mirrors/blackhat/presentations/bh-usa-01/MartyRoesch/bh-usa-01-Marty-Roesch.ppt
http://opensores.thebunker.net/pub/mirrors/blackhat/presentations/bh-usa-01/MartyRoesch/bh-usa-01-Marty-Roesch.ppt
http://www.snort.org/
http://www.snort.org/
http://www.snort.org/
http://www-igm.univ-mlv.fr/~lecroq/string/
http://www-igm.univ-mlv.fr/~lecroq/string/

xiii Roesch, Marty.(30 Jul 2001), http://opensores.thebunker.net/pub/mirrors/blackhat/presentations/bh-usa-
01/MartyRoesch/bh-usa-01-Marty-Roesch.ppt slide 33, (16 Feb 2001).
xiv Lewis, Todd. http://hank.sourceforge.net/, (18 Feb 2002).
xvRoesch, Marty.(30 Jul 2001), http://opensores.thebunker.net/pub/mirrors/blackhat/presentations/bh-usa-
01/MartyRoesch/bh-usa-01-Marty-Roesch.ppt slide 35, (16 Feb 2001).
xvi Rain.Forest.Puppy, http://www.wiretrip.net/rfp/p/doc.asp/i2/d21.htm , (19 Feb 2002).
xvii FX, http://www.phenoelit.de/irpas/docu.html, (20 Feb 2002).
xviii Nathan, Jeff. http://www.mirrors.wiretapped.net/security/packet-construction/nemesis/nemesis-README.txt,
(20 Feb 2002).
xix Fyodor. http://www.insecure.org/nmap/, (20 Feb 2002).
xx Song, Dug. http://www.monkey.org/~dugsong/dsniff/, (27 Feb 2002).
xxi FX. http://www.phenoelit.de/arpoc/index.html, (27 Feb 2002).
xxii Song, Dug. http://www.w00w00.org/files/sectools/fragrouter/, (27 Feb 2002).
xxiii Giovanni, Coretez, http://www.eurocompton.net/stick/projects8.html, (27 Feb 2002).
xxiv Sniph, (18 Aug 2001), http://www.sec33.com/sniph/, (27 Feb 2002).
xxvRoesch, Marty.(30 Jul 2001),http://opensores.thebunker.net/pub/mirrors/blackhat/presentations/bh-usa-
01/MartyRoesch/bh-usa-01-Marty-Roesch.ppt slide 32, (16 Feb 2001).

http://www.blackhat.com/presentations/bh-usa-01/MartyRoesch/bh-usa-01-Marty-Roesch.ppt
http://www.blackhat.com/presentations/bh-usa-01/MartyRoesch/bh-usa-01-Marty-Roesch.ppt
http://hank.sourceforge.net/
http://opensores.thebunker.net/pub/mirrors/blackhat/presentations/bh-usa-01/MartyRoesch/bh-usa-01-Marty-Roesch.ppt
http://opensores.thebunker.net/pub/mirrors/blackhat/presentations/bh-usa-01/MartyRoesch/bh-usa-01-Marty-Roesch.ppt
http://www.wiretrip.net/rfp/p/doc.asp/i2/d21.htm
http://www.phenoelit.de/irpas/docu.html
http://www.mirrors.wiretapped.net/security/packet-construction/nemesis/nemesis-README.txt
http://www.mirrors.wiretapped.net/security/packet-construction/nemesis/nemesis-README.txt
http://www.monkey.org/~dugsong/dsniff/
http://www.phenoelit.de/arpoc/index.html
http://www.w00w00.org/files/sectools/fragrouter/
http://www.eurocompton.net/stick/projects8.html
http://www.sec33.com/sniph/
http://opensores.thebunker.net/pub/mirrors/blackhat/presentations/bh-usa-01/MartyRoesch/bh-usa-01-Marty-Roesch.ppt
http://opensores.thebunker.net/pub/mirrors/blackhat/presentations/bh-usa-01/MartyRoesch/bh-usa-01-Marty-Roesch.ppt

	Increasing Performance in High Speed NIDS
	
	A look at Snort’s Internals

	Introduction
	Bottlenecks
	Brief History of Snort and Pattern Matching
	Overview of Snort Rules
	Rule Parsing and Detection Engine
	Overview of the Boyer-Moore Algorithm
	Aho-Corasick_Boyer-Moore Hybrid
	Current Issues
	Protocol Analysis
	Stateful Inspection
	Where are we now and where do we go from here?
	Acknowledgments

