

2020

by Cody Sixteen

11/6/2020

Notes Magazine #02

Hello World
So... here we are... second part of ‘my super special notes magazine’ ;> what do we have

here, oh what do we have here...? let’s check it out! ;]

Short summary for the today’s topics:

 In part one – For the # heap is only... – I tried to understand and described (mostly for

myself) few more information about exploiting heap overflow bugs. In part two – El Laberinto Del

Puszek – we’ll try to look at Puszek and use it in one of the example scenario possible on network.

Next part – A(t the BANK) Persistent Threats – is related to some interesting case I found possible to

use during one project. In part four – we’ll check up the sky again. This time we’ll hunt for the seaguls

;] So?

Here we go...

Table of Contents
Hello World ... 1

INTRO .. 3

FOR THE #HEAP IS ONLY ... 4

ENVIRONMENT .. 4

IMAGINATION .. 6

FORCED BY MAX .. 7

House of MaxForce ... 8

CONCLUSION ... 19

REFERENCES .. 20

EL LABERINTO DEL PUSZEK ... 21

REASONS .. 21

INTRO ... 22

ENVIRONMENT .. 22

FUN WITH PUSZEK ... 26

SCENARIO .. 28

CONCLUSIONS ... 36

REFERENCES .. 36

A(t the BANK) PERSISTENT THREATs .. 37

INTRO ... 38

ENVIRONMENT .. 38

OUR SIMPLE BASIC SCENARIO ... 39

CONCLUSIONS ... 41

REFERENCES .. 42

SEAGULL HUNTER – ENJOY THE SKY... 43

INTRO ... 44

ENVIRONMENT .. 44

REFERENCES .. 50

Thanks ... 51

INTRO

„Now, there is one rule I insist

be obeyed while you are in my house:

No growing up.

Stop this very instant.”

 Hook / 1991

FOR THE #HEAP IS ONLY

Last time I read about heap overflows was few months ago. Few days ago I decided to refresh my

knowledge (and practice) about crashing the heap and that’s how I started to looking for some good

and valuable materials available online.

...but let’s start from the beginning.

ENVIRONMENT
Just for a quick review of the environment I used during the ‘heap refreshing process’ we will start

from the Ubuntu ISO file you can find here[1].

https://ubuntu.com/download/desktop

To help yourself I also used pwndbg[2] (and from time to time I was also switching between pwndbg

and GEF[3]).

Remember to install requirements.txt ;) Also to save you some time – I don’t know why but I was able

to run a correctly working ‘environment’ described above only with Vmware. Unfortunately with

VirtualBox I had some issues (probably related to some python or OS packages, I’m not sure...).

So I decided to switch back to Vmware and now we should be somewhere here...

https://github.com/pwndbg/pwndbg
https://code610.blogspot.com/2020/07/using-gef-for-bug-exploitation.html

IMAGINATION
After many, many cases related to stack overflows and how can we exploit them, the ‘real case’ for

me was how should I think about the heap? For a stack it’s simple: a long line of characters sent to

the application and b00m – we got a shell. Ok, cool. But what about the heap?

I decided to refresh my knowledge about heap overflows a little bit and that’s how I started from the

idea of the picture of „how should I see this issue?”. The answer was (similar to the one Judie Foster

discovered in The Contact movie when she was looking for the ‘key’): "multiple levels and multiple

dimensions". Correct. ;) So let’s say – for the stack we should have (a „picture” of it like):

Great. (My MSPaint skills are brilliant I know.) So I realized that I’m still thinking about the heap in

the pretty similar way I’m thinking about the stack – flat, long, line, string, buff, array, younameit,

still/one/dimension. Right? But what if we will look at it like this:

...where (for example) 1 is describing a lenght of our AAABBBCC...string and (for example) 2 is talking

about where(or-what) in memory that ‘long line’ will end/mean/be. Simple enough to compare it to

the picture you should already be familiar with since long long time:

Yes. Heap(s). ;]

So now it should be easier (at least for me ;P) to think about exploiting the heap.

Let’s move forward...

FORCED BY MAX
Looking for the hints about heap exploitation you probably saw all of that interesting papers and

presentations (just to mention few: 4, 5, 6, 7, 8, 9, 10). But after reading them I still wasn’t so sure

and confident about expoiting the heap bugs. So I decided to learn more and that’s how I found

Max[11]. At this stage I should really recommend you this course if you are new to the heap

overflows. If you are not sure if it’s worth to pay for it – few examples of presentations by Max you

can find online[12, 13].

Let’s start from the example used here[12] where Max is talking about House of Force:

As you can see this is an example binary from the course[11] I mentioned before.

Our goal (as usual[14, 15]) is to find a way to drop a shell.

Let’s start from first case.

https://heap-exploitation.dhavalkapil.com/
https://azeria-labs.com/heap-exploitation-part-1-understanding-the-glibc-heap-implementation/
https://github.com/shellphish/how2heap
http://phrack.org/issues/66/10.html
http://phrack.org/issues/61/6.html
phrack.org/issues/57/9.html
http://phrack.org/issues/66/6.html
https://www.udemy.com/course/linux-heap-exploitation-part-1/
https://youtu.be/s-GJ-buCGio
https://www.youtube.com/watch?v=6-Et7M7qJJg
https://youtu.be/s-GJ-buCGio
https://www.udemy.com/course/linux-heap-exploitation-part-1/
https://code610.blogspot.com/p/mini-arts.html
https://code610.blogspot.com/p/found.html

House of MaxForce
First vulnerable case from Max is simplified enough to let us focus only of the exploitation technique.

That’s nice. Let’s complete the list of ‘prerequisits’ we need to have (or know) before we’ll build an

exploit. According to the Max – for this particular case – we’ll need to know:

1. Program base/load address

2. Heap start address

3. ‘Just a little patience’[16] ;]

Once of the way to get it (described by Max as well) is to use pwndbg[2]. Script prepared by Max[11]

is also equipped to help us (using log.info()) to identify potential interesting strings (from the output

of the binary we’re trying to exploit). Example:

As the arbitrary write is described by Max here[12] below we’ll focus only on achieving shell access.

We will prepare our skeleton/template (slightly modified;)) file and use it to build the poc. Here we

are:

Binary is very basic so for our learning purposes for the start we’ll present few values at the begining.

The menu we have now is presented on the screen below:

https://www.youtube.com/watch?v=ErvgV4P6Fzc&ab_channel=GunsNRosesVEVO
https://github.com/pwndbg/pwndbg
https://www.udemy.com/course/linux-heap-exploitation-part-1/
https://youtu.be/s-GJ-buCGio

So we can move forward and start preparing our poc. At this stage I decided to check (the heap)
manually. I started the binary using gdb and used 1 to alloc new data. To be honest I accidently used
size value equal to zero (0). Check it out in your gdb. So I malloc’ed 3 times: 1) with size 0 with value
„AAAA” then 2nd time with size 20 and data „BBBB” and last time (with bigger value) and data like
„QQQQ...QQQ” or „SSS...SSSS” just to catch it quickly later in gdb. For now we should be somewhere
here:

Checking ‘more’ results:

As you can see we have our values on the heap. I decided to grab few information from the binary’s

menu (like Max did[12]) using pwn library:

The delta() function finds the "wraparound" distance between two addresses.
log.info(f"heap : {heap:02x}")
log.info(f"main(): {elf.sym.main:02x}")
log.info(f"libc.sym._mall_hook: {libc.sym.__malloc_hook:02x}")
log.info(f"delta between heap & main(): 0x{delta(heap, elf.sym.main):02x}")

As we know[link to max youtube heap] during Houce of Force attack we need to „wrapp around” the

heap (so let’s say if we have a string from 0 to 10 (as an input) and we’ll put there 99 characters it

(our payload) will „wrap around” and „end” on place (for example) number 9 (from the initial 10-

length-long-string). So... Now we will calculate few values proposed in initial exploit[12]:

https://youtu.be/s-GJ-buCGio
https://youtu.be/s-GJ-buCGio

Now let’s check it using pwgdb with vim:

!./% GDB

Breaking to gdb (in 2nd pwndbg window) and we should be here:

Let’s break in new opened window (ctrl+c):

So far, so good. Let’s continue with normal program running using „only” gdb (read as: gdb+pwngdb

of course ;)). We should be here:

Using the program we’ll have to add new size and data using option 1 from our menu:

Ctrl+C here to break and back to gdb. Now let’s watch the heap using vis command:

We can see our data is now on the heap. Let’c continue to add another data:

Now let’s see the output from vis command again:

Looks good so far. We added another value to the heap. Let’s see what will happen if we’ll add new

value, this time a little bit bigger. As we know[11] our goal when using House of Force is to overwrite

the size field value. So for example I tried something like this:

My next step was to break the program to go back to gdb and see the heap again (with vis). Here we

are:

https://www.udemy.com/course/linux-heap-exploitation-part-1/

As you can see we overwrited the top chunk size field with our new value.

What’s next? Well... ;]

We’ll try to do the same using the pwndbg and vim. We’ll use skeleton poc prepared by Max[12].

After a while we should be here:

Let’s try it using the same command:

:!./% GDB

Now we’ll break in gdb to see the top chunk field using vis command again:

https://youtu.be/s-GJ-buCGio

Ok, we have a change in the value of our ‘new top chunk size field’. Now we’ll try to wrap around and

reset the heap to the state we’re looking for. Let’s see:...

Before I decided to check it I did few partial checks manualy in gdb. Below youl’ll find few notes

about it: first of all I created a small file (called ‘a’). I created there a step list to run it with our

vulnerable binary. Something like this:

Next string:

Restarting gdb with our binary to ctrl+c and now we should be here:

Indeed now we rewrited the value. But is it correct? I wasn’t so sure. I decided to rewrite the poc

again and continue with the new example (changes presented on the screen below):

Let’s run the script using vim (I used GDB argument again):

On the first window (gdb) I used ctrl+c to break to gdb:

Looks like all is prepared properly. ;> Next malloc should overwrite the target. Let’s see:

Great! ;] Last check from gdb:

Ok. Everything’s great but where is the shell? ;[It looks like we need to overwrite the pointer to our

target with „/bin/sh” and the address of system() function. At this stage it started to look pretty

similar to „return into lib C” attack. Indeed when I decided to check another video about heap

exploitation (by Max[12]) I landed here:

https://youtu.be/s-GJ-buCGio

On the screen above we can see a part of an example of the solutions prepared by Max.

At this stage I also found this page[17]:

So it was easier to prepare a working exploit using pwndbg library. We should be somewhere here,

checking one of the the solution:

If you are here – it should be easier to find the difference in the script codes:

https://www.gnu.org/software/libc/manual/html_node/Hooks-for-Malloc.html

Try to run it using GDB and without it. ;)

Have fun!

Cheers

CONCLUSION

This small document was first just a draft about the House of Force but I decided to check

again the course prepared by Max and that’s how I rewrited it to the new version (...but in my

opinion - still a draft;]). If you’d like to learn more about heap exploitation I’ll strongly recommend

the course mentioned in the Reference section as well as other materials available there.

There is a lot of it so you’ll definitely have fun!

Enjoy ;]

REFERENCES
Belo is the list of links I found useful/interesting when I was reading about heap exploitation:

1. Download Ubuntu Iso

2. Download pwndbg

3. Installing GEF

4 – Heap exploitation

5 – Heap exploitation

6 – How2heap

7 – Phrack

8 - Phrack

9 - Phrack

10 – Phrack

11 - Max Kamper – Heap Exploitation Course

12 – Heap exploitation with Max – youtube (1)

13 – Heap exploitation with Max – youtube (2)

14 – Mini-arts – c16

15 – Found bugs – c16

16 - Patience

17: GNU __malloc_hook

https://ubuntu.com/download/desktop
https://github.com/pwndbg/pwndbg
https://code610.blogspot.com/2020/07/using-gef-for-bug-exploitation.html
https://heap-exploitation.dhavalkapil.com/
https://azeria-labs.com/heap-exploitation-part-1-understanding-the-glibc-heap-implementation/
https://github.com/shellphish/how2heap
http://phrack.org/issues/57/8.html
phrack.org/issues/57/9.html
http://phrack.org/issues/61/6.html
http://phrack.org/issues/66/6.html
https://www.udemy.com/course/linux-heap-exploitation-part-1/
https://youtu.be/s-GJ-buCGio
https://www.youtube.com/watch?v=6-Et7M7qJJg
https://code610.blogspot.com/p/mini-arts.html
https://code610.blogspot.com/p/found.html
https://www.youtube.com/watch?v=ErvgV4P6Fzc&ab_channel=GunsNRosesVEVO
https://www.gnu.org/software/libc/manual/html_node/Hooks-for-Malloc.html

EL LABERINTO DEL PUSZEK

Once uppon a time I was wondering if „nowadays” there are any „interesting rootkits” like I

saw (or read about) „in the past” (read as: something like 10-or-more years ago;)). And that’s how I

started to search with Google for an old projects (like suckit2) on PacketStorm Security[1] and similar

portals. But first things first...

REASONS
I was looking for some online materials related to kernel hacking. Most of them was unfortunately

old-enough to be useful during some CTFs or when we’re pentesting some old *nix machines. That’s

how I decided to read about *nix-based rootkits and dig a bit deeper in the online resources.

Why. Most of them are good, cool and very well (at least for me as a reader) „but” because they are

„old” (means: created mostly like 5-10 years ago) I was looking for something „more fresh and new”.

(You can also read it as: working also with ‘some new kernels not only with 2.4 or 2.6’ ;).)

So I decided to dig a little bit deeper again and that’s how I found my new „best friend” – Puszek[2].

;]

https://packetstormsecurity.com/
https://github.com/Eterna1/puszek-rootkit/

INTRO
According to the Author: Puszek[2] is just „another LKM[3] rootkit for Linux”:

Ok. We’ll see... ;)

ENVIRONMENT
To check how to prepare and install (or weaponize – you name it;)) Puszek[2] I decided to run it

directly on lately downloaded Kali Linux[4] (installed on Vmware). „Tested on” was the suggestion I

decided to follow ;)

We should be somewhere here:

https://github.com/Eterna1/puszek-rootkit/
https://tldp.org/LDP/lkmpg/2.6/html/index.html
https://github.com/Eterna1/puszek-rootkit/
https://www.kali.org/downloads/

Now let’s assume that we have a this kind of a simple scenario:

- we have a vulnerable Linux-based Web server (it’s our already fresh installed Kali VM);

- we have a cool RCE bug in the webapp that will help us achieve remote access;

- our shell-user is able „somehow” (config read, weak pass, whatever...) to sudo to superuser;

- now: we are ready to install our friendly Puszek[2] ;]

Checking:

Good. According to Makefile we’ll now need to have a build directory:

Well... Puszek was created some time ago, so Kali (build) was updated during this time. I tried to find

a quick workaround and I switched kernel version to the one I had in my ‘latest Kali ISO’:

Checking again (type make):

ttps://github.com/Eterna1/puszek-rootkit/

Hm. Not good. I decided to check some older (version of the kernel available on) Kali and I switched

back to VirtualBox where I have few other Kali VMs, for example:

Checking Makefile again:

Better now. ;] Checking the directory content after Makefile is finished:

Great! Now let’s find a way to make Puszek more confortable in the target OS ;) If you’re not sure

what’s next or where to start – this[5] – should be a cool intro:

So far, so good. Let’s move forward.

But not so fast ;> (Spoiler alert!11;)) Because I had some issues when I tried to run Puszek on latest

Kali I decided to try it on the older one. Unfortunately after few issues with the updates and/or

installing additional software/libs I decided to switch OS again and that’s how I started all the

scenario on new installed Ubuntu 16 (x86). Here we go again:

I think we are ready now. Let’s have some fun with Puszek in a next section.

https://opensource.com/article/18/5/how-load-or-unload-linux-kernel-module

FUN WITH PUSZEK
Let’s see what Puszek can do in a live environment. ;] First of all we’ll check the source[2] available

online. When I’m „reading malwares”[6] I like to reverse it (read as: if I can ;P) or read the source

code (if it’s available). In case of Puszek – we have a full code available here[2] so it will be easier.

Let’s try:

(...)
2020-11-08 01:51:17 (852 KB/s) - ‘rootkit.c’ saved [26618/26618]

--2020-11-08 01:51:17-- https://raw.githubusercontent.com/Eterna1/puszek-rootki
t/master/Makefile
Reusing existing connection to raw.githubusercontent.com:443.
HTTP request sent, awaiting response... 200 OK
Length: 158 [text/plain]
Saving to: ‘Makefile’

Makefile 100%[===================>] 158 --.-KB/s in 0s

2020-11-08 01:51:17 (3,84 MB/s) - ‘Makefile’ saved [158/158]

FINISHED --2020-11-08 01:51:17--
Total wall clock time: 0,7s
Downloaded: 2 files, 26K in 0,03s (856 KB/s)
root@pluszak:~/puszek# ls
Makefile rootkit.c
root@pluszak:~/puszek# make
make -C /lib/modules/4.15.0-45-generic/build M=/root/puszek modules
make[1]: Entering directory '/usr/src/linux-headers-4.15.0-45-generic'
 CC [M] /root/puszek/rootkit.o
 Building modules, stage 2.
 MODPOST 1 modules
 CC /root/puszek/rootkit.mod.o
 LD [M] /root/puszek/rootkit.ko
make[1]: Leaving directory '/usr/src/linux-headers-4.15.0-45-generic'
root@pluszak:~/puszek# ls -l
total 76
-rw-r--r-- 1 root root 158 lis 8 01:51 Makefile
-rw-r--r-- 1 root root 31 lis 8 01:51 modules.order
-rw-r--r-- 1 root root 0 lis 8 01:51 Module.symvers
-rw-r--r-- 1 root root 26618 lis 8 01:51 rootkit.c
-rw-r--r-- 1 root root 14416 lis 8 01:51 rootkit.ko
-rw-r--r-- 1 root root 596 lis 8 01:51 rootkit.mod.c
-rw-r--r-- 1 root root 1800 lis 8 01:51 rootkit.mod.o
-rw-r--r-- 1 root root 14328 lis 8 01:51 rootkit.o
root@pluszak:~/puszek# file *
Makefile: makefile script, ASCII text
modules.order: ASCII text
Module.symvers: empty
rootkit.c: C source, ASCII text
rootkit.ko: ELF 32-bit LSB relocatable, Intel 80386, version 1 (SYSV), Build
ID[sha1]=8fa5e76f5f04cf4bdb3cf893d8c49f27474cbe22, not stripped
rootkit.mod.c: C source, ASCII text
rootkit.mod.o: ELF 32-bit LSB relocatable, Intel 80386, version 1 (SYSV), not s
tripped
rootkit.o: ELF 32-bit LSB relocatable, Intel 80386, version 1 (SYSV), not s
tripped
root@pluszak:~/puszek#

Cool. Next:

https://github.com/Eterna1/puszek-rootkit/
https://code610.blogspot.com/search/label/malware
https://github.com/Eterna1/puszek-rootkit/

As you can see we have a few function listed above. Take your time and read the source of Puszek.

For me it was a very interesting journey because I had a chance to learn few things about LKM

modules (how to write them and how they should work in a very first place if we are talking about

„whet else I should learn about kernel hacking”;). Really nice piece of code!) According to the

README file Puszek is able to:

Let’s try! ;] To do that we’ll use our example scenario below. Here we go...

SCENARIO
Let’s say we have a vulnerable web server (ex.:hosting) and via one of the webapps available there

we can achieve a remote shell. To make things worst;) let’s say our webshell-user is also able to sudo

to root. From the attacker’s perspective it’s a great opportunity to install Puszek, isn’t it? ;)

So let’s make it clear:

We should be somewhere here:

Now we can try to load Puszek and we’ll see what will happen... ;> Checking:

Great! Puszek is loaded so we can log in as a „different user” (let’s say our vhost01) and let’s try to do

some actions on the system. We’ll see what (in default mode) will be logged by Puszek for us. For

example let’s start here:

It looks like there is no netstat for us. Let’s move forward. I decided to create a file with date output

inside vhost01 user directory (as root) then I tried to list it (as vhost01 user). Results you can see

presented on the screen below:

Interestingly we have a new file („?”) as well as some error message from ‘ls’ command. Let’s

continue here: still as a vhost01 user I decided to check if I’m able to read dmesg output. This is what

I found:

As you can see some messages from Puszek are still visible. I’m not sure if it was intentional but I

believe Puszek is can be teached to hide from dmesg too. (It’s open source so I’ll leave it to you as an

excercise. ;))

Continuing here (user:demo, password:password):

Ok. At this stage I was wondering what Puszek was able to grab so far. Let’s check it:

More:

As you can see now the user (vhost01) is able to see the file hidden previusly by Puszek. While I was

looking (in the source) why I can not see the (example FTP) password(s) saved in the file I found the

github resource (published 4 days ago;]) – check it out[7]:

https://github.com/R3x/linux-rootkits

As you can see you can find here few additional information about Puszek (as well as about few other

similar projects).

In the meantime I decided to look around in the OS and perform few other ‘users actions’ (like

browsing with Firefox, ftp to some remote locations, and so on...):

More:

Checking the source code again:

After a while I decided to reload Puszek module and check the log files one more time. To not spoil it

too much – I will leave the rest of the code to you as another excercise. Enjoy ;)

Last stage I took was to check Puszek with some „anti rootkit software”. I decided to use rkhunter[8]:

Assuming the server is pwned and Puszek is already loaded, let’s run rkhunter to check if Puszek can

be detected (apt-get install rkhunter –y):

http://rkhunter.sourceforge.net/

...and after a while I saw that Ubuntu freezed ;D So I restarted it. Checking /etc/ directory to find

rootkit files:

We can see that Puszek’s files are visible (so I assumed that Puszek is not loaded). It was a good time

to recompile it but this time I changed DEBUG define to 1 (please see the source for more details[2]).

We should be here:

Let’s make it possible ;)

Ok, Puszek is loaded. Let’s run rkhunter –c now:

https://github.com/Eterna1/puszek-rootkit/

Now let’s wait for the end of the rkhunter’s check. After a while we should be somewhere here:

More:

In the meantime I found that new file was created by Puszek:

At this stage (when rkhunter was still running) I observed that Ubuntu (16.04) freezed again. So I

restarted VM and type dmesg in the console, check it out:

Ok. Well... In my opinion this is not Puszek’s fault. This is a fault of the Linux Kernel Developers Team

who are day-by-day updating kernel’s source code. ;)

But if you’re looking for a good „live” resource you can use/extend/develop/read/rewrite for

‘newest’ kernel – feel free to do it as an excercise. ;)

CONCLUSIONS
My first „meeting” with Puszek was something like 2-or-so years ago. I found it very interesting

because in that time I was strongly reading and learning about kernel hacking and exploitation.

Puszek[2] was a very nice introduction for me where I was able to do/recreate and follow the steps

(from the source) during my ‘simple scenario attacks’[9].

All the resources described in this mini article you’ll find in the Reference section below.

REFERENCES
Resources I found interesting for the case described in this section:

1 – PacketStorm Security

2 – Puszek – source code

3 – TLDP DIY

4 – Kali Download

5 – Loading Kernel Modules

6 – Reading Malwares

7 - R3x about rootkits

8 - rkhunter

9 – few other writeups

https://github.com/Eterna1/puszek-rootkit/
https://code610.blogspot.com/p/mini-arts.html
https://packetstormsecurity.com/
https://github.com/Eterna1/puszek-rootkit/
https://tldp.org/LDP/lkmpg/2.6/html/index.html
https://www.kali.org/downloads/
https://opensource.com/article/18/5/how-load-or-unload-linux-kernel-module
https://code610.blogspot.com/search/label/malware
https://github.com/R3x/linux-rootkits
http://rkhunter.sourceforge.net/
https://code610.blogspot.com/p/mini-arts.html

A(t the BANK) PERSISTENT THREATs

INTRO
Some time ago I was asked to perform a ‘quick pentest’ in one company to find a way to escalate

from normal (AD) user to someone else (read as: I was looking for NT\SYSTEM access to make things

easier during the project;)). That’s how I started creating a small surface of an example attack. Let’s

say...

a) Domain user (connected to the VPN) received an evil-email

b) Evil-email is of course something like malicious XLS with macro, VBS/JS, or something like

that... whatever - just to run the payload

c) Our payload is a simple: get a reverse shell to the victim-user-machine (so normal user shell

access is achieved here)

d) Next stage should be: to escalate our priviliges to the highest one.

ENVIRONMENT
To not focus on „any” bypass methods (like for AD/GPO/Defender/whatever) I used Windows 7 (x86)

to prepare an installation. Probably ;) during the ‘real pentest’ you’ll find more ‘fresh and new’

Windows machines (like Windows 10) but to keep it simple – today we’ll try to do an escalation on

the older Windows version (just to verify if the bug is indeed exploitable).

Vulnerable software we’ll use to escalate this time is: Cisco Any Connect (version: 4.5.04029). We will

prepare our super-attack basing on the information already published in the CVE (CVE-2020-3153[1]).

Here we go...

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-3153

OUR SIMPLE BASIC SCENARIO
Let’s skip the lame part related to ‘how to send a malicious link to the user who was on facebook

during internal company’s course related to „how to responde to phishing attacks”’ ;)

We should be somewhere here:

Checking modules available in Metasploit[2]:

On our Metasploit console we should see something similar to the screen presented below:

As we discussed earlier – we will focus on the stage when initial access is alread achieved. So, next:

https://www.metasploit.com/

So far, so good. Now it’s time to find a way to escalate. Few possibilities you can find described

here[3]. One of the way is to „find a vulnerable software already installed on the victim’s host”. In

case of my „pentest project” – on the „user’s machine” I found installed Cisco AnyConnect (version

4.504029[4]). (Un;])fortunately – few weeks ago PacketStorm Team published[5] a fully working MSF

module[2] to the LPE poc for the version I found installed on the box. ;] Updating the MSF:

I decided to drop a PacketStorm’s poc in the same directory where I found other ‘*cisco*any*’

modules. After that – let’s reaload MSF:

We should be somewhere here (remember that we have already opened reverse shell to remote

host, we can now use a session –l command):

https://code610.blogspot.com/p/mini-arts.html
https://www.cisco.com/c/en/us/support/security/anyconnect-secure-mobility-client-v4-x/model.html
https://packetstormsecurity.com/files/159420/Cisco-AnyConnect-Privilege-Escalation.html
http://www.metasploit.com/

Let’s verify if we achieved NT\OS privs indeed:

Looks like it’s done. ;) That’s all folks! ;)

CONCLUSIONS
TL;DR: update all the software you have installed on your network. There is no need to wait X-

months to do it. Don’t wait for malwares and targeted attacks (or me, asked by your boss to do an

internal pentest ;)).

Updates for this case you will find described here:[6].

Do IT, now.

https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-ac-win-path-traverse-qO4HWBsj

REFERENCES
Below you’ll find few resources I found interesting during this research:

1 – CVE-2020-3153

2- MSF

3- Mini arts

4 – CA download

5 – PacketStorm poc

6 – Fix from the Cisco

7 – SSD

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-3153
http://www.metasploit.com/
https://code610.blogspot.com/p/mini-arts.html
https://www.cisco.com/c/en/us/support/security/anyconnect-secure-mobility-client-v4-x/model.html
https://packetstormsecurity.com/files/159420/Cisco-AnyConnect-Privilege-Escalation.html
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-ac-win-path-traverse-qO4HWBsj
https://ssd-disclosure.com/

SEAGULL HUNTER – ENJOY THE SKY
 (version 0.1)

Feeling alone...? Start feeding the seaguls... ;]

INTRO
During all the ‘stay home’ situation lately I decided to finaly go out for a while... so I took the

cigaretes and... go out - to the balcony. ;] That’s how I saw that I’m not the only one who is looking

for something ‘interesting outside’ – I found seaguls! ;>

(Un?)fortunately my ‘experiment’ took me only 6 days. After the day 6 I heard few kind

words from the neibour so I decided to stop feeding the seaguls – and that’s how I created „Seagul

Hunter v0.1”.

Here we go... ;]

ENVIRONMENT
This time[1] we’ll try to extend another example found on Forbot course[2]. If you still don’t know

the page yet (sorry afaik it’s in PL only so far) – you should really check it. There is a lot of interesting

articles to read/DYI. Anyhow... For this excercise we’ll need:

- Arduino UNO

- breadboard

- few cables to connect all the things

- hc-sr04 2-200cm

All the parts we’ll need to build together you can find presented on the screen below:

(At the very first stage we’ll try to recreate the circuit already available on Forbot’s pages. We’ll back

to buzzer/LED later.)

Let’s start from preparing the code already available on the Forbot’s pages[2]. As an our extension to

it we’ll try to add a LED just to get some practice with Arduino development but we’ll do it later just

to simplify. We should be somewhere here:

https://code610.blogspot.com/2020/11/code16-notes-magazine-01.html
https://forbot.pl/blog/kurs-arduino-czujnik-odleglosci-hc-sr04-funkcje-id4290
https://forbot.pl/blog/kurs-arduino-czujnik-odleglosci-hc-sr04-funkcje-id4290

Reading the tutorial article I already added the part related to „echoing” our output from this

detector. (Pseudo-translated) code I used is presented on the screen below:

Cool, isn’t it? ;] (BTW: with this detector our able to find the moving objects between 0 to 400 cm.)

As you can see this is exact same schema of the circuit presented by the Forbot[2]. Now let’s try to

extend it a little bit and add our LED – I used red one this time (remember to add a proper resistor – I

used 330 ohm resistor:

Let’s try to add it like this:

Now let’s update our code:

https://forbot.pl/blog/kurs-arduino-czujnik-odleglosci-hc-sr04-funkcje-id4290

Last stage: sending our code to Arduino:

Last stage – adding the buzzer. According to the (Forbot’s) „manual”[2] we should be somewhere

here:

Checking:

Ok ;] Now we should prepare our super new Seagull Hunter ver.0.1 and start observing the sky from

the balcony... ;) After a while (and a bunch of bread ;)) maybe we should now connect the two of the

‘projects’ – seagul hunter and this one below... ;]

https://code610.blogspot.com/2020/06/reversing-drones-mission-planning.html

I hope you had some fun with that simple example. ;) If you are an inventor (or even inve$tor ;)) and

want to talk or have some questions – feel free to ping me. I’ll answer ASAP.

Enjoy the sky!

See you next time! ;]

REFERENCES
Resources I found interesting for the case described in this section:

1 – Code16 Notes Magazine #01

2 - Forbots course

3 – Drone missions

https://code610.blogspot.com/2020/11/code16-notes-magazine-01.html
https://forbot.pl/blog/kurs-arduino-czujnik-odleglosci-hc-sr04-funkcje-id4290
https://code610.blogspot.com/2020/06/reversing-drones-mission-planning.html

Thanks
Hi Reader. I’m glad you’re here!

Thanks for reading the content. I hope you like it. In case of any questions or comments (or just say

hi) feel free to drop me an email or send me a direct private message @twitter.

Once again – big thanks for your time!

See you!

Cheers,

Cody Sixteen

https://code610.blogspot.com/
https://twitter.com/CodySixteen

