
MOSREF: Cryptography
and Injectable Virtual

Machines
Wes Brown

Ephemeral Security

Introduction
Ephemeral Security

We conduct research, development and engineering of very
interesting solutions and products. Many of them are
available openly with the option to purchase an
unencumbered license for integration into commercial
products.

Wes Brown

What?
Mosquito is a virtual machine environment with a lightweight
framework to deploy and run code remotely and securely, in the
context of penetration tests.

It makes a best effort to ensure that communications are secure.

Deployed code is not stored outside of process space.

It protects the confidentiality and trade secrets of code that is
deployed and run on the target. This could be an exploit, or a
methodology.

Why?
Often it is desirable to leverage ‘0-day’ code, but doing so in an
uncontrolled fashion can have repercussions.

Many practices have trade secrets and methodologies distilled in
the form of audit or exploit code that they would like to keep out
of other hands.

It is a means to ensure that communications between the target
and the console is secure.

Provides a dynamic remote execution environment, allowing ‘in-
flight’ modifications.

Others?
Shellcode

Static, inflexible, low level, and targeted to one environment.

Can break with patches or environment changes.

Syscall Proxies

More flexible than shellcode, higher level.

Driving logic is on attacker’s side. Can be fragile.

Others? (cont’d)
DLL Injection

Can implement higher level features easily.

Logic can be placed at target side.

Still static, and Windows-only.

Exploit Compilers

Very nice abstraction of lower level code, very flexible.

Lightweight Application VMs
Can be very small - MOSVM is 128K binary size on Linux.

Can be even smaller with executable compression techniques.

Write once, run anywhere - code written on a Linux VM will run
on a Windows VM unaltered.

Can use languages designed for the task - Mosquito Lisp

Provides very nice orthogonal development environment.

Dynamic -- code can be altered and updated even on a remote
VM -- ‘in flight missile reprogramming’

Mosquito Components

Core - Virtual Machine

Language - Mosquito Lisp environment and Libraries

Console - Provides user with interface to manage and deploy
drones.

Drone - Provides a remote process that contacts its matched
Console and executes bytecode and statements on its behalf.

Virtual Machine (MOSVM)
Production ready and stable (beta 3)

Lightweight and optimized for network tasks

Easily extensible

regex was implemented in a few hours

Pure ANSI-C, portable (OpenBSD, Darwin, Linux, win32)

Even runs on embedded devices (ARM, MIPS, nios2)

Wireless routers, anyone?

Virtual Machine (cont’d)
Virtual machine ‘stubs’ to attach Mosquito bytecode to.

Programs and applications can be compiled and attached to
stubs for different architectures and OS’es.

Allows standalone executables with no external dependencies,
on all supported MOSVM platforms.

Dependencies are automatically resolved --- only the library
functions needed are attached to the virtual machine.

Integrated ECDH, AES encryption with very good entropy
generation.

Language (Mosquito Lisp)
Network-oriented and compact Lisp with strong influences from
Scheme.

Designed for network applications, highly concurrent and
provides simple and efficient network and process APIs.

Rich environment, with over 300 primitive functions, and 200
library functions in the standard library, not including additional
libraries specific to MOSREF.

Well-documented, with a complete reference manual available
online and for download.

Language (cont’d)
Self-hosted -- the Mosquito compiler is written in Mosquito Lisp.
The compiler compiles itself as part of the build process.

Goodies in the standard library -- can be available on Drone!

regex support

clue (in-memory queryable database)

XML support

http

Channels (Overview)
Language feature, allowing for abstracted communications.

A cryptographic channel is provided, for easy encryption.

Transparent negotiation implemented on top of channels.

Provides a layer of abstraction from the actual communications
mechanism in use.

Programs do not care how communications are handled.

Processes and sockets have read and write channels that can be
mapped to other channels.

Drone
Virtual Machine + Crypto + Drone Functionality

Highly optimized to reduce size

Does not include Mosquito Lisp bytecode compiler

Drone stores and executes bytecode programs sent by Console.

Can pull additional libraries from Console over channels rather
than embed in Drone stub. Including the compiler!

Bytecode sent by Console is only stored in process memory.

Console
Virtual Machine + Crypto + Console Functionality

Provides a local process to control deployed Drones.

Provides full Mosquito Environment.

Includes compiler to compile Mosquito Lisp statements and
programs for the Drone on the fly.

Interface for interacting with Drones in real time.

Creates Drones when requested using stub functionality.

Uses of Framework

Refactor exploits into Mosquito Lisp for secure deployment on
target.

Network and host reconnaissance code management and results
over a secure channel.

Simplify deployment of auditing tools to hosts; all dependencies
are included with the Drone and managed by the Console.

Demonstration

Demonstration of Mosquito Environment

Demonstration of Ease of Development

Demonstration of MOSREF

Two factor puddle-hop

In the Works (v1.1+)
Syscall/FFI interface

DLL and shared library injection

Pulling additional binary-level libraries over the wire

Executable compression techniques

Target size of 64K payload

Additional Transports for Channels (UDP, ICMP, HTTP, DNS)

Core language and environment enhancements

In the Works (Proboscis)
Proboscis -- pull a higher level environment like Mosquito

Forth Virtual Machine

FFI/syscall interface

Abstracts out low level assembler

Allows multi-architecture shellcode.

Targeted size of 2K binary, allowing inlining with exploits

Hand-crafted assembler with relocatable code

In the Works (IPAF)

IPAF - framework for network applications to generate, collect,
and analyze network packets.

Sophisticated library to classify packets, and manipulating
packet fields without forcing developer to resort to
complicated structures and pointer arithmetic.

Extends MOSREF’s Console and Drone with packet sniffer and
generation functionality.

Contact!

Wes Brown (wbrown@ephemeralsecurity.com)

Founder

http://www.ephemeralsecurity.com/ for more information.

Questions?

Live question and answer

Mailing list available for discussion and questions.

Code is available via LGPL from
http://www.ephemeralsecurity.com/

