
Smashing the Stack for Profit, Period

Rohyt Belani rohyt.belani@mandiant.com

Hack In The Box 2006
September 21, 2006

1

Which One Best Describes Today’s Hacker?

2

Conclusions

The hacker profile has undergone significant
change
Sophistication of attacks is on a rise…more so
than response techniques!
The motivation behind cyber attacks is primarily
$$$ and not fun
Cyber crime has outgrown illegal drug sales!

A Report from the Trenches – Pump N’ Dump

4

Symptoms

“I see a trade executed from my account
…10000 shares of a company I haven’t even
heard about, were purchased on January 17
(2006) @ 2 pm from my account!” – a client of a
well-established brokerage firm in NYC.

7 other clients of the same brokerage firm report
the same issue – in January 2006.

5

Investigation

Computer security breaches were the prime
suspect.

Was the brokerage firm hacked? Was it the end
user who was hacked?

We had dates and times of the trade executions
as a clue.

6

Investigation

Our team began reviewing the brokerage firm’s
online trading application for clues
• Network logs
• Web server logs
• Security mechanisms of the application

We asked to duplicate the victim’s hard drive and
review it for indicators of compromise.

7

Web Server Logs

Requested IIS logs for January 17, 2006 from all
the (load balanced) servers.

Combined the log files into one common
repository = 1 GB

Microsoft’s Log Parser to the rescue

8

Microsoft LogParser

LogParser is an excellent and free tool for
analyzing log files
Available from www.microsoft.com
More information on unofficial LogParser support
site: http://www.logparser.com/
Supports a variety of log formats
Uses SQL syntax to process log files

9

Microsoft LogParser

Parsed out all requests to execute.asp using
Microsoft Log Parser:

LogParser -o:csv "select * INTO
execute.csv from *.log where
cs-uri-stem like '/execute.asp%'"

10

Can You Find The Smoking Gun?

.

.

sessionid=90198e1525e4b03797f833ff4320af39

sessionid=90198e1525e4b03797f833ff4320af39

sessionid=3840943093874b3484c3839de9340494

sessionid=676db87873ab0393898de0398348c89

sessionid=90198e1525e4b03797f833ff4320af39

sessionid=90198e1525e4b03797f833ff4320af39

sessionid=298230e0393bc09849d839209883993

sessionid=90198e1525e4b03797f833ff4320af39

sessionid=3840943093874b3484c3839de9340494

sessionid=90198e1525e4b03797f833ff4320af39

cs-uri-query

HTTPS/1.0200/execute.aspPOST172.16.87.2311:10:19

HTTPS/1.0200/execute.aspPOST172.16.41.531:21:43

HTTPS/1.0200/execute.aspPOST172.16.121.31:19:20

HTTPS/1.0200/execute.aspPOST172.16.54.331:04:35

......

......

HTTPS/1.0200/execute.aspPOST172.16.22.331:28:15

HTTPS/1.0200/execute.aspPOST172.16.22.331:23:16

HTTPS/1.0200/execute.aspPOST172.16.22.331:18:15

HTTPS/1.0200/execute.aspPOST172.16.22.331:13:15

HTTPS/1.0200/execute.aspPOST172.16.22.331:08:15

HTTPS/1.0200/execute.aspPOST172.16.22.331:03:15

versionStatuscs-uri-stemcs-
methodc-ip#Fields:time

#Date: 2006-01-017 01:03:15

#Version: 1.0

#Software: Microsoft Internet Information Services 5.0

11

Next Step

Noticed repeated use of same sessionid at
regular intervals from the same IP

Parsed out all requests with the suspicious
sessionid

LogParser -o:csv "select * INTO
sessionid.csv from *.log where
cs-uri-query like
'%90198e1525e4b03797f833ff4320af39'"

12

Can You Find The Smoking Gun?

HTTPS/1.0200sessionid=90198e1525e4b03797f833ff4320af39/account.aspPOST172.16.14.16614:07:54

sessionid=90198e1525e4b03797f833ff4320af39

sessionid=90198e1525e4b03797f833ff4320af39

sessionid=90198e1525e4b03797f833ff4320af39

sessionid=90198e1525e4b03797f833ff4320af39

sessionid=90198e1525e4b03797f833ff4320af39

sessionid=90198e1525e4b03797f833ff4320af39

.

.

sessionid=90198e1525e4b03797f833ff4320af39

sessionid=90198e1525e4b03797f833ff4320af39

sessionid=90198e1525e4b03797f833ff4320af39

sessionid=90198e1525e4b03797f833ff4320af39

sessionid=90198e1525e4b03797f833ff4320af39

sessionid=90198e1525e4b03797f833ff4320af39

cs-uri-query

HTTPS/1.0200/confirm.aspPOST172.16.22.3314:10:09

HTTPS/1.0200/execute.aspPOST172.16.22.3314:08:15

HTTPS/1.0200/login.aspPOST172.16.14.16614:07:23

HTTPS/1.0200/execute.aspPOST172.16.22.3314:03:15

HTTPS/1.0200/execute.aspPOST172.16.22.3313:58:15

HTTPS/1.0200/execute.aspPOST172.16.22.3313:53:15

......

......

HTTPS/1.0200/execute.aspPOST172.16.22.331:28:15

HTTPS/1.0200/execute.aspPOST172.16.22.331:23:16

HTTPS/1.0200/execute.aspPOST172.16.22.331:18:15

HTTPS/1.0200/execute.aspPOST172.16.22.331:13:15

HTTPS/1.0200/execute.aspPOST172.16.22.331:08:15

HTTPS/1.0200/execute.aspPOST172.16.22.331:03:15

versionStatuscs-uri-stemcs-
methodc-ip#Fields:time

#Date: 2006-01-017 01:03:15

#Version: 1.0

#Software: Microsoft Internet Information Services 5.0

13

Phishing?

No indications of key logging trojans, malware, viruses,
etc. were found on the victim’s computer.
Look what we found in the archived .pst file:

URL: https://www.xyzbrokerage.com/login.asp?sessionid=90198e1525e4b03797f833ff4320af39

14

Session Fixation

The application was confirmed to be vulnerable
to session fixation:
• A session id was issued before login
• The same session id was used by the application

after login for the purposes of user authorization
• This allowed an attacker to hijack legitimate user

sessions using a bit of social engineering

A Report from the Trenches – Who Wants to Be A Millionaire?

16

Symptoms

Furniture company sees sharp rise in the
number of returns at one of their store locations

9 returns worth $10,000 each = $90,000 to pre-
paid charge cards

All the transactions had initiated from the same
terminal after store hours!

17

Investigation

The terminal ID was traced back to a physical
store location

Video surveillance archives were reviewed to
identify entry into the facility at the dates and
times the fraudulent transactions had been
initiated

NO LUCK THERE!

18

Could the fraudster have set up a rogue terminal?

Let’s find out…

19

What else is needed to setup the terminal?

A valid Terminal ID registered with a card
processing company

The corresponding download ID to download
POS software on the terminal

The phone number of the software download
dial-in server

20

Where can I get this information from?

Help is just a phone call away

21

How did we get the bad guy?

Configured the dial-in server to log all incoming
phone numbers
Disabled all POS terminal IDs associated with the
victim organization – the furniture company
Recorded all calls to customer service and the
caller id
Obtained a list of all the company’s phone
numbers from which legitimate downloads could
initiate

22

Waited Patiently….

23

Finally….

On October 12, 2005 customer service received a
call to re-activate a terminal
The terminal ID provided by the caller was the
same as the one from which the fraudulent
transactions had initiated 3 months ago
The caller id was 0123456789!
The CSR was instructed to provide the necessary
information to initiate the download
A few hours later the terminal initiated a
connection to the dial-in server…from a hotel in
Miami

24

Game Over

A Report from the Trenches – Cyber Extortion

26

Symptoms

The CEO of a retail organization received an
extortion threat of $250,000 via snail mail
The threat – 125,000 customer credit card
numbers would be sold to the mafia
The response was demanded in the form of a
footer on the main page of the retailer’s website

27

Response

In-house counsel used several ploys to buy time
– a mere 72 hours were granted by the extorter
3 members of our team were brought in to
investigate round the clock for the next 3 days
Our job was to determine how the credit card
database may have been compromised and
more importantly who the culprit was

28

What Followed?

Frenzied web server log analysis to detect
anomalous activity – Nothing!
Reviewed all employee email inboxes to detect
internal fraud – Nothing!
Database login/logout activity reviewed – nothing
suspicious
Web application scanned for SQL injection flaws
– No luck!
Last resort – application code review

29

Racing Against Time

Over 100,000 lines of code

A comprehensive code
review was ruled out

Resorted to scripted
searches through code

30

Scripted Searches

Did the code contain raw SQL statements?
Searched for occurrences of the “SELECT” in
the code

Regex = .*SELECT.*

The search resulted in an overwhelming
number of hits

31

Scripted Searches

The results from the previous search were
searched for occurrences of the “SELECT *”
string to identify SQL statements where the
scope was not properly limited

Regex = SELECT *.*FROM.*

The search resulted in 5 hits
One of the hits was:

SELECT * FROM CardTable

32

The Code That Made The Call

NameValueCollection coll = Request.QueryString;
String[] arr1 = coll.AllKeys;
...
String[] arr5 = coll.getValues(arr1[4]);
string extra = Server.HtmlEncode(arr5[0]).ToString();

if (extra.Equals(“letmein”))
{
Cmd = “SELECT * FROM CardTable”;

}

...

33

Eureka!

This was a backdoor – an insider job?
Reviewed code archives to detect addition of
code
The first check-in with this code was made by a
developer contracted from a third-party in Asia
Found the URL with the additional parameter in
the web server logs
The client IP traced back to Asia!

34

Another One Bites The Dust…

The development company was notified of this
rogue activity

Local law enforcement was cooperative

Questions?

