e §
CJ@I

B
{ Y

~ YAWATT - (yet)
Another web application

testing toolkit

HITB 2006
Kuala — Lumpur

Or a "non-monkey"”
approach to web
applications hacking

By fyodor and meder '
fygrave@o00.nu meder@oOo

||||||

"Nope. we are not
writing another web
scanner!!”

e e e

Jdd

Agenda

Why hacking web applications

What scanners do. Why they are useless (or not)
What else could be done, but isn't (yet)
Introduction to YAWATT

o User-session based approach
o Distributed

o Intelligent (or not?)

o Modular

o More than “application security scanner” ..

- A A B

Jdd

So, why going for the web

» Good Admins learnt to configure their

firewalls

Good Admins disable services they don't
want

Good Admins even finally know how to use
nmap (and even nessus!!)

But Good Admins still need to provide-Web

And they are not programmers

! B

»
$:And more...

The web applications get complex

New web frameworks make it even more fun
(AJAX)

Due to high demand of web application
programmers, many only have “learn
{CGI|PHP|perl|ASP]|..} in 24 hours”
experience

E So'the Web applications remain
I*the largest hole in one's network

:
» The code is bad
o Q/A not security oriented
o Must get product to market ASAP
Firewalls are there — but they can't help
IDS are there — but they are blind

Application “firewalls” - stop limited. number-of
web application attacks (basic user input
validation), but are useless when it comes to
detection of logical vulnerabillities

[F)

» .
I’ Scanners evolution - summary

45+ Libwhisker/nikto — signature based. Relatively
primitive. Efficient for finding default
misconfigiurations and typical vulnerabilities

Nessus et all — don’t see web applications
beyond the underlying software configuration

Kavado/Webinspect/N-Stalker/Watchfire
Appscan — intelligent scanners. Session
aware. But closed architecture, “blackbox”
(some allow scripted plugins) and,costs

ShLBRLLELLLRL BB,

b !
' Why scanners aren 't enough
Single-host based
Non-extendable, non-correctable.

Little or no control on “hacking” process
execution flow

Not easily “extend on the fly” with new
‘automation’ methods

Often primitive, strict signature based logic

Jdd

What would we like to have

Maximum automation of web
hacking process

Minimum of code writing.
Event-driven workflow
Manual control

- A A B

Jdd

More on the wishlist

» Autonomous functionality (you can shutdown,

restart, reload modules, provide new data on
the fly and so on)

“Human to machine” knowledge transfer
Ability to add new ‘hacks’ on the fly
Deal with uncertainty in “intelligent way”
Learn from valid user session data

- A A B

Jdd

Wish list (cont)

Be able to attack web application from
multiple-locations (bypass IP restrictions,
improve brute-forcing process)

Be able to automate the testing of
application logic bugs

Be able to make intelligent guesses in case
of uncertainty

Introducing YAWATT
method

Jdd

YAWATT learns from user
sessions

» User sessions — collections of user’s requests

and responses (url, name/value pairs,
session information and selective HT TP
protocol data)

Classified user session data include semantic
classification of URL, parameters, responses
and HTTP protocol data (server type,
backend system(s) if visible, “unusual™HT TP
headers detected and included)

Jdd

Automation

Application content is learnt from user
sessions (data feeders: proxies,
enumeration tools)

Real-time content analysis with additional
verification

- A A B

Jdd

Classification

User session data is classified by:
o Semantic and functional classification of URL

o HTTP protocol classificators (server type,
cookies ..)

o Session classificators
o Input data classification — type, semantics

o Output classification (application error
detection, redirects, “bogus’ responses_ etc)

B ° ° °
»Classification process as new data
rrives intfo the system

44 172.16.131.205 - PuTTY

from

el loo

url http:/
PHF
[+] url http:/f

2L DAav

nixl mud-
[+] url 1
Tnix)

£+

httpocollector.rh:d4d

[
Jwuhan.cyvbherpolice.o

directory listing

[=hal L T

wihan. o

[+] 111_1 http: /4

1 mod]
[+] wurl http:

ache [(Unix)

[+] url http:/,

ache (Unix)

moc

[+] url http://f

ache (Unix)
[+4] url http:
ache [Unix)

moc

JSiwahan. l"hHLlelL:.‘

Siconss

age

Siconss

ecl

as Apache [(Unix)
bhlank.gif recognized as
folder.gif recoghized as

(Ui

Lpache

gy £ile image

de_

LApache

Lpache

mod ==1

[(TTrix

Jdd

Testing process

- A A B

Plugins (tests) could be executed during
the collection of user session data if any of
user session data triggers certain plugin

Plugins (tests) are executed on demand,
when user session data is completed

-

! B

¥ AWATT Intelligence components

(components under development)

Web application components (URL) classification

Semantic classification for web application input
data

LS| based response analysis (comparison of web
content)

In response analyzers.
Use of queries to external sources, search engines

Limited “binary analysis” of downloaded files
(decoding pdf, doc, rtf (other formats later)’

Generation of target-specific bruteforce dictionaries

Jdd

H2M Knowledge Transfer

Possibility to create new classification rules
on the fly (and let the system re-learn from it)
Possibility to ‘reclassify’ application
responses

Possibility to add new ‘testing’ plugins and
methods on the fly or correct the old ones

' How is URL classification used

ulnerability scenario testing — uses
‘classificators’ subscription mechanism.

= For example: login page tester will need
‘login’, ‘executable’ and ‘session’

'

Rule based
classification

(plugins)

Succeseful?

)JInput data classification

InpUt data: page coniext,
parameter name, parameter
value, url

‘_ No, Classify via Bayesian

-

Yes

Bayesian Metworks based
Classification engine
T
/

._ e

e : NI 7

rlUse of classified user session data

Classified
Session data

W

L=l basad
Responsea analyzer

- pr——
;""" - g
Agent/Plugin Manager e VR
E | Sy ;fé{
ffa. = 54
plugins ‘? 4
“interest” f, f;f _,
Subscription (K /
mechanism &y Al
= <L V)
Y T
{ Wy
1 "' '..Li
W P
e . -

il 4 "
e ———N
- -

il

_
i
e

- S
£

4

EAddi’rional research directions

Other ideas to work on:

o Detection of “hidden” parameters (“intelligent”
fuzzy tests)

o ldentification of “hidden” URLs

o Fuzzy recognition of “negative” and ‘positive”
responses using LS|

o Detection of application failures, redirects

o Evaluation and priority based execution for:
plugins

Distributed architecture

[-
Fis
e Y

i : .
— e S0 4 —
e P-rahﬂw}ﬂ'ﬁ’i— . .

—
" - “'H"F -

Distributed architecture (another
Iook)

Yet Another Web Application Testing Toolkit
(YAWATT)

rerrr

(&

HTTP Proxy Server
| Note:

Oiptional data collection
From web serwer

HTTR/URL Data
classification/clustering
using neural network

<

_ WebScarab/Burp
- proxies

Web Sen.rar Plug-ins execution
(analysis or direct probing of

w

L SPREAD.org the application)
Framewaork

Plugins® probes

Y ANATT
DE server senrer

-
L
]

E What distributed approach gives

us.

» Heterogeneous environment (different

platforms with different software can work
together)

Distributed brute-forcing. Bypassing IP based
restrictions, bandwidth limitations

IDS — more tricks to evade

Bypass packet filtering restrictions (ability 1o
place agents behind the firewall!)

“ ° ° °
> Communication layer framework in

: detail:
Modified version of spread toolkit used as
base
o Robust

o Reliable message delivery
o Portable (windows/unix)

o Available in G/C++ and Java flavours. Bindings
exist for Python, Ruby!

o Spread is used in proof-of concept code and
will be ditched in future!

Jdd

- A A B

More on intelligence

Aside from application vulnerabilities, other
things of interest are:

o Email addresses, user ids that could be seen
within web content

o Domain names (within web pages, comments;
binary files, etc)

o Building ‘target-oriented’ dictionary files (usedby
brute-force cracking modules)

EHow the targeted dictionaries for
brute-force attacks are generated:

» A statistical information extraction method is

applied:

o Step 1:Random similarly styled texts in the same
language as the target application content, are

analyzed and the statistical occurrence of each
word is calculated

0 Step 2:Statistical occurrence of each word within
the target website is calculated

o Step 3:The dictionary is produced by selecting
those words which probability produced in-Step 1
and Step 2 is significally different

~Other good things

Add your plugin code on the fly (attack
automation plugins via subscription
mechanism, classification plugins etc):
o Can’t be simpler:

_-__.f""' 172.16.131.205 - PuTTY

2. ") Look mah, no hands!

No reload is needed, plugins executed next
time the new data is processed

DEMO

Trying code

http://000.nu/ - pre-release.

0 You will need:
= Spread toolkit (www.spread.org)

= Patched version of Ruby, Spread bindings for ruby.
‘classifier’ package (Bayesian, LS| algorithms),
‘mysqldb’

= Burp proxy as data source

= MYSQL database

' " Questions and Answers

S

ample questions, pick one: ;---------)

Why another web hacking tool?

Can you do X t00..?

Can X be integrated too ..? |
This presentation is boring, any excuse . ’? @

w U0 Thanks

= Thanks for your patience
Send us emails if you try the code

The code, slides and docs will be available in
a while:

http://000.nu/

