Analyzing Code for Security Defects

How to review large code base
for security defects.

AGENDA

» Background
» Methodology
» Threat Analysis

» Assign Value to Threat (Propose a
different technique)

» Common List of Issues (Interactive)
» Questions

HackInTheBox 2005 Securitycompass.com

compass

f Security
i r)

Defense In Depth Past & Present

Firewalls

Separation of Networks (DMZ)

Network / Host Assessments

Bastion Hosts / Hardened Builds
Managed Vulnerability Scanning
Product Review/Application Assessment
Code Review

¥

¥

¥

¥

¥

¥

¥

HackInTheBox 2005 Securitycompass.com

compass

f _ Security
%

Code Reviews

» Automated Tools

» Static Code Scanners
Example: RATS, ITS4 etc.

» Compile Time and Run Time Scanners
Example: Ounce Labs, Secure Software, GCC
patch etc.

» Manual Auditing

> Small Code base (Not a Problem)

> Large Code base (Big Problems)

HackinTheBox 2005 Securitycompass.com

compass

f Security
-/

Methodology of Reviewing Large Code Base

1. Threat Model

2. Cursory Review of Code

3. Separation of Code [Standard Model & Application Architecture]
4. Maintain code notes with reviewer name

5. Detailed Code Analysis

6. Common list of issues to review [C/C++ Language Specific]

HackInTheBox 2005 Securitycompass.com

Threat Analysis

» QOverview

» What Is Threat Analysis
» When Threat Analysis

» Why Threat Analysis

» Who Threat Analysis

» How Threat Analysis
> Collecting Information / Decomposing Application
> Modeling the System
> Analysis to Determining Threat

HackinTheBox 2005 Securitycompass.com

Common List of Issues:

compass

f Security
2

C/C++ Specific

» Termination
> Null Termination
» Conditional Termination
> Premature Termination

» Validation
» Exported Functions
» Command Line
> String Formatting

» Calculations
> Division

Signed

Integer

Off by one / few

v v

v

d08/4
Ao,

HackinTheBox 2005

Securitycompass.com

Threat Modeling

HackInTheBox 2005

Securitycompass.com

compass

f Security
-/

What is Threat Modeling ?

» Threat modeling is an organized method of attacking an application. It
can be considered as a systematic method of finding security issues in
application.

» Threat Modeling can be viewed as a reversal of roles, where by a
developer attempts to think as an attacker to determine possible
compromises/threats in his application.

HackinTheBox 2005

Securitycompass.com

What is Threat Modeling ?

» Hackers/Attackers have been threat modeling for a while now
“Brainstorming”. They haven't used the terminology “Threat Modeling”

» Security Groups at software houses have formalized the process to
help developers and testers better understand the different threats
that might exists in an application.

HackinTheBox 2005 Securitycompass.com

compass

f Security
-/

Why Threat Model ?

Threat Modeling can help —

» Develop countermeasures for threats identified

» Weigh each threat (assign value to them)

» Produce a secure application

» Review code for security defects in large code base / Binary Analysis

» Understand threats to the application [Developers to Business Owner]

HackInTheBox 2005 Securitycompass.com

Who should Threat Model ?

v

» Developers / PM / Business Dev /Security Group / Any One else
» Business Dev

» Explain the goal of the application. (so the main goal is still met).
» PM / Application Architect

> Provide Data Flow Diagram / Application architecture and explain the app
path in detail

> Help understand why a particular path is chosen to develop the application
» Developers

> Approximate time frame on the application dev process

> Understand potential threats.
» Security Group

> Point out different points of weakness (Risks & Threats).

HackinTheBox 2005 Securitycompass.com

compass

f Security
-/

When should you threat Model ?

» Most suitable to perform threat model after the application
architecture has been developed (After design stage)

» Threat Modeling must be revisited at least once when the application
is in Alpha release (Before formal testing starts).

» Ideally Threat Modeling must be performed every time an application
is tested for any change (Functionality/Security/Any other
fix/Upgrade).

HackInTheBox 2005 Securitycompass.com

When do you typically threat Model ?

» NEVER !l

»F Performed after application is vulnerable (the stage after the application
has been released).

Attackers also perform threat modeling at this stage.

Note: Every application that is being developed or has already been developed
should be threat modeled, even if the application is being built for internal use
only.

HackinTheBox 2005 Securitycompass.com

compass

f Security
-/

SDLC - Waterfall Model

Systemn

my;iramenls
Software

requiremants

Code Review Threat Model

Initial Threat Model

Threat Model
Revisited

0 Attacker/Cg:le Reviewer
Threat Models

HackInTheBox 2005 Securitycompass.com

So Far we have seen

> What Is Threat Analysis
When Threat Analysis
Why Threat Analysis

» Who Threat Analysis

v

¥

¥

Lets see how to perform Threat Analysis (High Level)

HackinTheBox 2005 Securitycompass.com

compass

f Security
-/

How to Threat Model (The Process)

» Step 1 - Collecting Information about the application (background why
the application is built etc).

» Step 2 - Decomposing Application / Modeling the System (break the
application down into reasonably separate chunks either by
functionality or connectivity).

» Step 3 - Analysis to Determine Threats (perform a walk through to
determine the different locations of issues).

HackInTheBox 2005 Securitycompass.com

Collecting Information

Collecting Information

» How the application is intended or not intended to be used
in deployment

> Any dependencies that exists (external / inter process
dependencies / account level dependencies / application
requirement example: mail server etc).

HackinTheBox 2005 Securitycompass.com

f Security

Y S compass
o

Decomposing

Decomposing Application / Separating the application into
reasonable chunks

» APPLICATION ARCHITECTURE: Chunks either based on
Application Architecture / functionality (specially if performing
code review, help code reviewer).

AND/OR Preferably BOTH

> INDIVIDUAL COMPONENTS: Chunks based on individual
components (Entry Points, Trust Points etc)

HackInTheBox 2005 Securitycompass.com

compass

f _ Security
%

6}«@
0
)

Decomposing — Individual Components

» Entry Points
> Identify all entry points to the application
> Network accessible (RPC / TCP /Web Services etc)

> Locally accessible (Registry / LPC / File / command line /
environment variables etc)

» Trust Level
> Identify different trust boundaries

HackinTheBox 2005 Securitycompass.com

10

compass

S[G,O B f Security

Decomposing — Individual Components

» Data Flow Diagrams

» Drawing data flow diagrams or other models to visual represent
the application is called modeling the system.

» ADFD

> A graphical representation showing communication between
objects

» Describe activities that process data
> Show how data flows through a system
> Show logical sequence of associations and activities

HackInTheBox 2005 Securitycompass.com

Decomposing - Application Architecture

» Authentication

» Authorization \
» Session Management (w_)
Entry Points

» User Management 7 oy o
» Cryptography /
» Data Validation

» Error & Exception Handling
» Event Logging

HackinTheBox 2005 Securitycompass.com

f Security
i r)

Sta 0 5

Analysis to Determine Threats

» Identify threats and create attack scenarios on the basis of the DFD (is
the single biggest challenge).

» Analysis of threats can determine if a threat is mitigated or can result
in a vulnerability.

» Threats is not the same as vulnerabilities:-
> Threats — possibly dangerous
> Vulnerability — susceptible to attack (Vuln could be Known or Unknown)

v

> Unmitigated threat turns into a vulnerability - WSC2

HackInTheBox 2005 Securitycompass.com

compass

Definitions

Dictionary.com
» Threats: One that is regarded as a possible danger; a menace.
» Vulnerabilities: Susceptible to attack.

Writing Secure Code 2
» Threats: A malicious entity that might try to attack. A Threat does
not constitute a vulnerability.

» Vulnerabilities: A weakness in a system that can be exploited. A
Vulnerability exists when there is a Threat that goes unmitigated.

HackinTheBox 2005 Securitycompass.com

12

f Security
-/

compass

Assigning Value to Threat

HackinTheBox 2005

Securitycompass.com

Assigning Value to Threats.

» The second biggest challenge is assigning value to threa

(Note: First was Identify threats and create attack scenarios on the basis of the DFD)

» A Model used and developed at MS is the DREAD model.
DREAD (WSC) (1-10) / 5

e Damage Potential
e Reproducibility

e Exploitability

e Affected Users

e Discoverability

ts.

HackInTheBox 2005

Securitycompass.com

13

Application Architecture — Threat Model

compass

f Security
-/

»

»

»

»

»

»

(Low-1, Mid-2, High-3)

Low (Intranet)

Mid (Internet Non Critical — no PII or other critical data is being pulled)
High (Internet Critical Data)

Authentication A

L 7
Authorization O'OO
Cryptography Se

Data Validation
Error & Exception Handling
Logging

HackinTheBox 2005

Securitycompass.com

Application Architecture — Threat Model

»

»

Modeling the System A
> Entry Points in each location t O'OO
> Trust Levels Se

S
Assign Value Depending on location of each Architecture /7/90 ©
> Authentication 123

> Authorization 123
> Crypto 123
> Data Validation 123
» Error 123
> Logging 123

HackinTheBox 2005 Securitycompass.com

14

compass

f Security
i r)

Application Architecture — Threat Model

» Minis > 8 Low Risk ,of

> Mid if > 12 Medium Risk %0

» Max if > 18 High Risk Se S
Ch,,.

» Total if within range then considered high risk (13-18) then reviewo/g’(/e

code for sure, if bug found then it should follow best security
practice and fix bugs immediately.

» Total if within range then considered Medium risk (7-12) then try to
review code, if bug found then should follow best security practice
and need to fix bugs at reasonable quick. (next patch release)

» Total if within range then considered low risk (>6) then next time

around review code, if bug found should follow best security
practice and need to fix bugs. (next point release)

HackInTheBox 2005 Securitycompass.com

HackinTheBox 2005 Securitycompass.com

compass

f Security
-/

How Do You Review Code?

HackinTheBox 2005

Securitycompass.com

Methodology

M Step 1) Threat Model

M Step 2) Everyone Read The Code

M Step 3) Break Code Into Separate Chunks / Same as DFD

M Step 4) Maintain code notes with reviewer name

M Step 5) Detailed Code Analysis

Step 6) Common list of issues to review [C/C++ Language Specific]

HackInTheBox 2005

Securitycompass.com

16

compass

f Security
-/

Reviewing Code

HackInTheBox 2005 Securitycompass.com

C/C++ Some of the Common Issues

» Commonly seen issues while reviewing code.

» Many Issues Exists, we will cover three such topics, which lead to
vulnerabilities in applications.

» Termination Issues
> Validation Issues
> Calculation Issues

HackinTheBox 2005 Securitycompass.com

17

compass

f Security
-/

» Termination

> Null Termination and strlen
> Conditional Termination
» Premature Termination

HackinTheBox 2005

Securitycompass.com

Null Termination “\0” and strlen

Hint: strlen

void foo (char* input)
{
char* output = NULL;
@I output = (char*)malloc((strlen(input)) * sizeof(char));
if(output != NULL) {//do processing...
)
)

output = (char*)malloc((strlen(input) + 1) * sizeof(char));
//The +1 is for the terminating NULL

When allocating memory for a string always bear in mind the fact that the
strlen returns the length of a string excluding the terminating NULL.
Hence, it is necessary to explicitly allocate for this terminator as shown.

HackInTheBox 2005

Securitycompass.com

18

f Security
-/

NULL Termination “\0” and strlen

» If strlen is not increased by one then, string operations would not perform as
expected.

» When copying string characters manually in a loop, it is important to NULL
terminate them at the end. This issues is seen when a programmer attempts
to handle the length properly, however, a string can be created without a
trailing NULL. This often happens when using a strncpy type function
operation.

HackInTheBox 2005 Securitycompass.com

compass

Conditional Termination

{ int StringLength;

size_t index;

int BufferLength=20;

TCHAR *Buffer=argv[1]; Hint: If index = 5 Then

index = strlen(Buffer); / what happens?
printf ("%d", index);

glvhile (index < BufferLength && Buffer[index] != "\0")
index++;

StringLength = strlen(Buffer);

b

first clause fulfilled termination condition, strlen reads past true end of buffer

HackinTheBox 2005 Securitycompass.com

19

compass

f Security
-/

Conditional Termination

» The loop seems to be attempting to check that the buffer is properly
NULL-terminated without overflowing the end of the buffer, but the
statement immediately following assumes that the terminator was
found, and thus the second condition is what terminated the while
loop.

» However, if the first clause is what fulfilled the termination condition,
the strlen call will read past the true end of the buffer.

» It is therefore important to ensure that the logic checks for all
conditions including failures.

HackinTheBox 2005

Securitycompass.com

Premature Termination

int main(int argc, char* argv[])

{ \\'/‘
inta=1; ’
/

Qlif (a==2); =
{

printf ("hello world\n");
}

return 0;

b

; terminates statements

HackinTheBox 2005 Securitycompass.com

20

compass

f Security
-/

Premature Termination

»

»

In the C and C++ programming languages, ; terminates statements

Premature termination of the if-statement causes the subsequent
statement to be executed always.

HackInTheBox 2005 Securitycompass.com

» Validation

> Exported Functions
» Command Line
> String Formatting

HackinTheBox 2005 Securitycompass.com

21

compass

f Security
-/

Validation — Command Line

int copy(char* input) {
_ char var[20];

&8 strepy (var, input); —

return 0;

b

int main(int argc, char* argv[]){
copy(argv[1]);
return 0;

HackInTheBox 2005 Securitycompass.com

Validation — Reading from network

void pr(char *str)

{ //buf max limit to 2000
I char buf[2000]="";
strcpy(buf,str);

)
while(bytesRecv == SOCKET_ERROR)
//receive the data that is being sent by the client max limit to 5000 bytes.
{ bytesRecv = recv(clientSocket, Message, 5000, 0);
if (bytesRecv == 0 || bytesRecv == WSAECONNRESET)

break;
pr(Message);

HackinTheBox 2005 Securitycompass.com

22

compass

f Security
-/

Validation — Exported Functions

» Any public function, for example, an exported function from a dynamic or
statically linked library or a function accessible via an RPC interface, is
vulnerable to attack via it's parameters.

//filenam is an input filename, len is the length
__declspec(dllexport) int expfunc (char *Filenam, size_t Len)

{ Hint: If len = 500 Then
char szCopy[MAXTPATH]; /1260 what happens?
strncpy(szCopy, Filenam, Len);

@l returno;

b

» In the example if Len is greater than MAX_PATH then Copy will not be
large enough to accommodate the data being copied. All public functions
should always validate all the input passed to them.

HackInTheBox 2005 Securitycompass.com

Validation — String Formatting

void main()

{
char buf[20]="";
strncpy(buf,argv[1],20);

ql printf(buf);

The function prints the data that is provided as an argument to the function
using printf function.

The function however doesn’t format the data. what would happen if
argv[1] contained “%.x"

HackinTheBox 2005 Securitycompass.com

f Security
-/

compass

» Calculation

» Division

> Signed

» Integer

> Unicode

> Off by one / few

HackinTheBox 2005

Securitycompass.com

Calculation - Division

int divide(long x)

{ longy;

@By = (4096 / (x/ sizeof(long)));
printf("%d\n", y);
return y;}

int main(int argc, char* argv[])

{ intx;
sscanf(argv[1], "%d", &x);
divide(x);
return 0;

b

Hint: What is the lowest valug

X=1,2,3 then division by zero, since integer division of /2 results in 0

HackInTheBox 2005

Securitycompass.com

of x

24

compass

f Security
-/

Calculation - Division

» If the value of xis larger than the sizeof{long) (usually 4 bytes) the program
would function properly, however when xis less than 4, for instance 1, the
value of r is (4096) / () which would result in division by zero, since integer
division of ¥ results in 0.

» Hence, special care should be taken in algorithms that require calculation to be
performed with either user supplied variables or derivatives of user supplied
variables to ensure that there is no possibility of division by zero.

» While performing division on any values, ensure that the division is checked,
even if the caller is a trusted source.

HackInTheBox 2005 Securitycompass.com

Calculation - Integer

int main(int argc, char **argv) Hint: what is the data type of| size

{ it — compare it to malloc_size (u]int)

u_int malloc_size, size;
char *data;
size = atoi(argv[1]);
K2 fimalloc_size = size * 4;
data = (char *)malloc(malloc_size)
if(data = NULL)
{ for(i = 0; i < size; i++)
data[i] = argv[2][i];

u_int=maxvalue of (int)

HackinTheBox 2005 Securitycompass.com

compass

f Security
-/

Calculation - Integer

» The data type of a variable defines the maximum / minimum value allowed for
it, based on the number of bytes it occupies.

» What a user can do is pass to the program a large integer. When the program
calculates: malloc_size = size * 4, the malloc_size variable will be overflowed
and truncated.

» For instance, if a variable is declared as short, the maximum value the variable
can store is 32767 (16 bits or 2 bytes long) while the minimum value is -32767.
Hence, if the value stored exceeds 32767 it would lead to corruption of data.

HackInTheBox 2005 Securitycompass.com

Calculation - Signed

int main(int argc, char **argv)

{ Hint: what happens if you provide
@l int size;

maxint+1
char data[1024]; /
size = atoi(argv[1]);
if(size > 1024)
return;
memcpy(data, argv[2], size);

HackinTheBox 2005 Securitycompass.com

compass

f Security
-/

Calculation - Signed

» The example attempts to implement a check to prevent integer overflow - i
(size > 1024) -, however there is a subtle flaw, in that it uses a signed integer
for the size variable. Thus, the check can be defeated by specifying a negative
number. Ensuring the right data type is used could prevent this error e.g. u_int
size;.

» Signed issues occur when a signed variable is interpreted as an unsigned
variable. This commonly occurs in cases where casting is used to convert from
signed to unsigned types and vice versa.

» While creating loops as a best practice always use unsigned integers.

HackInTheBox 2005 Securitycompass.com

Calculation: Unicode

void GetData(char *fromData)

{

7

int main(int argc, char * argv[])

{

Hint: what is the sizeof(toData)

WCHAR toData[10]; //i.e. 20 bytes /
i MultiByteToWideChar(CP_ACP, 0, fromData, -1, toData, sizeof(toData));

GetData("0123456789");
return 0;

¥
MultiByteToWideChar(CP_ACP, 0, fromData, -1, toData, sizeof(toData)/sizeof(WCHARY))

HackinTheBox 2005 Securitycompass.com

27

Calculation — Off by one/few

compass

f Security
-/

» C/C++ arrays start at 0

char bufffMAX_PATH];
buff[sizeof(buff)] = 0;

» should be buff[sizeof(buff) -1]
Iint buff[SIZE];for (int j = 0; j <= SIZE; j++)

» should be < SIZE and not <= buff[j] = 0;

HackinTheBox 2005

Securitycompass.com

Methodology

M Step 1) Threat Model

M Step 2) Everyone Read The Code
(Cursory review to understand contents of each file and global vars)

M Step 3) Break Code Into Separate Chunks / Same as DFD
(Individual can review their sections)

M Step 4) Maintain code notes with reviewer name
M Step 5) Detailed Code Analysis

M Step 6) Common list of issues to review [C/C++ Language Specific]

HackInTheBox 2005

Securitycompass.com

28

HackinTheBox 2005

compass

f Security
-/

Securitycompass.com

Questions

Nish[a t JsecurityCompass.com
Visit us at
www.SecurityCompass.Com

HackInTheBox 2005

Securitycompass.com

29

