
Windows Local Kernel
Exploitation

HITBSecCon 2004 Kuala Lumpur

sk@scan-associates.net
Co-founder, Security Consultant, Software Architect
Scan Associates Sdn Bhd

Overview
 Windows Privilege Escalations
 Windows Kernel 101
 Device driver communication problem

 DeviceIOControl
 Finding
 Exploiting

 Kernel shellcode
 Locating base address of device

 Undocumented API (NtQuerySystemInformation)
 Demo

Windows Privilege Escalation

 Exploiting SYSTEM privilege application:
 Buffer overflow in Still Image Service
 ssinc.dll
 IIS IDQ.DLL
 Buffer overflow in POSIX subsystem

 LPC problems
 Named pipe impersonation
 Shatter attack
 Kernel bugs

LPC problems

 Local Procedure Call allows processes to
communicate

 Various problems discovered by Todd Sabin
 NtImpersonateClientOfPort()

 http://www.bindview.com/Support/RAZOR/Advisorie
s/2000/adv_NTPromotion.cfm

 http://www.bindview.com/Support/RAZOR/Advisorie
s/2000/LPCAdvisory.cfm

 Signedness problem in NTLM Security
Support Provider (NTLMSSP) LPC port
 http://www.bindview.com/Support/RAZOR/Advisorie

s/2001/adv_NTLMSSP.cfm

Named Pipe Impersonation

 A server named pipe can impersonate
its client

 Attacker create named pipe before the
server create it

 A privileged client connect to our server
named pipe, we can impersonate the
client to get its privilege

 http://www.blakewatts.com/namedpipepa
per.html

Shatter Attack

 Send Windows Message to any process
 Basic Shatter:

 Locate a privileged Windows
 Send shellcode to target process space
 Send WM_TIMER message to jump to shellcode in

its own space
 Advance Shatter is still just Shatter
 Require Desktop
 Also known as Local Local attack
 Limited use

Kernel Bugs

 Problems that exist in Kernel land
 Will give us highest access, same level

as the OS
 Windows Kernel is not a well

documented area
 Generally more complex than user land
 Probably still plenty of ‘fish’
 Kernel bugs is gaining popular 

Known Kernel Bugs

 Microsoft Windows MUP overlong request kernel overflow
 http://www.nsfocus.net/index.php?act=advisory&do=view&adv_id=21

 Microsoft Windows XP Redirector Local Buffer Overflow
Vulnerability
 http://www.nsfocus.com/english/homepage/research/0301.htm

 Buffer Overrun in Windows Kernel Message Handling
 http://www.microsoft.com/technet/security/bulletin/MS03-013.mspx

 Windows VDM TIB
 http://www.eeye.com/html/research/advisories/AD20040413E.html

 Windows Expand-Down Data Segment
 http://www.eeye.com/html/research/advisories/AD20040413D.html

 Device Driver Communication Problem
 http://sec-labs.hack.pl/papers/win32ddc.php

Windows Kernel 101

Every kernel modules,
device driver share the
same 2GB memory

Each process has 2GB
memory

Ring 0Ring 3

Memory address from
0x80000000 to
0xFFFFFFFF

Memory address from
0x00000000 to
0x7FFFFFFF

Freedom!Sandbox!

Kernel LandUser Land

…Windows Kernel 101

 Windows kernel land consists of:
 Kernel
 Executives

 Process and Thread manager, I/O Manager, etc
 Win32 User GDI
 Device Driver

 The kernel contains many important
executives object which control the
application in user land

Device Driver

 Loadable Kernel Module (LKM)
 Once in kernel, device driver is trusted
 Ability to modify kernel object to change

behavior of application in user land
 Application such as personal firewall,

antivirus, etc sometimes install device
driver to change behavior of user land:
 Check all socket connections
 Check all file access, etc

Device Driver Communication

 Device driver can accept data from user
land via:
 ReadFile() / WriteFile()
 DeviceIoControl()

 Before it can be used, we must open the
driver:
 CreateFile()

 We can access device driver much like
a file

Data flow

User-mode API
DeviceIoControl(), etc

Internal API (Ntxxx)
NtDeviceIoControlFile(), etc

I/O Manager (Ioxxx)
IopXxxControlFile(), etc

Kernel-mode device driver
DriverDispatcher(), etc

ProbeForWrite,
IoAllocateIrp, etc

Device Driver Skeleton

 Basic device driver
 DriverEntry()
 DriverDispatcher()
 DriverUnload()

 Data from DeviceIoControl() will be
process in DriverDispatcher()

DeviceIoControl()

 Communication between user land and
kernel land

 User program send control code to
device driver via DeviceIoControl() API

 Device driver receive control code and
process

 Device driver return output to user land
via output pointer specified by caller

DeviceIoControl

 BOOL DeviceIoControl(
HANDLE hDevice, // handle to device
DWORD dwIoControlCode, // operation
LPVOID lpInBuffer, // input data buffer
DWORD nInBufferSize, // size of input data

//buffer
LPVOID lpOutBuffer, // output data buffer

DWORD nOutBufferSize, // size of output
//data buffer

LPDWORD lpBytesReturned, // byte count
LPOVERLAPPED lpOverlapped //overlapped

//information
);

lpOutBuffer

 What if output buffer is a memory address in
kernel?

 Will we be able to overwrite any kernel
address?

 What if we point it to overwrite important
token?

 What if we overwrite function pointer?
 (Un)Fortunately, I/O Manager provides buffer

handling for device driver

Type of buffer management

 Buffered I/O (Method 0)
 I/O manager allocates enough buffer copy

from/to sender’s data
 Direct I/O (Method 1 and 2)

 Sender’s buffer is lock and I/O manager
pass the pointer of the memory to driver

 Neither I/O (Method 3)
 No buffer management

CTL_CODE

 #define CTL_CODE(DeviceType, Function,
Method, Access) (((DeviceType) << 16) |
((Access) << 14) | ((Function) << 2) |
(Method);

MethodFunctionAccessDevice Type

32 bits

2 bits16 bits 2 bits 12 bits

Neither I/O

 Device I/O Control Code that ends with
011b
 0xXXXXXXX3
 0xXXXXXXX7
 0xXXXXXXXB
 0xXXXXXXXF

 Output pointer can be anywhere,
including kernel land

 May allow arbitrary memory write

Finding Neither I/O

 Source code and Header file
 Application hooking

 strace –p PID
 Hook system wide *DeviceIoControl*

 From the book, “Undocumented Windows
2000 Secrets”

 C:\w2k_hook *DeviceIoControl*

Find Neither I/O by Source

 Bug found by mslug
(https://www.xfocus.net/bbs/index.php?act=SE&f=16&t
=32580&p=115340&hl=)
 #define BIOCGSTATS 9031 //0x2347

 Other potential targets in Packet.h:
 #define BIOCISDUMPENDED 7411 //0x1CF3
 #define BIOCSRTIMEOUT 7416 //0x1CF8
 #define BIOCSMODE 7412 //0x1CF4
 #define BIOCSWRITEREP 7413 //0x1CF5
 #define BIOCSMINTOCOPY 7414 //0x1CF6
 #define BIOCGEVNAME 7415 //0x1CF7
 #define BIOCSENDPACKETSSYNC 9033 //0x2349
 #define BIOCSETDUMPLIMITS 9034 //0x234A

Find Neither I/O via System Hook

 C:\w2k_hook *DeviceIoControl*
 1CF:s0=NtDeviceIoControlFile(!2B8.3B4="\??\NAVAP",p,p,p,i

0.4,n222A87,p3CFFEF8,n20,p3CFFEF0,n4)1C4963F2B6F71
D0,530,3

 18D:s0=NtDeviceIoControlFile(!5C8.344="\Device\Tcp",p330,
p,p,i0.38,n120003,p6F4D8,n24,pB01E90,n8000)1C494FBFF
5C1960,42C,A

 606:s0=NtDeviceIoControlFile(!E4.898="\Device\Afd\Endpoint
",p1E4,p,p,i0.0,n12047,p1A2F6F0,nD4,p,n0)1C495035A74B1
E0,648,1D

 1:s0=NtDeviceIoControlFile(!354.120="\??\shadow",p,p,p,i0.0,
n140FFB,p6B2F8,n0,n0)1C495C2244759C0,634,27

 3201:s0=NtDeviceIoControlFile(!1F0.2D8="\Device\LanmanD
atagramReceiver",p2D0,p,p,i0.50,n130023,pD5FD24,n50,pA4
FF8,n1000)1C4964E8570CB16,584,47

Exploiting DDCV

 Norton A/V Enterprise
 Contains NAVAP.sys device driver
 Allows communication from user program via

DeviceIoControl()
 The following supported CTL_CODE:

 PAGE:0001649D cmp ecx, 222A83h
 PAGE:000164A5 cmp ecx, 222A87h
 PAGE:000164AD cmp ecx, 222A8Bh
 PAGE:000164B5 cmp ecx, 222A8Fh
 PAGE:000164BD cmp ecx, 222A93h
 PAGE:000164C5 cmp ecx, 222A97h
 PAGE:000164CD cmp ecx, 222A9Bh

 Uses Neither I/O heavily (for performance?)

Overwrite Kernel memory

 With the ability to write to kernel we can:
 Overwrite return address
 Overwrite function pointer
 Overwrite switch jump table
 Overwrite Service Descriptor Table
 etc

 Once overwritten, kernel will jump to us
when it reach that code

Pseudo exploitation

 Determine output value of the vulnerable
DeviceIoControl()

 Allocate memory which device will jump to
 hMem = VirtualAlloc(myAddress, 0xf000, MEM_COMMIT,

PAGE_EXECUTE_READWRITE);
 Copy the shellcode into allocated memory
 Open the driver

 handler = CreateFile()
 Send first signal to overwrite jump table

 DeviceIoControl(handler, 0xXXXXXXX7, inBuffer, 0x20,
outBuffer, 4, &n, 0))

 Send second signal to jump to shellcode

Overwrite any memory

 Overwrite switch jump table
 Many device driver has switch statement to process user request

in DriverDispatcher() that look like this:

NTSTATUS NPF_IoControl(IN PDEVICE_OBJECT DeviceObject,IN PIRP Irp)
{…
switch (FunctionCode){

case BIOCGSTATS: //function to get the capture stats
…
EXIT_SUCCESS(26);
break;

case BIOCGEVNAME:
…
break;

case BIOCSENDPACKETSSYNC:
…

}

Switch jump table

 In Assembly:

PAGE:0002F049 loc_2F049: ; CODE XREF: sub_2F038+D j
PAGE:0002F049 mov eax, [ebp+arg_0]
PAGE:0002F04C dec eax
PAGE:0002F04D cmp eax, 0Fh ; switch 16 cases
PAGE:0002F050 ja loc_2F3E1 ; default
PAGE:0002F056 jmp ds:off_2F3E8[eax*4] ; switch jump
...
PAGE:0002F3E8 off_2F3E8 dd offset loc_2F05D ; DATA XREF:

sub_2F038+1E r
PAGE:0002F3E8 dd offset loc_2F08C ; jump table for switch statement
PAGE:0002F3E8 dd offset loc_2F0AF
PAGE:0002F3E8 dd offset loc_2F0B9
PAGE:0002F3E8 dd offset loc_2F0C3
PAGE:0002F3E8 dd offset loc_2F0F4
PAGE:0002F3E8 dd offset loc_2F125
PAGE:0002F3E8 dd offset loc_2F154

Where to Overwrite ?

 We can overwrite the first switch case at
0x2F3E8 with address of our shellcode

 Then, we call the DeviceIoControl()
again

 When it reach the first switch case
again, it will jump to our shellcode

 However, the value will always be
overwritten with 0x4 from this
vulnerability

Overwrite

 Address always overwritten with 0x4
 If we overwrite case 0 with 0x4, the next call to it will

jump to 0x00000004
 We cant allocate memory at 0x00000004
 So, we overwrite the first two bytes of the second case

Case 0 Case 1

Overwrite here at 2F3EE

XXXX00000004XXXXXXXXXXXX
2F3E8

… Overwrite

 Now, if we trigger Case 1, it will jump to:
 0x0004XXXX

 We can allocate memory 0x00040000
before calling Case 1

Case 0 Case 1

Overwrite here at 2F3EE

XXXX00000004XXXXXXXXXXXX

2F3E8

Jump to shellcode

 Device driver will jump in to
0x0004XXXX after the second signal

 We need to allocate specific memory
region:
 VirtualAlloc(0x00040000, 0xf000,

MEM_COMMIT, PAGE_EXECUTE_READWRITE);

 Copy our shellcode into the region

Kernel Shellcode (Eyas’ style)

 What do we need to execute?
 Written by Eyas
 http://www.xfocus.net/articles/200306/54

5.html
 Technique:

 Find System’s token
 Replace process’s token pointer with

System’s token

Find SYSTEM process

 Locate the ETHREAD
 fs:[0x124] or 0xffdff124

 From ETHREAD, we jump to EPROCESS
 Within EPROCESS, use

ActiveProcessLinks to loop into all active
process

 For each process, check the UniqueProcessId
 SYSTEM Pid is:

 Win2k = 8
 WinXP = 4

 Can use similar technique to find other PID

Locating SYSTEM process

…

*_EPROCESS

 _KAPC_STATE

_KTHREAD
_ETHREAD

FS:0x124

0x00

0x44

…
*Blink…
*Flink

struct _LIST_ENTRY
ActiveProcessLinks

…

…
*Token

*UniqueProcessId

_EPROCESS

Loop between processes

…
*Blink…
*Flink

struct
_LIST_ENTRY
ActiveProcessLinks

…

…
*Token

*UniqueProcessId

_EPROCESS

…
*Blink…
*Flink

struct
_LIST_ENTRY
ActiveProcessLinks

…

…
*Token

*UniqueProcessId

_EPROCESS

…
*Blink…
*Flink

struct
_LIST_ENTRY
ActiveProcessLinks

…

…
*Token

*UniqueProcessId

_EPROCESS

Replace Token Pointer

 Windows’s Security Reference Monitor (SRM)
uses token to identify process or thread

 To become SYSTEM, we just need a
SYSTEM token

 A pointer to SYSTEM token is inside its
EPROCESS

 Once we located SYSTEM process, we
change our process token to point to
SYSTEM token

Getting System Token

…
*Blink…
*Flink

struct
_LIST_ENTRY
ActiveProcessLinks

…

…
*Token

*UniqueProcessId

_EPROCESS

…
*Blink…
*Flink

struct
_LIST_ENTRY
ActiveProcessLinks

…

…
*Token

*UniqueProcessId

_EPROCESS

Guest Tokens

System Tokens

Guest process System process

Base address of Device Driver

 Need to overwrite the exact location of
switch table

 Device driver base memory may change
every boot

 Use NtQuerySystemInformation()
 Get SystemModuleInformation list
 Compare Module name to get based

address of any device driver

Getting process name

 Using NtQuerySystemInformation()
again but getting processes list
SystemProcessesAndThreadsInforma
tion

 Compare ProcessName to get
ProcessId

 For each ProcessId, escalate it to
SYSTEM

Proof of Concept

 The complete exploit is available from:
 www.scan-associates.net/papers/navx.c

Attack scenario

 Server allows us to
upload *.*

 But every time we
uploaded cmd.asp,
it disappeared

 Apparently, Norton
A/V detects cmd.asp
as trojan and delete
it

Encoding script

 Encode cmd.asp using Microsoft Script
Encoder
 http://www.microsoft.com/downloads/details.

aspx?FamilyId=E7877F67-C447-4873-
B1B0-21F0626A6329&displaylang=en

 Upload cmdx.asp to get arbitrary
command execution

 But we only get IUSR user 

Privilege escalation

 Upload and run navx.exe
 Exploit escalate all DLLHOST into

SYSTEM
 Command in cmdx.asp is now running

as SYSTEM

Escalate any process to SYSTEM

 Using same exploit in WinXP

Last slide!

 Thank you HITB!
 Thank you!
 Any Question?
 Any Answer?

