
File: C:\portscan.txt 1/4/01, 1:52:25AM

Examining port scan methods - Analysing Audible Techniques

 whitepaper by dethy@synnergy.net

Abstract

I will attempt to enumerate a variety of ways to discover and map
internal/external networks using signature-based packet replies and known
protocol responses when scanning. Specifically, this document presents all known
techniques used to determine open/closed ports on a host and ways an attacker
may identify the network services running on arbitrary servers.

1.1 Introduction

This paper will provide an in-depth analysis of known port scan methods, with
exhaustive information for each technique used in the wild today to map and
identify open and closed ports on various network servers.

Note: This paper will not describe techniques used to fingerprint operating
systems nor identify daemon versions (banner scanning).

With an epidemic of port scan instances occurring each and everyday, it should
be recognized the ways an attacker could probe network hosts using a variety of
techniques aimed to avoid detection whilst obscuring the sender's true source.
Understanding actions to defend against these network oriented scans is first to
identify and acknowledge the ways a scan can present appearing as normal inbound
traffic.

Port scanning is one of the most popular techniques used in the wild to discover
and map services that are listening on a specified port. Using this method an
attacker can then create a list of potential weaknesses and vulnerabilities in

Page: 1

NtWaK0 NtWaK0

NtWaK0 NtWaK0

NtWaK0 NtWaK0

NtWaK0 NtWaK0

File: C:\portscan.txt 1/4/01, 1:52:25AM

the proposed open port leading to exploitation and compromise of a remote host.

One of the primary stages in penetrating/auditing a remote host is to firstly
compose a list of open ports, using one or more of the techniques described
below. Once this has been established, the results will help an attacker
identify various services that are running on that port using an RFC-compliant
port list, (/etc/services in UNIX, getservbyport() function automatically
obtains this) allowing further compromisation of the remote host after this
initial discovery.

Port scanning techniques take form in three specific and differentiated ways.

* open scanning
* half-open scanning
* stealth scanning

Each of these techniques allow an attack to locate open/closed ports on a
server, but knowing to use the correct scan in a given environment depends
completely on the type of network topology, IDS, logging features a remote host
has in place. Although open scans log heavily and are easily detectable they
produce fairly positive results on open/closed ports.

Alternatively, using a stealth scan, may avoid certain IDS and bypass firewall
rulesets but the scanning mechanism, such as packet flags, used in identifying
these open/closed ports maybe offset by dropped packets over a network, leading
to false positives. Further discussion of this concept takes place in the FIN
scan section of this document.

Focusing more directly at each of the above techniques, these methods can be
further categorised into individual scan types. Let's look at a basic scan model
which includes PING sweeping:

 | |

Page: 2

File: C:\portscan.txt 1/4/01, 1:52:25AM

 | scan type |
 |___________|
 __________________________________|___________________________________
 / | \ | |
 / | \ | |
 _____|_____ _____|_____ _____|_____ ____|___ ____|____
open scan		half-open		stealth		sweeps		misc.
___________		___________		___________		________		_________
 | | | | |
 ______|______ _____|____ _____|_____ ____|_____ ____|_____
TCP connect		SYN flag		FIN flag		TCP echo		UDP/ICMP
_____________		__________		___________		__________		error

 | | | | |__________|
 _______|_______ _______|______ _____|_____ ____|_____ |
 | | | | | | | | _____|______
 | reverse ident | | IP ID header | | ACK flags | | UDP echo | | |
 |_______________| | "dumb scan" | |___________| |__________| | FTP bounce |

 |______________| | | |____________|
 _____|______ ____|_____
 | | | |
 | NULL flags | | TCP ACK |
 |____________| |__________|
 | |

 _____|_____ ____|_____
 | | | |
 | ALL flags | | TCP SYN |
 | (XMAS) | |__________|
 |___________| |

 | ____|______
 ________|________ | |
 | | | ICMP echo |
 | tcp fragmenting | |___________|

Page: 3

File: C:\portscan.txt 1/4/01, 1:52:25AM

 |_________________|
 |

 _______|_______
 | |
 | SYN|ACK flags |
 |_______________|

Diagram: known scan methods

The first nodes indicate the scan category which then traverses downward to list
the individual scans for that class.

1.2 open scan methods

Open scanning techniques are blatantly easy to detect and to filter. This type
of scan method involves opening a full connection to a remote host using a
typical three-way TCP/IP handshake. A standard transaction involves issuing the
following flags to create an accepted connection:

client -> SYN
server -> SYN|ACK
client -> ACK

The above example shows a port answering our initial connection request with a
SYN|ACK. This response means the port the packet was targeted to is in the
LISTENING (open) state. Once this full handshake has taken effect, the
connection will be terminated by the client allowing a new socket to be
created/called allowing the next port to be checked, until the maximum port
threshold has been reached.

Reversely, taking a look at a response from a closed port would reveal the

Page: 4

NtWaK0 NtWaK0

File: C:\portscan.txt 1/4/01, 1:52:25AM

following:

The RST|ACK flags retu
connection attempt sin

This method is crea
instantaneous identifi
returns true, the port

Since this technique
host, a spoofed conn
manipulate the true so
a correct sequence num
for data transaction.

Obviously this techniq
it opens a full conne
block against this sca
way handshake, results
determine open/closed

Advantages : fast,
Disadvantages: easily

1.2.1 - reverse ident

This technique involv
port 113 to query the
reason behind this is
client -> SYN
server -> RST|ACK
client -> RST
rned by the server is telling the client to tear down the
ce the port is not in LISTENING state thus is closed.

ted through connect() system call, allowing almost
cation of an open or closed port. If the connect() call
 is open, else the port is closed.

issues a three-way handshake to connect to an arbitrary
ection is impossible, that is to say a client can not
urce IP, as a spoofed connection attempt involves sending
ber as well as setting the correct return flags to setup

ue is easily identifiable on any inbound traffic because
ction, thus all IDS and firewalls are able to detect and
n. However, because the connect() method uses the three
 of this scan are about as accurate as you could get to
ports.

 accurate, requires no additional user privileges
detectable and logged

scanning

es issuing a response to the ident/auth daemon, usually
 service for the owner of the running process. The main
 to find daemons running as root, obviously this result

Page: 5

NtWaK0 NtWaK0

File: C:\portscan.txt 1/4/01, 1:52:25AM

would entice an intruder to find a vulnerable overflow and instigate other
suspicious activities involving this port. Alternatively, a daemon running as
user nobody (httpd) may not be as attractive to a user because of limited access
privileges. Unknowing to most users is that identd could release miscellaneous
private information such as:

 * user info
 * entities
 * objects
 * processes

Although the identification protocol would appear as an authentication
mechanism, it was not designed or intended for this purpose. As the RFC states,
"At best, it provides some additional auditing information with respect to TCP
connections". Needless to say, it should not be used as an access control
service nor relied upon added host/username authenticity.

The formal syntax taken from RFC 1413 reveals the following EBNF:

FORMAL SYNTAX

 <request> ::= <port-pair> <EOL>

 <port-pair> ::= <integer> "," <integer>

 <EOL> ::= "015 012" ; CR-LF End of Line Indicator, octal \r\n equivalents

 <integer> ::= 1*5<digit> ; 1-5 digits.

Using this grammar applied to the data we send to an arbitrary host piped to the
ident/auth port will reveal the process owner running on a given port, even
though we initiated the connection.

Page: 6

File: C:\portscan.txt 1/4/01, 1:52:25AM

Advantages : fast, requires no additional privileges, return vital service information
Disadvantages: easily detactable

1.3 - half open scan methods

The term 'half-open' applies to the way the client terminates the connection
before the three-way handshake is completed. As such, this scan method will
often go unlogged by connection based IDS', and will return fairly positive
results (reliability of open/closed port recognition).

1.3.1 - SYN scanning

The implementation of this scan method is similar to a full TCP connect() three
way handshake except instead of sending ACK responses we immediately tear down
the connection. A demonstration of this technique is necessary to show a half
open transaction:

client -> SYN
server -> SYN|ACK
client -> RST

This example has shown the target port was open, since the server responded with
SYN|ACK flags. The RST bit is kernel oriented, that is, the client need not send
another packet with this bit, since the kernel's TCP/IP stack code automates
this.

Inversely, a closed port will respond with RST|ACK.

client -> SYN
server -> RST|ACK

Page: 7

NtWaK0 NtWaK0

NtWaK0 NtWaK0

File: C:\portscan.txt 1/4/01, 1:52:25AM

As is displayed, this combination of flags is indicative of a non- listening
port.

Although, this technique has become rather easy to detect by many IDS, owing to
the fact that a paramount of Denial of Service (DoS) utilities base their
attacks by sending excess SYN packets. Fairly standard intrusion detection
systems are no doubt capable of logging these half-open scans: TCP wrappers,
SNORT, Courtney, iplog, to a name a few, thus the effectiveness has dithered
over recent years.

Notoriously, the SYN method was first used to avoid a well used IDS, named
SATAN.

Advantages : fast, reliable, avoids basic IDS, avoids TCP three-way handshake
Disadvantages: require root privileges, rulesets block many SYN scan attempts

1.3.2 - IP ID header aka "dumb" scanning

ID header scanning is a rather obscure scan method involving implementation
peculiarities in the TCP/IP stack of most operating systems. Originally this
technique was discovered by antirez, who described it's technical details in a
post to bugtraq. Evidently the basis of this scans implementation is reflective
on the SYN scan method, although involves a third party host to use as a dummy
source.

Before explaining any further it's important to recognize what a so- called
"dumb" host is. Contrasting to a bastion host, a silent or dumb host is a server
that sends and receives little to no traffic at all, hence the characteristic
name endowed upon it. Locating one of these hosts requires much effort and host
sweeping itself, and is probably more trouble than what it is worth.
Nevertheless, it is a genuine and creative scan, that brings a thirdhost into
play adding to it's obscurity.

Page: 8

NtWaK0 NtWaK0

File: C:\portscan.txt 1/4/01, 1:52:25AM

Involved in this scenario are three hosts:

* A -> attackers host
* B -> dumb host
* C -> target host

Let's examine this cycle.

 * Host A sends a series of PING's analysing the ID field, encapsulated within
 the IP header to Host B. A dumb host will have the ID increment the reply by
 1 each time during the PING sequence.

 60 bytes from BBB.BBB.BBB.BBB: seq=1 ttl=64 id=+1 win=0 time=96 ms
 60 bytes from BBB.BBB.BBB.BBB: seq=2 ttl=64 id=+1 win=0 time=88 ms
 60 bytes from BBB.BBB.BBB.BBB: seq=3 ttl=64 id=+1 win=0 time=92 ms

 * Host A sends a spoofed SYN packet to Host C using the source address of Host B.
 The remote port is any arbitrary port (1-65535) that the attacker wishes to test
 for open/closed responses. Host C will reply to Host B with one of two standard
 responses:

 -> SYN|ACK response indicates an open LISTENING port. Host B will then reply with
 an RST bit flagged in the packet (automated by kernel).
 -> RST|ACK will indicate a NON-LISTENING port, (a standard SYN scan method reply),
 and Host B will ignore that packet and send nothing in reply.

Now, how could Host A know what flags were sent to Host B ?

Well, assuming the port was open on the target server, our series of parallel
PING's that Host A had been sending whilst the spoofed SYN packets were being
sent will hold our answers.

Page: 9

File: C:\portscan.txt 1/4/01, 1:52:25AM

Analyzing the ID field in these PING responses, one would notice a higher ID
increment.

 60 bytes from BBB.BBB.BBB.BBB: seq=25 ttl=64 id=+1 win=0 time=92 ms
 60 bytes from BBB.BBB.BBB.BBB: seq=26 ttl=64 id=+3 win=0 time=80 ms
 60 bytes from BBB.BBB.BBB.BBB: seq=27 ttl=64 id=+2 win=0 time=83 ms

Notice the second and third packets ID responses contain values greater than 1,
hence an open port was located. Any further increment of more than 1 is
indicative of an open port in Host B's responses, during this period.

Originally, the increment was 1, but because Host A sent a spoofed SYN to an
open port, Host B had to reply to Host C with the SYN|ACK bit packet, thus
incrementing the ID field. Following this the PING response to Host A would then
in turn have a higher ID field, as suspected.

On the other hand, a closed port state on Host C would not require Host B to
send anything, so the ID field in the PING response would not be incremented at
all.

 60 bytes from BBB.BBB.BBB.BBB: seq=30 ttl=64 id=+1 win=0 time=90 ms
 60 bytes from BBB.BBB.BBB.BBB: seq=31 ttl=64 id=+1 win=0 time=88 ms
 60 bytes from BBB.BBB.BBB.BBB: seq=32 ttl=64 id=+1 win=0 time=87 ms

As is shown, the ID field is still bounded by a constant of 1.

Once again this is why a "dumb" host is required, so incoming and outgoing
traffic is kept at a bare minimum in order to decrease false- positive results.

In fact, a variety of scan methods could be used involving a dumb host. This
scan is not limited to the SYN scan technique. Any method involving Host B to

Page: 10

File: C:\portscan.txt 1/4/01, 1:52:25AM

respond to Host A's port reply could be practiced (hint: inverse mapping
techniques).

1.4 - stealth scanning

The definition of a "stealth" scan has varied over recent years from what Chris
Klaus, author of a paper titled "Stealth Scanning: Bypassing Firewalls/SATAN
Detectors" delineated. Originally the term was used to describe a technique
that avoided IDS and logging, now know as "half-open" scanning. However,
nowadays stealth is considered to be any scan that is concerned with a few of
the following:

* setting individual flags (ACK, FIN, RST, ..)
* NULL flags set
* All flags set
* bypassing filters, firewalls, routers
* appearing as casual network traffic
* varied packet dispersal rates

All scan the scans described below use the inverse mapping technique for open
port assumptions.

1.4.1 - SYN|ACK scanning

This technique has been disregarded in most, if not all, port scanners to date.
Ironically, the theory behind this method is not unlike the SYN method, we cut
out the first step in our half-open TCP/IP setup. A standard response would act
as follows:

client -> SYN|ACK
server -> RST

Page: 11

NtWaK0 NtWaK0

NtWaK0 NtWaK0

File: C:\portscan.txt 1/4/01, 1:52:25AM

The above flags have denoted to the client that the port is in a non- listening
state. Since the transmission control protocol realizes that no initial SYN was
sent, an immediate termination response was sent out. In other words, the
protocol thinks there has been an error in the connection transaction to that
port when a SYN|ACK has been received without a SYN, as a result the reset flag
is sent back.

On the other hand a LISTENING port will not respond to these flags.

client -> SYN|ACK
server -> -

As is seen, the server ignores the SYN|ACK packet sent to an open port. Needless
to say the absence of the server's response packet to ours, will produce false
positives. Imagine sending a SYN|ACK packet and receiving no response due to
stately packet filters, firewalls or even timeout limits blocking transmission,
thus the scanner would then produce false positives for that port. Naturally
this scan is not considered as reliable as TCP connect() scans because of this
very reason. This type of assumption falls under what is known as "inverse
mapping".

Advantages : fast, avoids basic IDS/firewalls, avoids TCP three-way handshake
Disadvantages: less reliable (false positives)

1.4.2 - FIN scanning

The FIN scan method uses inverse mapping to discover closed ports.
Unfortunately, this techniques relies on bad BSD network code which most
operating systems have based their TCP/IP stacks on (all the better for
scanning). Ideally, once a FIN flagged packet is sent, a closed port will resend

Page: 12

NtWaK0 NtWaK0

File: C:\portscan.txt 1/4/01, 1:52:25AM

with an RST bit. Open ports, alternatively will not send a packet back,
therefore what precisely is not answered with the FIN bit, is assumed to be open
through this process of inverse mapping.

Take a look at the negotiation for open/closed port recognition displayed below.

client -> FIN
server -> -

No reply signaled by the server is iconic of an open port. The server's
operating system silently dropped the incoming FIN packet to the service running
on that port. Opposing this is the RST reply by the server upon a closed port
reached. Since, no service is bound on that port, issuing a FIN invokes a reset
(RST) response from the server.

client -> FIN
server -> RST

Arguably there are two ways to test for an open port. The first is receiving a
list of closed port responses and subtracting these port replies from a list of
the port probes originally sent. For example, sending 3 packets to ports 1, 2, 3
on a remote host.

If the response back is an RST for ports 1 and 3, we then compare the original
port list: 1, 2, 3 to the received ports: 1, 3 and deduce that 2 is the open
port via comparison.

The second test involves using a timeout for the packet response. If the timeout
limit is reached to receive the packet in question then we assume it to be open.
Obviously, this method is test for false positives and should be avoided where
possible. The responses for the packet could be obscured because of firewalls,

Page: 13

File: C:\portscan.txt 1/4/01, 1:52:25AM

filters, routers, slow links, and heavy traffic, thus is not a solid test to be
used as a rule of thumb for stealth FIN scanning.

Advantages : avoids many IDS, avoids TCP three-way handshake
Disadvantages: slow false positives

1.4.3 - ACK scanning

Uriel Maimon first described this technique in Phrack 49 article 15. Needless to
say this technique revolves around a bug in the IP layer of a few operating
systems.

In order to test for an open port using this method an initial ACK packet is
sent to the target host. There are actually two ways to classify the response
packet. The first involves an assessment of the TTL field, the second is
analyzing the WINDOW field. Both of these fields should be obtained with the
response packet that has the RST bit set.

The reply should be a reset connection, that is, a packet with the RST bit set.
Accompanying the RST flag, an analysis of the IP header, for some operating
systems, will provide a TTL that is lower than the other packets received from a
closed port. Evidently any TTL sent to an open port would reveal a TTL less than
or equal to 64, if the upper/lower ports have a higher TTL.

client -> FIN
server -> RST -> (TTL <= 64)

A real life response is show below:

 packet 1: host XXX.XXX.XXX.XXX port 20: F:RST -> ttl: 70 win: 0 => closed

Page: 14

NtWaK0 NtWaK0

File: C:\portscan.txt 1/4/01, 1:52:25AM

 packet 2: host XXX.XXX.XXX.XXX port 21: F:RST -> ttl: 70 win: 0 => closed
 packet 3: host XXX.XXX.XXX.XXX port 22: F:RST -> ttl: 40 win: 0 => open
 packet 4: host XXX.XXX.XXX.XXX port 23: F:RST -> ttl: 70 win: 0 => closed

Notice the TTL of the sequential packets before and after packet 3 is higher
than 64. As packet 3 is received it is observed that the TTL for port 22 is less
than the boundary 64, indicating an open port.

Using the WINDOW field method, any non-zero response packet received from the
server is indicative of an open port. This is true for several early BSD
(FreeBSD, OpenBSD) and UNIX (AIX, DGUX) but has been patched/fixed in more
recent versions.

client -> FIN
server -> RST -> WINDOW (non-zero)

A real life response is shown below:

 packet 6: host XXX.XXX.XXX.XXX port 20: F:RST -> ttl: 64 win: 0 => closed
 packet 7: host XXX.XXX.XXX.XXX port 21: F:RST -> ttl: 64 win: 0 => closed
 packet 8: host XXX.XXX.XXX.XXX port 22: F:RST -> ttl: 64 win: 512 => open
 packet 9: host XXX.XXX.XXX.XXX port 23: F:RST -> ttl: 64 win: 0 => closed

Notice that although the TTL equals 64, the surrounding packets do also. Thus
the TTL method would not work on this host, however the WINDOW offset method
shows a non-zero value indicative of an open port.

Advantages : difficult to log, avoids IDS detection
Disadvantages: relies on BSD network code bug, OS incompatible

Page: 15

File: C:\portscan.txt 1/4/01, 1:52:25AM

1.4.4 - NULL scanning

Clearly through it's endowed named, the NULL scan unsets ALL flags available in
the TCP header. ACK, FIN, RST, SYN, URG, PSH all become unassigned. The reserved
bits (RES1, RES2) actually do not effect the result of any scan, whether or not
they are set clearly does not matter. On arrival of this packet to the server,
BSD networking code informs the kernel to drop the incoming call if the port is
open.

client -> NULL (no flags)
server -> -

Alternatively, an RST packet will be returned if a closed port has been reached
(yes another inverse mapped scan).

client -> NULL (no flags)
server -> RST

Owing to the fact that the RFC does not exclaim exactly how a host should
respond to these types of packets, various network code for the major operating
systems will differ in the packet responses, ie Microsoft vs UNIX.

Advantages : avoids IDS, avoids TCP three-way handshake
Disadvantages: UNIX only, false positives

1.4.5 - XMAS scanning

Contrastedly, a so called XMAS scan is the inverse of the NULL scan method. All
the available flags in the TCP header are set (ASK, FIN, RST, SYN, URG, PSH).

Page: 16

NtWaK0 NtWaK0

NtWaK0 NtWaK0

File: C:\portscan.txt 1/4/01, 1:52:25AM

XMAS or "Christmas Tree" scanning is named rightly so after the decorative
effect the scan has with the flagging implementation. The reserved bits do not
effect the scan result, so setting or unsetting is ofno importance. Once again,
since this method is based on BSD networking code the technique will only work
against UNIX hosts.

XMAS scanning works by initializing all the flags and transmitting this packet
to the remote host. The kernel will drop the packet if an open port is at the
receiving end. A returned RST flag will reflect a closed, NON-LISTENING port
again this is an inverse mapped scan, so false positives is all a client has to
detect an open/closed port.

client -> XMAS (all flags)
server -> -

This signature tells us that the port is in LISTENING state, or the packet was
filtered by a firewall/router. Alternatively a closed port will produce the
following reply:

client -> XMAS (all flags)
server -> RST

The RST would be sent to the client because the server is tricked into thinking
that the client has a connection on that port without negotiating with the
standard three-way handshake. Since TCP is stateful the kernel sends a reset bit
(RST) back to the client to end transmission immediately.

Advantages : avoids IDS, avoid TCP three-way handshake
Disadvantages: UNIX only, false positives

Page: 17

File: C:\portscan.txt 1/4/01, 1:52:25AM

1.4.6 - TCP Fragmenting

TCP fragmenting is not a scan method so to speak, although it employs a method
to obscure scanning implementations by splitting the TCP header into smaller
fragments. IP reassembly on the server-side can often lead to unpredictable and
abnormal results (IP headers carrying data can be fragmented). Many hosts are
unable to parse and reassemble the tiny packets and thus may cause crashes,
reboots, or even network device monitoring dumps. Alternatively, these tiny
packets may be potentially blocked by IP fragmentation queues in the kernel or
caught by a stately firewall ruleset.

Since many intrusion detection systems use signature-based mechanisms to signify
scanning attempts based on IP and/or the TCP header, fragmentation is often able
to defeat this type of packet filtering and detection, and naturally the scan
will go undiscovered.

A minimally allowable fragmented TCP header must contain a destination and
source port for the first packet (8 octect, 64 bit), typically the initialized
flags in the next, allowing the remote host to reassemble the packet upon
arrival. The actual reassembly is established through an IPM (internet protocol
module) that identifies the fragmented packets by the field equivalent values
of:

* source
* destination
* protocol
* identification

Advantages : avoids IDS, stealth
Disadvantages: may cause network problems on remote host

1.5 Miscellaneous

Page: 18

NtWaK0 NtWaK0

NtWaK0 NtWaK0

File: C:\portscan.txt 1/4/01, 1:52:25AM

This category represents scans that can not be entirely classified into the
broader open/half-open/stealth classes. The scans here are dissimilar in nature
but are techniques still used in the wild today.

1.5.1 - UDP ICMP_PORT_UNREACHABLE scanning

Unlike the above scanning methods, the User Datagram Protocol (UDP) is used to
determining open/closed ports on a remote host rather than TCP.

UDP is a connectionless stream protocol that sends datagrams as a means of
packet transmission. Similarly to the inverse mapping system, sending a UDP
packet to an open port will receive no response from a server. However, a closed
port will respond with an Internet Control Message Protocol (ICMP) error reply.
Using a process of extrapolation it is simple to identify the open from closed
ports. The message type, ICMP_PORT_UNREACH (type 3 code 3), does not technically
need to be sent when a closed port received a UDP packet, hence the difficulty
with this scanning method. Additionally, UDP is known to be an unreliable
protocol since packets are easily dropped during transmission, hence
retransmission needs to take place, otherwise even more false positives are
assumed in the scan result. Linux kernels limit ICMP error message rates,
destination unreachable are set to 80 per 4 seconds with 1/4 second penalty if
that is exceeded, adding to the scanning technicality, as Fyodor pointed out.

An open port signature should send no reply, also a retransmitted packet is sent
to reduce false positives:

client -> udp packet
server -> -
client -> udp packet
server -> -

Page: 19

NtWaK0 NtWaK0

File: C:\portscan.txt 1/4/01, 1:52:25AM

Closed ports will response with the ICMP error.

client -> udp packet
server -> UDP (ICMP_PORT_UNREACH)

Advantages : scans non-TCP ports, avoids TCP IDS
Disadvantages: requires root, packets easily dropped, easily detected

1.5.2 FTP server bounce attack

This ingenious method was described in a paper by the hobbit. Using, the FTP
PORT command to set a clients passive mode, a host is able to determine the
status of a port by issuing an IP and port as arbitrary parameters to connect
to. If a connection is established as a means of active data transfer processing
(DTP), the client knows a port is open, with a 150 and 226 response issued by
the server. If the transfer fails a 425 error will be generated with a refused
build data message.

Early versions of WU-FTPD (less than 16) were vulnerable to this type of attack,
nowadays the presence of this bug has been patched in most FTPD's. Other
vulnerable versions include:

Sun FTP server in SunOS 4.1.x/5.x, SCO OpenServer 5.0.4, SCO UnixWare 2.1, AIX
3.2/4.2/4.2./4.3, Caldera 1.2, RedHat 4.X, Slackware 3.1 - 3.3.

An easy way to disallow this kind of attack is to prevent third party transfers
through modification of the PORT command and/or disallowing specification of
reserved ports, except port 20 the standard default data port.

Advantages : bypass firewalls, allows access to local nets, hard to trace
Disadvantages: slow, most FTPD's have been patched

Page: 20

NtWaK0 NtWaK0

File: C:\portscan.txt 1/4/01, 1:52:25AM

1.6 Blocking packet anomalies

Isolating and filtering the packets used in all the above scans is one step
forward into securing any inter-network connected node. Any application of the
following rulesets will yield many port scanning techniques with false positive
information, highlighting the well known "security through obscurity" objective.

* block unassigned port traffic (traffic to ports with unassigned services)
* application-layer monitoring
* deny pass-through traffic
* monitor transport-layer connections (control of TCP, SYN, RST, ACK)
* monitor source address matching well known addresses
* filter ICMP type 3 and 8
* active network monitoring

Many audible scanning techniques exist to gather information about the services
that exist on a host. However, none of these techniques will evade a well
configured proxy along with an active systems analyst to spot potential traffic
abnormalities.

References

Art of portscanning by Fyodor - http://www.phrack.com
Networking Scanning by Ofir Afkin - http://www.sys-security.com
FTP bounce attack by hobbit - http://www.insecure.org/nmap/hobbit.ftpbounce.txt

(C)opyright 2001 by dethy@synnergy.net Synnergy Networks

Page: 21

NtWaK0 NtWaK0

NtWaK0 NtWaK0

http://www.phrack.com
http://www.sys-security.com
http://www.insecure.org/nmap/hobbit.ftpbounce.txt

