Mobile IPsec VPN Weaknesses & Solutions

(with a heavy dose of IPsec info)

Brett Eldridge beldridg@pobox.com http://pobox.com/~beldridg/

Copyright (c) 2002 Brett Eldridge

Outline □ Problem Overview □ IPsec Overview OIKE Details ▶Phase 1 Negotiation □ Potential Mobile VPN Solutions Using IPsec OPre-shared keys Certificates □ IKE Daemon Fingerprinting Concepts

IPsec Diagram

IPsec Overview

- ☐ Two primary security protocols:
 - OAuthentication Header (AH) provides data integrity and authentication but no confidentiality. (ip_proto 51)
 - Encapsulating Security Payload (ESP) provides data integrity, authentication, and/or confidentiality. (ip_proto 50).
- □ Need to cover the details of IPsec to understand the concepts discussed later in the presentation.

Source: RFC2401

More Terminology

- □SA (Security Association): Tuple consisting of SPI + Dst. IP + Protocol Type (AH or ESP)
- □ SPI (Security Parameter Index): An unique reference (or "cookie") used to uniquely identify a SA. Required to lookup the correct decryption and authentication method for that SA.
- □ Nonce = Randomly generated value used to defeat playback attacks.
- □ Initiator = The device that starts or initiates the IKE protocol negotiation. In this case, the mobile user.
- □ Responder = The device that receives the first IKE message. In this case, the gateway to the internal network.

Key Management

- □ The crux of the IPsec problem is key distribution and SA management. IPsec defines two broad classes of key management.
- ☐ Manual Key Management
 - OMust manually configure all IPsec parameters for a Security Association to occur. Requires n(n-1)/2 key exchanges for a fully meshed VPN with n nodes.
- □ Using Automatic Key Exchange Protocols
 - ○ISAKMP
 - \circ IKE
 - oetc.

Manual Key Management

- ☐ Manually configure encryption keys, SPI, src address, dst address, etc. on both ends.
 - Requires pre-negotiated keys for both encryption and authentication. This is usually done via voice or encrypted email.
- □ This doesn't scale because the keys are static and adding a new node involves manually distributing keys to all the existing nodes.
- □ Static keys imply that if an attacker figures out one key, they own the whole VPN until the key is manually changed by hand on all nodes.

Manual Key Example (OpenBSD)

□On each host, you must perform the following:

```
ipsecadm new esp -spi 1000 -src 192.168.5.1 -dst 192.168.25.9
-enc blf -auth sha1 -key 7762d8707255d974168cbb1d274f8bed4cbd3364
-authkey 6a20367e21c66e5a40739db293cf2ef2a4e6659f

ipsecadm new esp -spi 1001 -dst 192.168.5.1 -src 192.168.25.9
-enc blf -auth sha1 -key 7762d8707255d974168cbb1d274f8bed4cbd3364
-authkey 6a20367e21c66e5a40739db293cf2ef2a4e6659f
```

Automatic Key Management Protocols

- □ Automate the create of SA, SPI values and the encryption, authentication keys.
- □ Example Protocols
 - OISAKMP (rfc 2408) Internet Security Association and Key Management Protocol.
 - OAKLEY (rfc2412)
 - OIKE (rfc 2409) Internet Key Exchange. A conglomeration of various pieces of ISAKMP, OAKLEY, SKEME. Therefore, it is the only protocol used for automated key management of IPsec.

Source: draft-ietf-ipsec-properties

IKE Phase 1 Authentication Methods

- □ Applies to both Main Mode and Aggressive Mode
- □ Digital Signatures
 - ox509 based
- ☐ Two types of Public Key Encryption
 - OMust Pre-exchange public keys
 - ONot many implementations support this
- □ Pre-Shared Keys
 - OProbably the most widely deployed method

Phase 1 Modes: Aggressive vs. Main Mode

- ☐ Main Mode uses 6 messages while Aggressive Mode uses 3 messages; therefore Aggressive Mode is generally faster.
- □ In Aggressive Mode, due to the fewer exchanges, fewer attributes can be negotiated during the exchange.
- □ Cannot negotiate DH groups during Aggressive Mode
 - OBoth sides must have pre-configured the same DH group and agree prior to Phase 1.
- ☐ Main Mode protects user identities by not sending them untithey are encrypted (also called ID_PROT mode).

Back to the problem...

- ☐ If the Initiator has a dynamic IP address (i.e., a mobile laptop user) you only have a few choices for authentication and modes:
 - "When using pre-shared key authentication with Main Mode, the key can only be identified by the IP address of the peer..."
- □ The implication is that the initiator and responder must both have static IP addresses in Main Mode w/ pre-shared keys.

Source: RFC2409

Why Not?

□ In Main Mode with pre-shared keys, ID is not sent in Message 1 Can only identify the other party by IP address:

```
Initiator
                                          Responder
Message
          HDR, SA
   2
                                        HDR, SA
          HDR, KE, Ni
                                        HDR, KE, Nr
   5
          HDR*, IDii, HASH I
                                        HDR*, IDir, HASH R
                                <--
         is an ISAKMP HDR (cookies, etc)
   HDR
   SA
         is a SA Negotiation payload (transforms, etc)
         is a nonce
   Nx
         is the DH Key Exchange payload
   \mathbf{KE}
         is the identification payload
   IDxx
   HASH is the hash payload
         indicates encrypted payload
   HDR*
```

Dynamic IP Address Auth Methods

□ Table illustrates whether dynamic or static IP addresses can be used and whether the ID is encrypted for a given auth method and Phase 1 mode.

.	Main Mode	Aggressive
Pre-Shared	Static	Static/Dynamic
Keys	ID Encrypted	ID Exposed
X509v3	Static/Dynamic	Static/Dynamic
Certificates	ID Encrypted	ID Exposed
Public	Static/Dynamic	Static/Dynamic
Keys	ID Encrypted	ID Encrypted

□ If you want to use pre-shared keys with mobile users, you must use Aggressive Mode which exposes the ID.

Aggressive Mode w/ Pre-Shared Keys

☐ Many people use this solution because pre-shared keys are easy to configure.

□ With Aggressive mode, the user identity must be sent in the clear as part of the Initiator's Phase 1 initial message.

Aggressive Mode w/ Pre-Shared Keys

```
Initiator
                                          Responder
Message
         HDR, SA, KE, Ni,
          TDii
                                       HDR, SA, KE, Nr,
                               <--
                                       IDir, HASH R
   3
         HDR, HASH I
  HDR
         is an ISAKMP HDR (cookies, etc)
         is a SA Negotiation payload (transforms, etc)
   SA
         is a nonce
  Nx
  KE
         is a Key Exchange payload
  IDxx is the identification payload
  HASH is the hash payload
```

□ Note: Initiator/Responder ID is not encrypted.

IKE - Aggressive Mode Example - Message 1

```
16:46:31.186253 24.0.73.59.500 > 24.0.73.58.500: [udp sum ok] isakmp v1.0
exchange AGGRESSIVE
        cookie: 0b010baa691aff18->000000000000000 msgid: 00000000 len: 261
        payload: SA len: 52 DOI: 1(IPSEC) situation: IDENTITY ONLY
            payload: PROPOSAL len: 40 proposal: 1 proto: ISAKMP spisz: 0
xforms:
 1
                payload: TRANSFORM len: 32
                    transform: 0 ID: ISAKMP
                        attribute ENCRYPTION ALGORITHM = 3DES CBC
                        attribute HASH ALGORITHM = SHA
                        attribute AUTHENTICATION METHOD = RSA SIG
                        attribute GROUP DESCRIPTION = MODP_1024
                        attribute LIFE TYPE = SECONDS
                        attribute LIFE DURATION = 3600
        payload: KEY EXCH len: 132
        payload: NONCE len: 20
        payload: ID len: 29 type: USER FQDN = "brett@atomicgears.com" (ttl
64, id 16678)
```

Implications of exposing User ID

- □ Traffic Analysis
 - OWhat if you are using IPsec in a government oppressed country?
- □ Potential risks if you are passing ID and using legacy authentication on back-end systems (e.g., RADIUS).
- □ Correlate individual with a specific IP address. Since the mobile user is now outside the corporate firewall...
 - obill@microsoft.com
- □ It is more important to realize what you are exposing in a given situation and assess those risks for your organization.

Possible Solution: Use Certificates with Main Mode

- □ Potentially high deployment costs:
 - ○CA infrastructure
 - Create pub/priv key pairs
 - ○Sign CSR
 - OTransport to end user
 - ○Install at end user
 - ^oCreate and constantly update CRLs
- □ Should you protect certificate with passphrase?

IKE - Main Mode Example - Message 1

IKE Fingerprinting

- □ The other implication of requiring support for initiators with dynamic IP addresses is that the responder must answer requests from any IP address.
- □ Probe a remote gateway that has a IKE daemon to determine the system details. Two prime examples are:
 - Vendor ID
 - Encryption/Auth algorithms supported

Vendor ID Payload

- □ "The vendor defined constant MUST be unique"
- □RFC recommended usage is to hash a string of vendor name plu version, etc.
 - OProvides the capability to determine not only the vendor, but also the exact version of code running.
 - ONeed to develop a table of hashes vs. vendor ID's.
- □ Most vendors don't alarm on failed negotiations some log.
- □Great way to fingerprint systems similar to NMAP.

Source: RFC2409

IKE - Main Mode - Message 2

```
16:49:59.505470 24.0.73.58.500 > 24.0.73.59.500: [udp sum ok] isakmp v1.0
exchange ID PROT
        cookie: bd2bd9fb3452e431->f70de4ff98926f04 msgid: 00000000 len: 136
        payload: SA len: 52 DOI: 1(IPSEC) situation: IDENTITY ONLY
            payload: PROPOSAL len: 40 proposal: 1 proto: ISAKMP spisz: 0
xforms: 1
                payload: TRANSFORM len: 32
                    transform: 1 ID: ISAKMP
                        attribute ENCRYPTION ALGORITHM = 3DES CBC
                        attribute HASH ALGORITHM = SHA
                        attribute GROUP DESCRIPTION = MODP_1024
                        attribute AUTHENTICATION METHOD = RSA SIG
                        attribute LIFE TYPE = SECONDS
                        attribute LIFE DURATION = 3600
        payload: VENDOR len: 32
        payload: VENDOR len: 24 (ttl 64, id 29109)
```

Example Vendor ID

VENDOR len: 24 48 65 61 72 74 42 65 61 74 5f 4e 6f 74 69 66 79

eartbeat Notify

Encryption Algorithms/Authentication

□ Send different transforms to the remote side to map which encryption and authentication algorithms are supported.

□ Some implementations support NULL for encryption.

Recommendations

- □ If possible, limit IKE connections to specific IP addresses or ranges.
- □ If you must support mobile users:
 - OUse Main Mode with certificates if possible
 - Ouse a single dial-up provider and limit connections to their IP address range.
 - Ounderstand IKE log messages of your specific implementation.
 - OIf your vendor doesn't log failed IKE negotiations, bug them.