
How to exploit Windows
kernel memory pool

kinvis@hotmail.com
SoBeIt
Beihang University

mailto:kinvis@hotmail.com

Memory pool: mechanism and algorithm

Memory pool - mechanism：
ØOverview
ØIntroduction of PoolDescriptor

Memory pool – request algorithm:
ØHandling differently based on request

size
ØLookAsideList and algorithm on top of it

Memory pool: mechanism and algorithm
-- mechanism

The memory pool is used for kernel memory
allocation, the same as user-mode heap. The
routines are ExAllocatePool() and ExFreePool()
separately.

The memory pool is managed by
PoolDescriptor, we’ll mention it later.

The memory pool has two categories:
NonPagedPool and PagedPool, the former is
swappable, while the latter must reside in
memory.

Memory pool: mechanism and algorithm
-- mechanism

NonPagedPool has two
parts, determined by
(MmNonPagedPoolStart,
MnNonPagedPoolEnd)
and(MmNonPagedPoolEx
pansionStart,
MmNonPagedPoolExpans
ionEnd), mostly located
at 0x8xxxxxxx and
0xfxxxxxxx-
0xffbe0000。

PagedPool is
determined by
(MmPagedPoolStart,
MmPagedPoolEnd),
mostly located at
0xexxxxxxx。

Memory pool: mechanism and algorithm
--mechanism

Pool is managed by PoolDescriptor, its structure is:

typedef struct _POOL_DESCRIPTOR {
POOL_TYPE PoolType;
ULONG PoolIndex;
ULONG RunningAllocs;
ULONG RunningDeAllocs;
ULONG TotalPages;
ULONG TotalBigPages;
ULONG Threshold;
PVOID LockAddress;
LIST_ENTRY ListHeads[POOL_LIST_HEADS];

} POOL_DESCRIPTOR, *PPOOL_DESCRIPTOR;

PoolDescriptor has several key member:
PoolType:Type of memory pool, can be
PagedPool, NonPagedPool, NonPagedPoolMust
etc, in fact it’s the index of PoolVector.

PoolIndex:Applied to PagedPool, it’s index
value of PoolDescriptor in PagedPool array.

ListHeads: The allocation grain of pool, 32
bytes at least. In order to manage these
chunks, the free chunks of the same size are in
the same double-linked list. So number of lists
is 4096 / 32 = 128, which is the value of
POOL_LIST_HEADS.

Memory pool: mechanism and algorithm
--mechanism

PoolDescriptor is managed by global array
PoolVector, includuing 3 membrers:

Two pointers pointing to two statically allocated
descriptor NonPagedPoolDescriptor and

NonpagedPoolDescriptorMS, and one pointer
pointing to PagedPoolDescriptor array.

Memory pool: mechanism and algorithm
-- mechanism

2*32 2*32 2*32

…… ……

…… ……

1*32 1*32

128*32 128*32

Other
members

1
2

128

Memory pool: mechanism and algorithm
-- mechanism

The overview is illustrated as:

Memory pool: mechanism and algorithm
-- mechanism

typedef struct _POOL_HEADER {
union {

struct {
UCHAR PreviousSize;
UCHAR PoolIndex;
UCHAR PoolType;
UCHAR BlockSize;

};
ULONG Ulong1;

};
union {

EPROCESS *ProcessBilled;
ULONG PoolTag;
struct {

USHORT
AllocatorBackTraceIndex;

USHORT PoolTagHash;
};

};
} POOL_HEADER, *PPOOL_HEADER;

Just like heap, each
requested pool has a

management
structure, which

definition is on the left:

Memory pool: mechanism and algorithm
-- mechanism

PreviouSize: Size of previous chunk, the value should be
the result of division by 32. In case of the 1st chunk for
each page, the value should be 0.

PoolIndex: For PagedPool, it is allocated from
PagedPoolDescriptor in a loop, PoolIndex is the index of
PagedPoolDescriptor the chunk belongs to. For free
chunks, PoolIndex is the actually index, while for
allocated chunks, PoolIndex equals actually index plus
0x80. When freeing, system will use value & 0x80 to
determine whether this pool chunk is freed.

PoolType:0 when free, pool type plus 1 when allocated.
When freeing and merging, system determines whether
it’s free based on this member from its neighbors.

BlockSize:Size of current chunk, it equals requested size
plus 8 bytes(management struct) aligned by 8.

PoolTag:Normal chunk requests, it’s 4 bytes chars, differs
based on requested type.

Memory pool: mechanism and algorithm
-- algorithm

3 cases based on requested size:

Case 1:
When requested size is large than 0xfb8,

i.e. page size – size of pool management struct
– size of chunk (4096-8-32), allocate aligned
one or several pages through
MiAllocatePoolPage.

Case 2:

When requested size is between 0x100 and
0xfd8, a proper chunk from ListHeads linked list of
PoolDescriptor is returned. The algorithm is similar
but simple than buddy algorithm. By walking
through the linked list, the system will find a
suitable chunk, get if off, then cut it to the right
size, insert the remaining chunk to the
correspondent list. When freed, the adjacent
chunks will merge if possible, and inserted to the
correspondent list.

Memory pool: mechanism and algorithm
-- algorithm

Case 2(Cont.):
When allocated from PagedPool, the allocation

algorithm use Round-Robin to obtain the lock of some
pool descriptor except item 0. When lock is obtained,
memory will be allocated from this pool. Next time, the
lock is requested from the next pool descriptor. So two
ExAllocatePool calls will get memory from different pool

Memory pool: mechanism and algorithm
-- algorithm

Case 3:
When requested size is equal or less than 0x100, for

such frequent chunk allocation, the system will use
Lookaside linked list for the reason of efficiency.
Lookaside is a heap data based on linked list, located at
KPCR. PagedPool and NonPagedPool has 8
PP_LOOKASIDE_LIST separately, ranged from 32 to 256.
Each structure has 2 linked lists, represented by auto-
balanced binary tree.

Memory pool: mechanism and algorithm
-- algorithm

Allocation order:
Allocation of free pages:
---begin from the head

Allocation of non-free pages:
---begin from the tail

Memory pool: mechanism and algorithm
-- algorithm

LookasideList and algorithm on top of it

LookasideList is based on pool allocator. By
calling ExAllocatePool to allocate frequent-used
size, the system will directly pick up a pool chunk
from the list. ExAllocatePool is managed by one-
way linked list, which is auto-balanced. On
frequent pickups, Lookaside will call
ExAllocatePool; when there’re many pool chunk,
ExFreePool will be called.

Memory pool: mechanism and algorithm
-- algorithm

You can call ExInitializePagedLookasideList or
ExInitializeNPagedLookasideList to setup
LookasideList of PagedPool and NonPagedPool,
and specify the chunk size. Later you can call
ExAllocateFromPagedLookasideList or
ExAllocateFromNPagedLookasideList to get
pool chunk you want from LookasideList, and call
ExFreeToPagedLookasideList or
ExFreeToNPagedLookasideList to release the
chunk back to LookasideList.

The system has several self-used LookasideList in
PPLookasideList array of KPCR, this array has 16
items, but only 7 items are used.

Memory pool: mechanism and algorithm
-- algorithm

LookasideList and algorithm on top of it (Cont):

Exploit difficulty compared with
heap overflow

No default heap per process, no way to build its own
heap in user-mode. All kernel-mode applications shared
those pools, which adds uncertainty of allocated
addresses. For PagedPool, since the allocation is from
two pool descriptors one by one, it’s almost IMPOSSIBLE
to control the allocation addresses. So most methods for
heap overflow are not useful.
When overflow occurs in pool, you can’t use a newly-
created heap as the default heap in user-mode. You
have to repair the pool manually, so, try to ruin the pool
descriptors as less as possible.
For pool overflow, there’s no accurate way to locate
shellocde just like heap overflow(you can create a heap
marked as LAST_ENTRY).

The heap overflow is in kernel-mode, IRQL is likely
to be DISPATCH_LEVEL, you can control the
system but it’s after the exception. The kernel-
mode exception is critical than user-mode, if not
handled correctly, BLUE SCREEN! So, a careful
restore is necessary.

Which pointers to overflow if you want to take
control?

Exploit difficulty compared with
heap overflow

Exploit method

We can overflow KiDebugRoutine, which is a built-

in interface of kernel debugging. When each

exception occurs, KiDispatchException will see

whether KiDebugRoutine is NULL, then call it if

possible. By overwriting this pointer, we can take

control and return to normal. The exception is

triggered when system frees the faked pool or the

pool next to the faked pool.

By building a free pool chunk behind the

overflowed pool. When the overflowed pool is freed,

the merge occurs, so we can overwrite any 4 bytes.

After overwriting KiDebugRoutine function

pointer, we can take control. Since the overflowed

pool address is in heap, we can use a jump

instruction heading for this address.

Exploit method -Ⅰ
--- build free pool(not recommended)

Pros: Can be applied to PagedPool and
NonPagedPool

cons：Can’t be the last pool chunk, otherwise
no merge afterwards. The distance between
overflowed pool address and current heap
address is far, so, it’s not easy to find the
correct jump instruction.

Exploit method -Ⅰ
--- build free pool(not recommended)

Build a free pool chunk after the overflowed pool,

the two pools are larger than one page. So after

overwrite 4 bytes, the address AddListTail inserts

is under our control, we can overwrite another 4

bytes, then we can locate our shellcode accurately.

Exploit method -Ⅱ
----merge free pool across the page (recommended)

The list head address will be written to the address

after overflowed pool structure. So the last byte of

this address is 0xx0 or 0xx8. We can use the

following jumps:0xe0(loopnz 0xxxxxxxxx)、

0x70(jo 0xxxxxxxxxx)、0x78(js

0xxxxxxxxxx)。

Exploit method -Ⅱ
----merge free pool across the page (recommended)

2*32 2*32 2*32

…… ……

…… ……

1*32 1*32

128*32 128*32

Merge chunks overflowed

Other
Members

1
2

128

Exploit method -Ⅱ
----merge free pool across the page (recommended)

1st pointer overwrite(RemoveEntry())

8046b6de 890a MOV [EDX],ECX
8046b6e0 895104 MOV [ECX+0X4],EDX

2nd pointer overwrite(AddListTail())

8046b7b5 8b54cf1c MOV
EDX,[EDI+ECX*8+0x1c]

8046b7b9 8d44cf18 LEA
EAX,[EDI+ECX*8+0x18]

8046b7bd 8d4e08 LEA ECX,[ESI+0X8]
8046b7c0 89560c MOV [ESI+0XC],EDX
8046b7c3 8901 MOV [ECX],EAX
8046b7c5 890a MOV [EDX],ECX
8046b7c7 894804 MOV [EAX+0X4],ECX

Exploit method -Ⅱ
----merge free pool across the page (recommended)

Pros:Locate shellcode accurately; easy
to restore pool management structure.

Cons:Only applied to statically
allocated NonPagedPool, not
dynamically allocated PagedPool. It
can’t be the last pool chunk, otherwise
no merge afterwards. We must assume
the pool in front of the overflowed pool
is not free, otherwise no merge
backwards.

Exploit method -Ⅱ
----merge free pool across the page (recommended)

Common disadvantage：

Not stable, dependent on version
of system and SP.

Exploit method

(1) Repair pool chunk lists of PoolDescriptor. Initialize all lists
of PoolDescriptor, enumerate all the pool chunks in the same
page of overflowed pool, fix the chunk size based on its
neighbors, set PoolIndex to 0x80, set PoolType to 1, so no
merge both backwards and afterwards.

(2) Search necessary functions from export tables of
NTOSKRNL.

(3) Search processes having SYSTEM priorities such as
lsass.exe,csrss.exe,serverice.exe, then get thread which is
in Alertable state(It should have one!). Later, insert APC of
user-mode shellcode to be executed to this thread, waiting for
execution.

(4) Restore exception. Call ZwYieldExcution in shellcode to
stop exception dispatcher returning in this exception.

Exploit method
----What does ShellCode do?

Demo

Any questions?

Thanks!

