
Malware Profiling and
Rootkit Detection on Windows

Matt Conover
Email: shok1234 msn.com

Agenda

Basics about Rootkits

Current rootkit detection

Rootkit techniques

A better way…

A constant battle—cat and mouse
game

The detection/profiling mechanisms
have changed little over the years

Malware/Rootkits are increasingly
sophisticated in evasion

Introduction

Rootkit Introduction

Rootkit first appeared on Windows in
1999 (NTRootkit, Hoglund):

Different agenda than viruses
Non-destructive information gatherers
Usually running in the kernel (easier
to hide)

Rootkit Detection

At the beginning of this year, there was almost no
commercial products

Rootkit detection has suddenly become popular. F-
Secure, Microsoft, etc. have all released products.

Rootkit products will not be very useful unless they
adapt as quickly as the rootkits

Rootkit evasion techniques are advancing much
faster than rootkit detection

Three current detection mechanisms:
Anti-virus software approach
HIPS (Host Intrusion Prevention Systems)
Execution Path Analysis (EPA)
The newcomer: Differential testing

Rootkit Detection

Rootkit Detection Anti-Virus

Very effective at preventing use of known
rootkits

New signatures are made as new variants
and rootkits come out

Detects the rootkit’s fingerprint before it
has a chance to run

Rootkit Detection
Problems with Anti-Virus

Few rootkits are observed in the wild
This gives them a low priority

Rootkits are evasive and non-destructive
Few samples of rootkits are sent to AV
companies

Too late…
Rootkits will just unhook antivirus (usually a
filter driver over the file system)
Then when an AV definition comes out, it is
too late J

Rootkit Detection Host IPS

Two layers of defense

Tries to prevent exploitation of the machine
(stop buffer overflows, RLIBC attacks, etc.)

If hackers get past that defense, then try to
block the hacker from getting into the kernel

Rootkit Detection
Problems with Host IPS

Many weaknesses outlined in a Phrack 62 (Butler)

API hooks are easy to evade

Most HIPS cover only those that are likely to be
used by an exploit

Hard to cover all ways a rootkit can be introduced:
Crazylord evaded a rootkit detector by using a
symbolic link \Device\PhysicalMemory
Defenseless against use of new kernel privilege
escalation vulnerabilities

Discussed at BlackHat Las Vegas 2003 by Joanna
Rutkowski

An old idea now applied specifically to rootkits

Uses instruction trapping to profile system calls
Goes through a learning period when the system
is known to be clean
Remembers the instruction counts or code paths
of the system calls

Detects rootkit when the execution path of a system
call differs

Rootkit Detection
Execution Path Analysis (EPA)

Rootkit Detection
Problems with the EPA

Large performance degradation tracing
through all system calls

Difficult to implement correctly (many ways
to disable):

Overwriting the trap handler in the IDT
Overwriting EFLAGS.TF in the TSS
Overwriting EFLAGS.TF via POPF

Rootkit Detection Differential

Query same information from top
locations:

First use user-mode APIs
Then use low-level methods (looking at
the registry file, NTFS directly, etc.)

If these differ, something is hiding
information

Rootkit Detection
Problems with Differential

Was quickly defeated (see rootkit.com)

They are easy targets for rootkits

These methods are too basic

Rootkits can make special cases to handle
these tools

User-mode rootkits (not covered here)
Hide in other processes
Keyboard sniffing
May be “diskless” (AV cannot detect)
Metasploit, CANVAS, and CORE IMPACT are all
diskless
Won’t be discussed in this presentation

Kernel-mode rootkits
Coming up next…

Rootkit Technologies Introduction

First, get into kernel-mode

Second, hook into kernel

Third, try to become permanent

Rootkit Technologies Introduction

Using ZwSetSystemInformation or ZwLoadDriver
Enable SeLoadDriverPrivilege
The problem is that it will be pageable (as
Hoglund/Butler note)
But there is a magic trick: MmResetDriverPaging J

Service Control Manager (the normal way)
No special tricks required
This will require creating a registry key

Both require a physical file be present
Makes the rootkit an easy target for antivirus detection

Rootkit Technologies
Getting into Kernel #1

Use a kernel-mode exploit.. some
examples:

LPC (local): 原创 (eyas)
Norton Antivirus (local): s.k. chong
SymDNS (remote): barnaby jack

Rootkit Technologies
Getting into Kernel #2

Install Ring3->Ring0 call gate from
user mode

See paper by crazylord
No disk access (AV can’t detect)
Less complicated than kernel-mode
exploits
Modify x86 GDT directly from user mode
May not work for newer versions of
Windows

Rootkit Technologies
Getting into Kernel #3

Once your code is running the kernel, now what?
Hooking system call table

Used to either add new system calls or hide
information like files, registry keys, etc.

Hooking interrupt handlers
Manipulate page tables entries (executable, no
readable)
Hooking driver dispatch tables
Add filter drivers

Rootkit Technologies
Hooking into the Kernel

Can be used to detect rootkits

Can be used to monitor system activity
(helpful to profile malware)

Better Method…
Introduction

Windows uses “executive objects”
Controlled by an Object Manager
Handles are all indirect references to
objects
Everything is an object

Better Method…
Windows Executive Objects

Better Method…
Windows Executive Objects

Files
Registry keys
Devices
Drivers
Processes
Threads
Jobs
Sockets
Security
tokens

Memory
sections
LPC ports
I/O completion
WMI
Desktops
Mutexes
Events
Semaphores
I/O Controllers

These are all
objects!

Better Method…
Windows Executive Objects

How does the Object Manager track so many
types of objects?
It doesn’t “memorize” all these executive object
types
Instead, executive object types are registered
dynamically
There are set of callbacks for each object type,
and it is responsible for opening, creating,
securing, and closing that object type

Better Method…
Example

During system initialization, IoInitSytsem()
registers the FILE_OBJECT type
Later you call NtCreateFile() to create a new file:
This calls ObCreateObject(name, FILE_OBJECT)
The Object Manager calls the Open callback
with the mode set to Create routine registed for
the FILE_OBJECT
If the Open callback returns successfully, then
the handle is returned to NtCreateFile

We can replace the callbacks for all object types
we’re interested in
If we’re interested in finding out every time a
process or file is opened:

Find the FILE_OBJECT object type and
replace the Open callback
Find the EPROCESS object type and replace
the Open callback

Better Method…

In the callback, we analyze the event and
then call the original callback

If we’re just profiling:
We record the event and allow it to pass

If we’re doing rootkit detection:
We check if there are any matching signatures
If a signature matches, we execute the signature
action (e.g., report, block, etc.)

Better Method…

Saves on performance big time
Can be isolated to specific object types, specific
processes, or just the kernel
Attempts to open an object that doesn’t exist don’t
even reach the Open callback (thus no overhead)
Attempts to create an object when the caller
doesn’t have adequate permission doesn’t even
reach the Open callback (thus no overhead)

New possibilities!
Able to monitor almost all aspects of the systems
behavior
Remember, almost everything is an object!

Better Method…
Benefits

If we want to profile malware:
Start the malware in a suspended state
Monitor all object types
Apply it only to the malware process

If we want to detect rootkits:
Process signatures and only monitor the
object types that has a matching signature
Apply it only to kernel mode (e.g., ignore
user-mode processes)

Better Method…
How To

Profiling: Demo

Detecting Driver Loading

Creating section in kernel with SEC_IMAGE flag

Detecting Filters

Detect creation of I/O completion port from
kernel
Enumerate DEVICE_OBJECTs

Detecting Dispatch Hooks

Enumerate DRIVER_OBJECTs

Detecting Hidden Rootkits

Some of the things rootkits do make them
easier to detect J

Return address into non-readable page
Return address into non-paged memory pool

Removing a Rootkit…

Still experimental…
Creates instability to remove rootkit (unknown
hooks)
Replace all rootkit code with INT 3 (breakpoint)
Add INT3 handler
If the return address is to a suspicious place,
add INT 3 to that page also
After we no longer see any new pages for a
while, replace INT 3 with NOP

Since this is a cat and mouse game, rootkits will
improve to hide from this method
We need to protect ourselves from when the
rootkit authors begin specifically targeting this
detection mechanism
Thus, we need to take whatever self-
preservation mechanisms we can to stay in
control

Self-Preservation

Prevent a rootkit from being loaded in
the first place

Disable access to
\Device\PhysicalMemory
Disable driver loading methods

Limitations:
The attacker will use a new kernel
privilege escalation vulnerability, and
get past this step

Self-Preservation: Step 1

Prevent a rootkit from making itself permanent
Disable any attempt to create
HKLM\SYSTEM\CurrentControlSet*\Type with
type 0 or 1 (change to 4 for disabled)
Disable any attempt to modify an existing an
HKLM\SYSTEM\CurrentControlSet*\Type

Limitations:
The rootkit may physically patch hal.dll,
ntoskrnl.exe, etc.
Be wary of accessing the registry keys through
symbolic links

Self-Preservation: Step 2

Ensure no driver except FAT/NTFS loads before us
Install ourselves at the beginning of the “Boot
Bus Extender”
Prevent any changes to
HKLM\SYTSEM\CurrentControlSet\GroupOrderList

Self-Preservation: Step 3

Self-Preservation: Step 4

Ensure no one changed the object type callbacks
Keep a thread in an infinite loop watching the
hooked callbacks every few 100 milliseconds
or so
Restore callbacks if they are changed and
report an attack
Find out where the callbacks pointed to (this
lets us know who did it)
If it is not a known system driver, unload it

Presented a method of observing system behavior
User-mode and kernel-mode

Presented a method to block certain behaviors
Signature language can be used to detect known
rootkits

Presented self-preservation methods
Needed if new rootkits come out that aren’t
recognized

In the end, this is just a step in the cat and mouse
game

Summary

Many kung fu masters for Windows kernel-mode
exploitation and rootkits:

Joanna Rutkowska, Jamie Butler, flashsky,
S.K. Chong,
Barnaby Jack, Greg Hoglund, Derek Soder,
crazylord

Acknowledgements

Remember this URL…
Remember this URL…
Remember this URL…
Remember this URL…

http://www.cybertech.net/~sh0ksh0k
Will not be publicly announced, so you must remember
Code will be put there in the next 2 weeks

STKIT– Shok Toolkit J

http://www.cybertech.net/~sh0ksh0k

The End

Thanks for listening J

Send email to shok1234 msn.com

