Hacking Windows CE

san@nsfocus.com
san@xfocus.org

mailto:san@nsfocus.com
mailto:san@xfocus.org

2 Xcon 2005
Structure Overview

> Windows CE Overview

> Windows CE Memory Management

< Windows CE Processes and Threads

+ Windows CE API Address Search Technology
» The Shellcode for Windows CE

» System Call

~ Windows CE Buffer Overflow Demonstration
> About Decoding Shellcode

» Conclusion

> Reference

B-xrocusteam

2 Xcon 2005
Windows CE Overview(1)

~ Windows CE iIs a very popular embedded
operating system for PDAs and mobiles ﬁ

» Windows developers can easily develop
applications for Windows CE
~ Windows CE 5.0 is the latest version

~ This presentation is based on Windows
CE.net(4.2)

~ Windows Mobile Software for Pocket PC and
Smartphone are also based on the core of
Windows CE

DR + By default Windows CE is iIn little-endian
g . node

B-xrocusteam

Windows CE Overview(2)

< ARM Architecture

+ A1 Ivlodes

~ RISC “ Puveig Mo

I"'- Exception Mode

| ;.. A R M V 1 - V6 Supervisor Undefined Interrupt | Fast Inderrapt

E0 E0 ED E0

2 Xcon 2005
Memory Management(1)

~ Windows CE uses ROM (read only memory),
RAM (random access memory)

+ The ROM in a Windows CE system is like a small
read-only hard disk

+ The RAM in a Windows CE system is divided into
two areas: program memory and object store

~ Windows CE is a 32-bit operating system,

So It supports 4GB virtual address space

- Upper 2GB is kernel space, used by the
system for its own data

B-xrocusteam

Memory Management(2)

0xFFFFFFFF

Eemel Virmal &ddress:;
EPLAGE Trap brea,
EDatas truct, ete

o tatie Iapped Virtual Address

OxFO000000

04000000
Ox=CZ00000a
Ox=30000000

ME exe

Ilernory mapped files

x4 2000000
40000000
O=03000000
Ox0&000000
O=04000000
Ox=0Z000000
O=00000000

SSIPP TRTHTS, T

Slot 32 Process 32

alot 3 Device exe
alot 2 FlleSys.exe

2 Xcon 2005
Memory Management(3)

- Lower 2GB Is user space

+ 0x42000000-0x7FFFFFFF memory is
used for large memory allocations, such
as memory-mapped files

< OX0-0x41FFFFFF memory is divided into
33 slots, each of which i1s 32MB

B-xrocusteam

Memory Management(4)
< Slot O layout

DLL Virtual Memory Allocations

ROM DLLs:RAW Data

RHAM OLL +Cverklow RO
DLL:Code+Data

\/
Genaral Viftual Memory Ht-caﬁmm
Process VirtualAlloc() calls
Thread Stack
Process heap
Thread Stack

Process Code and Data
Guard Section(64K)+Usearkinfo

Ox02000000

v
=
ﬁ
S
o
=
I
S
ﬁ
Y
-
0
s
7
iy

000010000
000000000

B-xrocusteam

2 Xcon 2005
Processes and Threads(1)

> Windows CE limits 32 processes being run at any
one time

> Every process at least has a primary thread
associated with it upon starting (even if it never
explicitly created one)

> A process can created any number of additional
threads (only limited by available memory)

> Each thread belongs to a particular process (and
shares the same memory space)

> SetProcPermissions API will give the current thread
access to any process

> Each thread has an ID, a private stack and a set of
registers

B-xrocusteam

2 Xcon 2005
Processes and Threads(2)

» When a process is loaded

» Assigned to next available slot

> DLLs loaded into the slot

+ Followed by the stack and default process heap
 After this, then executed

-~ When a process’ thread is scheduled
+ Copied from its slot into slot O

~ This Is mapped back to the original slot
allocated to the process if the process
becomes inactive

B-xrocusteam

2 Xcon 2005
Processes and Threads(3)

~ Processes allocate stack for each thread,
the default size is 64KB, depending on the
link parameter when the program is
compiled
w Top 2KB used to guard against stack overflow
» Remained available for use

> Variables declared inside functions are

allocated In the stack

> Thread’s stack memory is reclaimed when it
terminates

B-xrocusteam

2 Xcon 2005
APl Address Search(1)

Locate the loaded address of the coredll.dll
< struct KDataStruct kdata; // OXFFFFC800: PUserKData
@ 0x324 KINX_MODULES ptr to module list
< LPWSTR IpszModName; /* 0x08 Module name */
> EVODULE pMod; /* 0x04 Next module in chain
» unsigned long €32 vbase; /* Ox7c Virtual base address
of module */
» struct info/ e32_ unit[LITE_EXTRA]; /* Ox8c Array of extra info
units ol
> Ox8c EXP Export table position
PocketPC ROMs were builded with Enable Full Kernel Mode
option
We got the loaded address of the coredll.dll and its export
table position.

B-xrocusteam

2 Xcon 2005
APl Address Search(2)

» Find API address via IMAGE _EXPORT_DIRECTORY
structure like Win32.

typedef struct IMAGE_EXPORT_DIRECTORY

DWORD AddressOfFunctions; // +0x1c RVA
from base of image

DWORD AddressOfNames; // +0x20 RVA
from base of image

DWORD AddressOfNameOrdinals; // +0x24 RVA
from base of image

// +0x28

} IMAGE_EXPORT_DIRECTORY,
*PIMAGE_EXPORT_DIRECTORY;

B-xrocusteam

APl Address Search(3)

Export Directory

Functions

“KernelloControl”

) - B-xrocusteam

Shellcode(1)

- test.asm - the final shellcode
< get_export_section

> find_func €
< function implement of the shellcode <.

~ It will soft reset the PDA and open its
bluetooth for some IPAQs(For
example, HP1940)

B-xrocusteam

2 Xcon 2005
Shellcode(2)

» Something to attention while writing
shellcode

~ LDR pseudo-instruction
> "ldr r4, =0xffffc800" == "Idr r4, [pc, #0x108]"
> "ldr r5, =0x324" == "mov r5, #0xC9, 30"

< r0-r3 used as 1st-4th parameters of API,
the other stored In the stack

B-xrocusteam

2 Xcon 2005
Shellcode(3)

- EVC has several bugs that makes
debug difficult

~ EVC will change the stack contents when
the stack reclaimed in the end of function

<~ The Instruction of breakpoint maybe

change to OXE6000010 in EVC
sometimes

- EVC allows code modify .text segment
without error while using breakpoint.
(sometimes it's useful)

B-xrocusteam

2 Xcon 2005

System Call

» Windows CE APIs implement by
system call

- There Is a formula to calculate the
system call address
< OxfO010000-(256*apiset+apinr)*4

~ The shellcode is more simple and it
can used by user mode

B-xrocusteam

2 Xcon 2005
Buffer Overflow Demo(1)

hello.cpp - the vulnerable program

» Reading data from the "binfile" of the root directory to
stack variable "buf" by fread()

> Then the stack variable "buf" will be overflowed

> ARM assembly language uses bl instruction to call

function

» "str Ir, [sp, #-4]! " - the first instruction of the
hello() function

<~ "ldmia sp!, {pc} " - the last instruction of the hello()
function

<+ Overwriting Ir register that is stored in the stack will
obtain control when the function returned

B-xrocusteam

2 Xcon 2005
Buffer Overflow Demo(2)

< The variable's memory address
allocated by program is
corresponding to the loaded Slot,
both stack and heap

<+ The process maybe loaded into the
difference Slot at each start time, so
the base address always alters

< Slot O Is mapped from the current
process' Slot, so its stack address is

ey L @able

B-xrocusteam

Buffer Overflow Demo(3)

. helln Mlcrusuft thedded ?lsual C++ [hreak]

@rFlle Edlt Wiew Insert Project Debug Tools Window Help
28| cE@ | |2 DEE @tl
[g Vil f‘__” & Win

LHE:'“-'”.' _ PC

RA = HBd88288 R1 dggeaBaag R2 2F3R3483 R3 FFFFCBAC R4 151511500 151
RS 2602FEDB R6 = OB80088088 R7 = 2F3A3F5A A8 = FFFFC894 R9 = 243DF818

R18 = 8C1ZBC58 R11 = 2682FEA8 R12 = 2F3A3483 Sp = 2682FC44 Lvr = B1F7688C
Pc = HBH11898 Psr = 6008861F

Address:

[[88B2FE1C 51 51 51 81 41 81 &1 41 81 &1 41 81 &1 41 81 41 AARAARAAAAARAAARA «
BBB2FE2C &1 51 41 41 51 81 51 41 81 41 41 81 31 41 41 41 AAARARRAAAAARAAR
BBB2FE3C &1 51 41 41 51 81 51 41 81 41 41 81 31 41 41 41 AAARARRAAAAARAAR
BBB2FESC 5C 62 69 6E 66 69 6C 65 B8 88 B0 88 2C F2 32 8F \binfile....,.2.
BOO2FESC 4C FE 82 26 60 81 83 08 @1 80 88 09 L..&"

|||opO2FESC 18 BB B8 B8 88 FE B2 26 94 11 01 88 5A 3F 3A 2F ... JF.&....27:/ +|

prlntF{"%d\n" strlen{buf}}; :ﬂ

IR EOan
1]

1 6]

(260811118) |

r)

getchar{},
] ____;5_3.5_5_3__

fclose{binFileH);
! i1}

getchar (2681118c})|

(26011100) |

2 Xcon 2005
Buffer Overflow Demo(4)
~ A failed exploit

Return

Address Shellcode

—The PDA isfrozen when the hello program
IS executed iy
-Why? «The stack of Windows CE issmall 8
Buffer overflow destroyed the 2K B S
guard on the top of stack boprtagy B

F)(FOCUS TEAM

<+ A successful exploit -
exp.c

+ The PDA restarts when the
hello program is executed

< The program flows to our
shellcode

lalzfode 17

4

" [a]2[3]4]|5|6[7[8]9]|0]-

Return

Shellcode Address

Tablalwle|r[t[y[uli]o]p

B-xrocusteam

Crl[z|x[c[v[b|n]m]
SEdE |

File Edit Help

2 Xcon 2005
About Decoding Shellcode(1)

»Why need to decode shellcode?

<~ The other programs maybe filter the
special characters before string buffer
overflow in some situations

» 1t 1s difficult and inconvenient to write a
shellcode without special characters by
APl address search method in Windows
CE

B-xrocusteam

2 Xcon 2005
About Decoding Shellcode(?2)

» The newer ARM processor has
Harvard Architecture

<~ ARM9 core has 5 pipelines and ARM10
core has 6 pipelines

< It separates instruction cache and data
cache

< Self-modifying code is not easy to
Implement

B-xrocusteam

2 Xcon 2005
About Decoding Shellcode(3)

<+ A successful example

<~ only use store(without load) to modify
self-code

< you'll get what you want after padding
enough nop Iinstructions

<~ ARM10 core processor need more pad
Instructions

< Seth Fogie's shellcode use this method

B-xrocusteam

2 %eon 2005
About Decoding Shellcode(4)

- A puzzled example

- load a encoded byte and store it after
decoded

~ pad Instructions have no effect
~ SWI does nothing except 'movs pc,lr’

under Windows CE

~On PocketPC, applications run in kernel
mode. So we can use mcr instruction to
control coprocessor to manage cache
system, but it hasn't been successful yet

B-xrocusteam

Conclusion

> The codes talked above are the real-life

buffer overflow example in Windows CE

~ Because of instruction cache, the decoding
shellcode is not good enough

- Internet and handset devices are growing

quickly, so threats to the PDAs and mobiles
become more and more serious

~ The patch of Windows CE is more difficult
and dangerous

B-xrocusteam

Reference

[1] ARM Architecture Reference Manual
http://www.arm.com

[2] Windows CE 4.2 Source Code
http://msdn.microsoft.com/embedded/windowsce/default.aspx

[3] Details Emerge on the First Windows Mobile Virus
http://www.informit.com/articles/article.asp?p=337071

[4] Pocket PC Abuse - Seth Fogie
http://www.blackhat.com/presentations/bh-usa-04/bh-us-04-fogie/bh-us-
04-fogie-up.pdf

[5] misc notes on the xda and windows ce
http://www.xs4all.nl/—itsme/projects/xda/

[6] Introduction to Windows CE
http://www.cs-ipv6.lancs.ac.uk/acsp/WinCE/Slides/

[7] Nasiry 's way
http://www.cnblogs.com/nasiry/
[8] Programming Windows CE Second Edition - Doug Boling

[9] Win32 Assembly Components
http://LSD-PLaNET

http://www.arm.com
http://msdn.microsoft.com/embedded/windowsce/default.aspx
http://www.informit.com/articles/article.asp?p=337071
http://www.blackhat.com/presentations/bh-usa-04/bh-us-04-fogie/bh-us
http://www.xs4all.nl/~itsme/projects/xda/
http://www.cs-ipv6.lancs.ac.uk/acsp/WinCE/Slides/
http://www.cnblogs.com/nasiry/

Thank You!

san@nsfocus.com
san@xfocus.org

WX acu&rg

V. XJOCHS, 1Te

mailto:san@nsfocus.com
mailto:san@xfocus.org

