
Java & Secure Programming
(Bad Examples found in JDK)

Marc Schönefeld, University of Bamberg

Illegalaccess.org

The speaker
Marc Schönefeld, Diplom-
Wirtschaftsinformatiker

For Science: External doctoral student @
Lehrstuhl für praktische Informatik at University
of Bamberg, Bavaria, Germany

Thesis project:
REFACTORING OF SECURITY ANTIPATTERNS IN
DISTRIBUTED JAVA COMPONENTS

For Living: Department for Operational Security
Management
at computing site for large financial group in
Germany

Java, J2EE, CORBA [CSMR 2002]
design and development
Security Hardening (code audit)

The situation
Java (we cover J2SE here, some aspects
also apply to J2EE)

is designed as a programming language with
inherent security features [Gong, Oaks]

JVM-Level: Type Safety, Bytecode integrity checks
API-Level: SecurityManager, ClassLoader, CertPath, JAAS
Crypto-Support: JCA/JCE, JSSE

So what‘s the problem ?

Selected Java Security Alerts in 2003/2004:

Java Runtime Environment May Allow
Untrusted Applets to Escalate Privileges
A Vulnerability in JRE May Allow an
Untrusted Applet to Escalate Privileges
...Java Virtual Machine (JVM) May Crash Due
to Vulnerability in the Java Media
Framework (JMF)...
…Java Runtime Environment Remote Denial-
of-Service (DoS) Vulnerability …

Despite of the precautions of the Java Security
Architecture, a lot of attack potential …

what’s the cause?

The problem
A platform (like the Java runtime environment)
can only support the programmer’s intent
What is programmer’s intent ? Reflects different
perspectives …

Functionality [application programmer]
Java has a large API with lots of predefined functions (sockets, files, …)

Quality and ReUse [middleware programmer]
Java provides communication and marshalling on different semantic levels (Sockets, RMI,
CORBA, Raw-Serialisation, XML-Serialisation, …)

Safety [security architect]
Java provides Isolation Support, Crypto-Objects and Secure Sockets out of the box

Malicious Intent [adversary]
Undermine security by finding the weak spots
Java VM and core libraries have (lots of?) vulnerabilities

Classloaders and Protection Domains

Why search for security bugs in java code ?
Component based software development

3rd party middleware components (web servers,
graphics libraries, PDF renderer, …) are all over
the place
We REUSE many of them in trusted places
(bootclassloader)
But can we really trust them ?

Questions:
Does my super duper 3rd-party graphics library
include vulnerable object implementation that
can be triggered by an attacker ?
Is the JDK secure in isolating my confidential
XML data from other malicious applets loaded
into the same VM ?
Object serialisation is safe, isn’t it ?

J2EE multi-tier application types

J2EE multi-tier attack types

Evil Twin
Attack

Data-Injection (SQL, legacy format)

Denial-Of-Service,
Malicious serialized data

Java Security Patterns
Sun’s Security Code Guidelines (last update Feb 2, 2000!) :

1. Careful usage of privileged code
2. Careful handling of Static fields
3. Reduced scope
4. Careful selected public methods and fields
5. Appropriate package protection
6. If possible Use immutable objects
7. Never return a reference to an internal array that contains

sensitive data
8. Never store user-supplied arrays directly
9. Careful Serialization
10. Careful use native methods
11. Clear sensitive information

http://java.sun.com/security/seccodeguide.html

http://java.sun.com/security/seccodeguide.html

Java Security Antipatterns
Security unaware coding create vulnerability by
ignoring the security patterns

Typical Java Secure Coding Antipatterns:
Ignoring Language Characteristics (like Integer Overflow)

Careless Serialisation , careless use of privileged code

Inappropriate Field and Method Visibility

Covert Channels in non-final Static Fields

They hide in your own code and the libraries you
use

Due to academic interest we audited parts of the
Sun JDK 1.4.x and present the findings on the
following slides:

How to search for security bugs in java code ?

Test if program needs
specific permissions
Useful to reverse engineer

protection domains

jChains
(http://jcha
ins.dev.java
.net)

Policy
evaluation
tools

Bytecode detectors (visitor
pattern):

predefined (software
quality)

Self-written (for security
audit)

Findbugs
(bases
on Apache
BCEL)

Bytecode
audit
analyzers

Time consuming analysis,
needs experience

JAD (!),
JODEDecompilers

useful only if source code is
available and complete [in
most of the cases it isn’t]

PMD ,
Checkstyle

Source
Code
Detectors

Bytecode analyzers
The following discussion bases on JVM
bytecode analysis
Findbugs (http://findbugs.sourceforge.net)

Statical Detector for bug patterns in java code
Developed by the University of Maryland (Puth
and Hovemeyer)
Open Source

based on the BCEL (Apache Bytecode Engineering Library)

Visitor-pattern analysis of
class structure and inheritance
control and data flow

GUI/command line

And: Extensible, allows to write own detectors

http://findbugs.sourceforge.net

Java Security Antipatterns
Antipatterns (bugs, flaws) in trusted code (like
rt.jar) cause Vulnerabilities

Availability:
AP1: Integer, the Unknown Type(java.util.zip.*)
AP2: Serialisation side effects (java.io.*)

Integrity:
AP3: Privileged code side effects (Luring attacks break sandbox)
AP4: Inappropriate Scope (Access control violation)
AP5: Non-Final Static Variables (Covert channels between applets)

Secrecy:
AP6: Insecure Component Reuse (org.apache.* , Sniff private XML
data between applets)

Goal: Define a binary audit toolset to detect the
antipatterns in your own and the 3rd-party
components to be able to fix the vulnerabilities

Java Antipattern 1: Integer overflow
According to blexim (Phrack
#60) , integer overflows
are a serious problem in
C/C++, so they are in Java:

All Java integers are bounded in
the [-231,+231-1] range
In Java this is true: -231=231+1
Silent Overflow is a problem:
Sign changes are not reported to
the user, no JVM flag set

Code of JDK 1.4.1_01 was
based on the false
assumption that java
integers are unbounded,
which led to a range of
problems in the
java.util.zip package

Java Antipattern 1: Integer overflow
The crash is caused by a parameter tuple
(new byte [0],x,Integer.MAX_VALUE-y), where x>y x,y≥0
èsilent overflow in the trusted JDK routines by fooling the parameter
checks, so the overflow is neither detected by the core libraries nor the
JVM.
èThe native call updateBytes to access a byte array leads to an illegal
memory access. Consequently the JVM crashes.

D:\ > java CRCCrash
An unexpected exception has been detected in native code outside the VM.
Unexpected Signal : EXCEPTION_ACCESS_VIOLATION occurred at PC=0 x6D3220A4
Function= Java_java_util_zip_ZipEntry_initFields+0x288
Library=c:\java\1.4.1\01\jre\bin\zip.dll
Current Java thread :
at java.util.zip.CRC32.updateBytes(Native Method)
at java.util.zip.CRC32.update(CRC32.java:53)
at CRCCrash.main(CRCCrash.java :3)
Dynamic libraries:
0x00400000 - 0x00406000 c:\java\1.4.1\01\jre\bin\java.exe
[... lines omitted ...]
0x76BB0000 - 0x76BBB000 C:\WINDOWS\System32\PSAPI.DLL
Local Time = Mon Mar 17 14:57:47 2003
Elapsed Time = 3
#
The exception above was detected in native code outside the VM
#
Java VM : Java HotSpot(TM) Client VM (1.4.1_01 -b01 mixed mode)
#

Java Antipattern 1: Integer overflow
The CRC32 class allows to calculate a checksum over a
buffer:
If you have a byte buffer (1,2,3,4) and want to calculate
the checksum over it you need to call:
CRC32 c = new java.util.zip.CRC32 ();
c.update (new byte []{1,2,3} ,0 ,3);
But if you do the following:
c.update (new byte [0] ,4 ,Integer. MAX_VALUE -3);
You will crash the JVM of JDK 1.4.1_01 and some
versions of JDK 1.3.1

Java Antipattern 1: Integer overflow,
Risk and extent

Risk:
If the attacker manages to exploit this function in an environment were
multiple users share a single JVM (like a Lotus Domino server or a Tomcat
HTTP server) he may cause a denial-of-service condition.

Extent:
More trusted functions were found vulnerable:

java.util.zip.Adler32().update();
java.util.zip.Deflater().setDictionary();
java.util.zip.CRC32 ().update();
java.util.zip.Deflater().deflate();
java.util.zip.CheckedOutputStream().write();
java.util.zip.CheckedInputStream().read();
java.text.Bidi.<init >;

http://developer.java.sun.com/developer/bugParade/b
ugs/4811913.html

also bugnr = {4811913, 4812181, 4812006 , 4811927 , 4811917, 4982415,
4944300, 4827312,4823885}

http://developer.java.sun.com/developer/bugParade/b

Java Antipattern 1: Integer overflow,
the Refactoring

public void update(byte[] b, int off, int len) {
if (b == null) { throw new NullPointerException(); }

if (off < 0 || len < 0 || off > b.length - len) {
throw new

ArrayIndexOutOfBoundsException();
}
crc = updateBytes(crc, b, off, len);

}

After
JDK
1.4.1
02

public void update(byte[] b, int off, int len) {
if (b == null) { throw new

NullPointerException(); }

if (off < 0 || len < 0 || off + len > b.length) {
throw new ArrayIndexOutOfBoundsException();

}
crc = updateBytes(crc, b, off, len);

}

Before
JDK
1.4.1
01

Java Antipattern 1: Integer overflow,
the Refactoring (bytecode)

12: iload_2
13: iflt 28
16: iload_3
17: iflt 28
20: iload_2
21: aload_1
22: arraylength
23: iload_3
24: isub
25: if_icmple 36

After (1.4.1_02)
12: iload_2
13: iflt 28
16: iload_3
17: iflt 28
20: iload_2
21: iload_3
22: iadd
23: aload_1
24: arraylength
25: if_icmple 36

Before (1.4.1_01)

Integer
Overflow
Bytecode
Pattern

Bytecode of
Refactoring

Java Antipattern 1: Harmful integer overflow,
How to find during auditing ?

1. find candidate methods by detecting iadd
opcodes

2. Does the iadd use user-supplied data (does it
use data from the stack supplied by iload ?) to
perform a range check

3. Is a native method called afterwards
(invokevirtual, invokestatic), that takes the
same data

This process can be implemented by a Findbugs
bytecode detector

AP1: Conclusion and Suggestions
The JVM does not provide an overflow flag like a
normal x86 processor (designed in 1978), so there is
no way to detect those conditions during runtime.
The JVM in Java 1.5 (aka 5.0 aka Tiger) 27 years
later does not improve this shortcoming
Suggestions for JDK 6.0:

To avoid burdening the (security unaware)
programmer, a bounded primitive integers (like in
Ada) is helpful
subtype Month_Type is Integer range 1..12;
If this is all too complex for the java compiler to
handle, it could at least list a potential overflow as
compiler warning
(maybe in Java 6.0?)

Antipattern 2: Serialisation side effects
The normal way to create a java object is to use the
new instruction, which calls the constructor of a class
But: The Java serialisation API (part of java.io
package) allows to bypass constructors and create
new instances of an object type by simply sending
them to an java.io.ObjectInputStream (OIS), which
is bound to a socket, a file or a byte array
OIS objects are commonly used by remote
communications such as RMI or persistency
frameworks to import pre-built objects into the JVM
When an object is read from an OIS the most derived
readObject method of the class is called

AP 2: Risk and Extent
Risk

Reading serialized objects may force the JVM to
branch into complex or vulnerable code regions that
are called in the readObject method
readObject methods may linger in in your own code,
the JDK classes and any 3rd party library you use
Attacker may prepare special handcrafted data
packets with serialized data

Extent

Causes JVM crash on Win32 java.awt.font.ICC_Profile

Triggers an unexpected OutOfMemoryError
which may kill the current listening thread
and disable the service (as an error it
bypasses most try/catch checks)

java.util.HashMap

Triggers complex computation,
„JVM may become unresponsive“ [Sun Alert
57707]

java.util.regex.Pattern

AP 2: Risk and Extent
http://classic.sunsolve.sun.com

/pub-cgi/retrieve.pl?doc=fsalert%2F57707
http://classic.sunsolve.sun.com

/pub-cgi/retrieve.pl?doc=fsalert%2F57707

http://classic.sunsolve.sun.com
http://classic.sunsolve.sun.com

AP2: Serialisation side effects, a refactoring

private void readObject(java.io.ObjectInputStream s)throws… {
s.defaultReadObject(); // Initialize counts
groupCount = 1; // if length > 0,
localCount = 0; // the Pattern is lazily compiled
compiled = false;
if (pattern.length() == 0) {

root = new Start(lastAccept);
matchRoot = lastAccept;
compiled = true;

}
}

After

JDK
1.4.2
06

private void readObject(java.io.ObjectInputStream s)throws… {
s.defaultReadObject(); // Initialize counts
groupCount = 1;
localCount = 0; // Recompile object tree
if (pattern.length() > 0)

compile();// so we compile for the next 1600 years
else

root = new Start(lastAccept);
}

Befor
e

JDK
1.4.2
05

AP2: How to find during code audit ?
1. find candidate classes by detecting readObject

definitions
2. For these classes determine if the control flow

branch into harmful code
I. Search for algorithmic complexity (does it compile a regex for

the next 800 years?)
II. Search for endless loops (bytecode backward branches)
III. Does to code call into vulnerable native code and propagates the

total or some part of the payload ?

This process can be implemented by a Findbugs
bytecode detector

AP2: Conclusion and Suggestions
The readObject method is designed primarily for
accepting and checking Serializable data
Nested readObject invocations occur for nested
Serializable classes, so the malicious payload
does not have to be in the root object
Try to defer complex operations from the time of
creation to the time of first usage
Similar considerations apply for the readExternal
method which implements the receiving part of the
Externalizable interface

AP3: Privileged Code Side Effects
The Basic Java Access Algorithm:

A request for access is granted if, and only if every protection
domain in the current execution context has been granted the
said permission, that is, if the code and principals specified by
each protection domain are granted the permission.
A permission is only granted when all
protection domain Di contain the
permission p









∈
=

i

n

i

Dp Ι
1

AP3: Privileged Code Side Effects
Privileged code (doPrivileged) is used to break out of the
stack inspection algorithm
Needed where the permissions on the application level (user
classes) do not match the needed permissions to perform
necessary operations on the middleware/system level
(rt.jar)

û

ü

AP3: Privileged Code Side Effects: Risk and
Extent

Risk
An attacker may misuse this condition to escalate
privileges and escape a limited protection domain
(such as the JNLP or applet sandbox)

he knows the privileged code blocks in the JDK and the privileged
codesources of the application
by a luring attack he tries to trick control into privileged code blocks and
force that block to use parts of his injected payload

Extent

….…

transport temporary files (such as executables)
to the client’s machine, which can be launched
later (http://www.derkeiler.com/Mailing-
Lists/Full-Disclosure/2004-07/0462.html)

java.awt.Font (i)

fill up the remaining free space of file system of
the client machine with a large file containing
zero bytes

Java.awt.Font(ii)

escape the applet sandbox and test existence of
files on the client’s machine

java.awt.font.ICC_Profile

http://www.derkeiler.com/Mailing

AP3: Privileged Code Side Effects: Risk and
Extent

AP3: Refactorings
No refactorings available

The described bugs are still in the JDK ,
so unfortunately no refactorings
available
Although most of those were reported to
Sun in Q2/2004 or earlier

AP3: Privileged Code Side Effects:
How to audit ?

1. find candidate classes by detecting
doPrivileged calls

2. For these classes determine if user-supplied data
is propagated to the privileged code block that
causes to
I. Pass access to protected resources
II. leak secret data
III. Perform unwanted modifications
to untrusted code

This process can be partially implemented by a
Findbugs bytecode detector

AP3: Conclusion and Suggestions
Conclusion

doPrivileged is a powerful but dangerous construct
to tweak protection domains

Suggestion
To Sun:

Please fix bugs in privileged code JDK blocks

To Component Users:
Check 3rd party libraries for vulnerable doPrivileged blocks before usage, as
they may break your security policy

To Middleware Developers:
Keep privileged code in own code as short as possible
[http://java.sun.com/security/seccodeguide.html]
Detaint user-supplied data before propagating it to privileged code

http://java.sun.com/security/seccodeguide.html

AP4: Inappropriate Scope

As a rule, reduce the scope of methods and fields

as much as possible. Check whether package-

private members could be made private, whether

protected members could be made package-

private/private, etc. [Sun Security Code Guidelines]

This should be especially true when you design

trusted JDK extensions, such as the Java Media

Framework (JMF)

AP4: Inappropriate Scope: Risk and Extent
Risk

An attacker can exploit the trusted protection domain

“AllPermissions” of a java extension in jre/lib/ext to

escalate privileges. For example the JMF

installs extra trusted classes to jre/lib/ext

accesses system memory via native routines

The public JMF class com.sun.media.NBA exposes a public pointer to

physical memory [long value data]

So untrusted applets may read your system memory

AP4: Inappropriate Scope: Risk and Extent
http://classic.sunsolve.sun.com

/pub-cgi/retrieve.pl?doc=fsalert%2F54760
http://classic.sunsolve.sun.com

/pub-cgi/retrieve.pl?doc=fsalert%2F54760

http://classic.sunsolve.sun.com
http://classic.sunsolve.sun.com

AP4: Inappropriate Scope: Refactoring

1

2

3

public final class NBA {

protected final synchronized void
finalize()

public synchronized Object getData()
public synchronized Object clone()
public synchronized void copyTo(NBA

nba)
public synchronized void copyTo(byte

javadata[])
private long data;
private int size;
private Class type;

}

After (JMF 2.1.1e)

public class NBA {
public void finalize()
public Object getData()
public Object clone()
public void copyTo(NBA nba)
public void copyTo(byte

javadata[])

public long data;
public int size;
public Class type;

}

Before (JMF 2.1.1c)

1) Creation of subclasses is forbidden, to prevent leaking of secret data by new methods
2) Scope of public finalize method degraded to protected, so no class can overwrite it
3) Data fields were moved to appropriate private (class local) scope

AP4: Inappropriate Scope Side Effects:
How to audit ?

1. find candidate classes by detecting public
classes

2. For these classes determine if
I. Data fields are declared as public
II. Methods are declared as public
III. Internal references to private, protected data are returned by a

public method

The candidate selection can be implemented by
using the predefined detectors of Findbugs

AP4: Conclusion and Suggestions
Conclusion

Inappropriate Scope on fields and methods may
allow to bypass access control mechanisms

Suggestion
[http://java.sun.com/security/seccodeguide
.html]

Refrain from using public variables. Instead, let
the interface to your variables be through
accessor methods. In this way it is possible to
add centralized security checks, if required.
Make sure that any public method that has
access to and/or modifies any sensitive internal
states includes a security check.

http://java.sun.com/security/seccodeguide

AP5: Non-Final Static Fields
„Refrain from using non-final public static variables

To the extent possible, refrain from using non-final public
static variables because there is no way to check whether the
code that changes such variables has appropriate
permissions.
In general, be careful with any mutable static states that can
cause unintended interactions between supposedly
independent subsystems“

[Sun Security Code Guidelines]
According to Sun Microsystems [
http://www.sun.com/software/security/glossary.html]
the term covert channel has the following definition:

A communication channel that is not normally intended for data communication. It allows a
process to transfer information indirectly in a manner that violates the intent of the security
policy.

We will show that the Antipattern careless use of Static
Variables allows malicious code to exploit covert channels
between protection domains

http://www.sun.com/software/security/glossary.html

AP5: Non-Final Static Variables, Risk &
Extent

Risk
Static Variables that are loaded by the boot
classloader (like the ones in rt.jar) or by the
extension classloader are singleton objects in a JVM
Non-final static String fields may transport
serialized java objects to protection domains that
are not privileged to access them

Browser VM

Applet from site A Applet from site B

Protection Domain BProtection Domain A

Protection Domain
/lib/rt.jar „AllPermissions“

org.apache.xalan.processor.XSLProcessorVersion.LANGUAGE
org.apache.xalan.processor.XSLProcessorVersion.S_VERSION

javax.swing.JDesktopPane.LIVE_DRAG_MODE
...

Serial obj. Serial obj.

AP5: Non-Final Static Variables, Risk &
Extent

http://www.heise.de/newsticker/meldung/41308
Unsigned Java-Applets jump out of Sandbox

http://www.heise.de/newsticker/meldung/41308
Unsigned Java-Applets jump out of Sandbox

http://www.heise.de/newsticker/meldung/41308
http://www.heise.de/newsticker/meldung/41308

AP5: Non-Final Static Variables: Refactoring

public class org.apache.xalan.processor.
XSLProcessorVersion {

public static final java.lang.String
PRODUCT;

public static final java.lang.String
LANGUAGE;

public static final int VERSION;
public static final int RELEASE;
public static final int MAINTENANCE;
public static final int DEVELOPMENT;
public static final java.lang.String

S_VERSION;
}

After (JDK1.42_05)

public class org.apache.xalan.processor.
XSLProcessorVersion {

public static final java.lang.String
PRODUCT;

public static java.lang.String
LANGUAGE;

public static int VERSION;
public static int RELEASE;
public static int MAINTENANCE;
public static int DEVELOPMENT;
public static java.lang.String

S_VERSION;
}

Before (JDK1.42_04)

The final modifier prohibits modification of a variable after initial value was set.
Initially they only used it to protect their product name J

AP5: Non-Final Static Variables:
How to audit ?

1. Via a built-in findbugs detector find candidate
classes by searching for public classes

2. For these classes find
I. Primitive Data fields and Strings are declared as public static,

non-final
II. Object Type Data fields, Arrays and Containers are declared as

public static
III. Methods that allow access on non-public instances of (I + II)

AP5: Conclusion and Suggestions
Conclusion

Non-final static final fields allow to establish
covert channels between protection domains and
bypass restrictions such as the applet sandbox .

Suggestion
[http://java.sun.com/security/seccodeguide
.html]

To the extent possible, refrain from using non-final
public static variables because there is no way to check
whether the code that changes such variables has
appropriate permissions.
In general, be careful with any mutable static states
that can cause unintended interactions between
supposedly independent subsystems.

http://java.sun.com/security/seccodeguide

Antipattern 6: Insecure component reuse
„Distributed component-structured applications can consist of
software components which are supplied by different
vendors. Therefore one has to distinguish between application
owners and software component vendors and there is a needs
for corresponding protection“: [Hermann, Krumm]
3rd – party components might be built with a functionality
based programmer intend, whereas the control of the
confined execution models of the JDK require a security
based programmer intend.
JDK as a component-structured middleware application uses
a lot of XML functionality from the Apache foundation. Is
there enough protection against vulnerabilities of these 3rd-
party components embedded in JDK ?

AP6: Insecure component reuse, Risk &
Extent

Risk
The XSLT parser embedded in JDK is directly taken
from a previous apache XALAN standalone version,
downloadable from http://xml.apache.org
It is highly configurable, especially it allows to
customize the functions that may be employed during
XSLT (extensible stylesheet language
transformations)

Non-final static arrays in trusted libraries may
contain objects that are allowed to process data
throughout the entire JVM
We will show that the Antipattern insecure
component reuse allows malicious code to exploit
visibilities granted to trusted code by inserting
malicious callbacks

http://xml.apache.org

AP5: Non-Final Static Variables, Risk &
Extend

http://classic.sunsolve.sun.com
/pub-cgi/retrieve.pl?doc=fsalert%2F57613

http://classic.sunsolve.sun.com
/pub-cgi/retrieve.pl?doc=fsalert%2F57613

http://classic.sunsolve.sun.com
http://classic.sunsolve.sun.com

AP6: Insecure component reuse:
Refactoring

public class
org.apache.xpath.compiler.FunctionTable {

private static
org.apache.xpath.compiler.FuncLoader[]
m_functions;

[...]
}

After (JDK1.42_06)

public class
org.apache.xpath.compiler.FunctionTable
{

public static
org.apache.xpath.compiler.FuncLoader[]
m_functions;

[...]
}

Before (JDK1.42_05)

This refactoring is adjusting the enhanced functionality of the component to
the level needed for running the component securely in confined
execution models. Technically the refactoring cures an antipattern 4 and an
antipattern 5.
The private modifier prohibits malicious code to modify the table consisting
the built-in functions of the XSLT parser.

AP6: Insecure component reuse: How to
audit ?

1. 3rd-party components may include all types of
antipatterns, from our experience check at least
for the antipatterns presented here
1. Check for Integer Overflow
2. Check for proper Serialisation, watch for side effects
3. Check for defensive use of privileged code, especially when

using privileged or “AllPermission” protection domains
4. Adjust inappropriate scope to the level needed and add security

checks to public available fields and functionality
5. Close covert channels in static non-final fields and static mutable

container types (also indirect uses)

AP6: Conclusion and Suggestions
Conclusion

Even if your own code is secure, 3rd – party
components may ruin your security concept

Suggestion
Ask the vendor of the components you reuse ,
whether they check their components with
findbugs or similar tools
Ask for a findbugs report before buying, this may
increase your trust to component
A lot of open source projects already include such
a report,
but some closed source guys still have to learn

finally{}

Download at
www.illegalaccess.org

Detectors
presented

Send me an eMail
marc@marc-schoenefeld.com

Contact

http://www.illegalaccess.org
mailto:marc@marc-schoenefeld.com

