Java & Secure Programming
(Bad Examples found in JDK)

Marc Schonefeld, University of Bamberg

e lllegalaccess.org e

The speaker

- Marc Schonefeld, Diplom-
Wirtschaftsinformatiker

 For Science: External doctoral student @
Lehrstuhl fur praktische Informatik at University

of Bamberg, Bavaria, Germany

“ Thesis project:
REFACTORING OF SECURITY ANTIPATTERNS IN
DISTRIBUTED JAVA COMPONENTS

» For Living: Department for Operational Security
Management
at computing site for large financial group in
. Germany
§ Java, J2EE, CORBA [CSMR 2002]

©+ design and development
> Security Hardening (code audit)

B-xrocusteam

2 Xon 2005
The situation

- Java (we cover J2SE here, some aspects
also apply to J2EE)

1S designed as a programming language with
Inherent security features [Gong, Oaks]
+ JVM-Level: Type Safety, Bytecode integrity checks

% APIl-Level: SecurityManager, ClassLoader, CertPath, JAAS
“ Crypto-Support: JCA/IJCE, JSSE

@ So what's the problem ?

B-xrocusteam

. _ _ 2 %con 2005
g8 Seclected Java Security Alerts in 2003/2004:

v Java Runtime Environment May Allow
Untrusted Applets to Escalate Privileges

+ A Vulnerability in JRE May Allow an
Untrusted Applet to Escalate Privileges

> ...Java Virtual Machine (JVM) May Crash Due
to Vulnerability in the Java Media
Framework (JMF)...

+ .Java Runtime Environment Remote Denial-
of-Service (DoS) Vulnerability ...

Despite of the precautions of the Java Security
Architecture, a lot of attack potential ...

what’s the cause?

2 Xcon 2005

The problem

> A platform (like the Java runtime environment)
can only support the programmer’s intent

> What is programmer’s intent ? Reflects different
perspectives ...

» Functionality [application programmer]
» Java has a large API with lots of predefined functions (sockets, files, ...)

» Quality and ReUse [middleware programmer]

» Java provides communication and marshalling on different semantic levels (Sockets, RMI,
CORBA, Raw-Serialisation, XML-Serialisation, ...)

» Safety [security architect]
» Java provides Isolation Support, Crypto-Objects and Secure Sockets out of the box

» Malicious Intent [adversary]

* Undermine security by finding the weak spots
» Java VM and core libraries have (lots of?) vulnerabilities

B-xrocusteam

2 Xon 2005
Classloaders and Protection Domains

B-xrocusteam

Zxwon2005 B
B8 \Why search for security bugs in java code ? &8

» Component based software development

» 3rd party middleware components (web servers,
graphics libraries, PDF renderer, ...) are all over
the place

» We REUSE many of them in trusted places
(bootclassloader)

» But can we really trust them ?

» Questions:

» Does my super duper 3rd-party graphics library
iInclude vulnerable object implementation that
can be triggered by an attacker ?

~ Is the JDK secure in isolating my confidential
@ XML data from other malicious applets loade o ‘
" into the same VM ? i
. Object serialisation is safe, isn’t it ?

B-xrocusteam

Client Tier

Standalone-
Client

Presentation Tier

JWI

Browser-
Client

Enterprise Tier

Backend Tier

JWI

Applet
JHMLP-Client
Java exe

Jym_ DLL embedded

Web-
Container

Enterprise-
Container

Database

JW

JWI

JW

JEP
Serviet

Session Beans

Ertifiy Beans

Message-Driven Beans

Enterprise
Adapter

JW

Enterprise Adapter
Enterprise Resource
Java Stored Procedure

Java UDF

B-xrocusteam

J2EE multi-tier attack types 2 con 2005

Client Tier Presentation Tier Enterprise Tier

Standalone-
Client

Backend Tier

JWI

. Enterprise-
Web- : Container

Database

JW

Browser-] :
i Container
Client : : JYM

JWI , JWI

Evil Twin Denial-Of-Service,

Applet :
JHLP-Clignt JEP
Java exe Serviet
Jwm. DLL ambeddead

Session Beans
Entiliy Beans
Message-Driven Beans

Enterprise
Adapter

JW

Enterprise Adapter
Enterprise Resource
Java Stored Procedure
Java UDF

B-xrocusteam

2 Xcon 2005

Java Security Patterns

B - Sun’s Security Code Guidelines (last update Feb 2, 2000!) :
Careful usage of privileged code
Careful handling of Static fields
Reduced scope
Careful selected public methods and fields
Appropriate package protection
If possible Use immutable objects

Never return a reference to an internal array that contains
sensitive data

8. Never store user-supplied arrays directly
9. Careful Serialization

10. Careful use native methods

11. Clear sensitive information

http://java.sun.com/security/seccodeguide.html

2 Xon 2005
Java Security Antipatterns

» Security unaware coding create vulnerability by

Ignoring the security patterns

Typ|cal Java Secure Coding Antipatterns:

% Ignoring Language Characteristics (like Integer Overflow)
» Careless Serialisation , careless use of privileged code
“ Inappropriate Field and Method Visibility

<+ Covert Channels in non-final Static Fields

+ They hide in your own code and the libraries you

use

> Due to academic interest we audited parts of the
and present the findings on the™—

“following slides:

B-xrocusteam

2 Xon 2005 =
B How to search for security bugs in java code ? &8

Source useful only if source code is
PMD , i .

Code available and complete [in
Checkstyle L oY

Detectors most of the cases it isn't]

JAD (1), Time consuming analysis,

Decompilers | ;55 needs experience

_ Bytecode detectors (visitor
Findbugs pattern):

Bytecode
aLBJ/dit (bases © predefined (software
on Apache quality)

analyzers BCEL) %(_ag—written (for security
aual

Policy JChains < Test if program needs
- http://icha | specific permissions
evaluation i(ns.dev.j'ava Useful to reverse engineer

tools net) protection domains
=

B-xrocusteam

2 Xcon 2005

Bytecode analyzers

» The following discussion bases on JVM
bytecode analysis

> Flndbugs (http://findbugs.sourceforge.net)
+ Statical Detector for bug patterns in java code

+ Developed by the University of Maryland (Puth
and Hovemeyer)

 Open Source
* based on the BCEL (Apache Bytecode Engineering Library)

7 Visitor-pattern analysis of
<+ class structure and inheritance
<+ control and data flow

< GUI/command line
< And: Extensible, allows to write own detectors

B-xrocusteam

http://findbugs.sourceforge.net

2 Xon 2005
Java Security Antipatterns

» Antipatterns (bugs, flaws) in trusted code (like

rt.jar) cause Vulnerabilities
< Availability:
- AP1: Integer, the Unknown Type(j ava. util.zip.*)
- AP2: Serialisation side effects (j ava.i 0. *)

» Integrity:

- AP3: Privileged code side effects (Luring attacks break sandbox)

- AP4: Inappropriate Scope (Access control violation)

- AP5: Non-Final Static Variables (Covert channels between applets)
“ Secrecy:

- AP6: Insecure Component Reuse (or g. apache. * , Sniff private XML
data between applets)

» Goal: Define a binary audit toolset to detect the
antipatterns in your own and the 3rd-party
components to be able to fix the vulnerabilities

B-xrocusteam

2 Xon 2005
Java Antipattern 1: Integer overflow

» According to blexim (Phrack
#60) , integer overflows
are a serious problem in
C/C++, so they are in Java:

- All Java integers are bounded in
the [-23%,+231-1] range
- In Java this is true: -2317231+1

- Silent Overflow is a problem:
Sign changes are not reported to
the user, no JVM flag set

» Code of IDK 1.4.1 01 was
based on the false
assumption that java
integers are unbounded,
which led to a range of

aabroblems in the
pava. util.zip package

Integer MIN_VALUE= Integer MAX VALUE+1

B-xrocusteam

Java Antipattern 1: Integer overflow

The crash is caused by a parameter tuple
(new byte [0], x, I nt eger. MAX VALUE-vy), where x>y x,y=0 -

esilent overflow in the trusted JDK routines by fooling the parameter
checks, so the overflow is neither detected by the core libraries nor the
JVM.

eThe native call updateBytes to access a byte array leads to an illegal
memory access. Consequently the JVM crashes. 2ot
D:\ > java CRCCrash SR
An unexpect ed exception has been detected in native code outside the VM KN
Unexpected Signal : EXCEPTI ON_ACCESS VI OLATI ON occurred at PC=0 x6D3220A4 00K
Function= Java_j ava_util _zip_Zi pEntry_initFi el ds+0x288 LT
Li brary=c:\java\1l. 4. 1\ 01\ re\ bi n\ zi p. dl | ety
Current Java thread :
at java.util.zip. CRC32. updat eBytes(Native Method) [+.0 .,
at java.util.zip. CRC32. updat e(CRC32. j ava: 53)
at CRCCr ash. mai n(CRCCr ash. java : 3)
Dynam c libraries:
0x00400000 - 0x00406000 c:\java\l.4.1\01\jre\bin\java. exe
[... ines omtted ...]
0x76BB0000 - 0x76BBB0O00 C:.\W NDOWS\ Syst enB2\ PSAPI . DLL
Local Tinme = Mon Mar 17 14:57:47 2003
[El apsed Tinme = 3
.............. H
'''''''''''''''' # The exception above was detected in native code outside the VM

RORSONE #

---------------- # Java VM : Java HotSpot(TM) Client VM (1.4.1 01 -b01 m xed node)

........ #

2 Xon 2005
Java Antipattern 1: Integer overflow

The CRC32 class allows to calculate a checksum over a
buffer:

If you have a byte buffer (1,2,3,4) and want to calculate
the checksum over it you need to call:

CRC32 ¢ = newjava.util.zip.CRC32 ();
c.update (new byte []{1,2,3} ,0 ,3);
But if you do the following:

C. updat e

You will crash the JVM of JDK 1.4.1_01 and some
versions of JDK 1.3.1

B-xrocusteam

_ 2 Xon 2005
Java Antipattern 1: Integer overflow,

_ Risk and extent

If the attacker manages to exploit this function in an environment were
multiple users share a single JVM (like a Lotus Domino server or a Tomcat
HTTP server) he may cause a denial-of-service condition.

Extent:

More trusted functions were found vulnerable:
java.util.zip.Adler32().update();
Java.util.zip.Deflater(). setchtlonary()
Java.util.zip.CRC32 ().update();
Java.util.zip.Deflater().deflate();
Java.util.zip.CheckedOutputStream().write();

Java.util.zip.CheckedInputStream().read();
Java.text.Bidi.<init >;

httD //developer.java.sun.com/developer/bugParade/b

ugs/4811913.html

also bugnr = {4811913, 4812181, 4812006 , 4811927 , 4811917, 4982415,
4944300, 4827312,4823885}

http://developer.java.sun.com/developer/bugParade/b

Java Antipattern 1: Integer overflow,

the Refactoring

Before

public void update(byte[] b, int off, int len) {
throw new

IDK If (b == null) {
1.4 1 |NullPointerException(); }
01 If (off <O || len <O |] off + len = b.length) {
throw new ArraylndexOutOfBoundsException();
+
crc = updateBytes(crc, b, off, len);
+
After |public void update(byte[] b, int off, int len) {
IDK if (b ==null) { throw new NullPointerException(); }
fLotedl if (off <O || len < O || off > b.length - len) {
02 throw new
ArraylndexOutOfBoundsException();
+

crc = updateBytes(crc, b, off, len);

25 Xeon 2005

Java Antipattern 1: Integer overflow,
the Refactoring (bytecode)

Before (1.4.1_01)
> iload 2

- iflt 28

- iload 3

- iflt 28

- 1Hload 2 Integer
e Overflow
. iadd Bytecode
e Pattern
. arraylength

> if_icmple 36

B-xrocusteam

After (1.4.1_02)

- iload 2
- iflt 28
- iload_3
- iflt 28

. iload_2 Bytecode of

: aload_1 Refactoring
. arraylength

- 1load 3
. Isub
: if_icmple 36

o _ _ %won2005 RS
8 Java Antipattern 1: Harmtful integer overflow, g8

How to find during auditing ?
1. find candidate methods by detecting | add
opcodes

2.Does the | add use user-supplied data (does it
use data from the stack supplied by i | cad ?) to
perform a range check

3. Is a native method called afterwards
(i nvokevi rtual , i nvokest ati c), that takes the
same data

This process can be implemented by a Findbugs
bytecode detector

B-xrocusteam

2 Xcon 2005
AP1: Conclusion and Suggestions

» The JVM does not provide an overflow flag like a

normal x86 processor (designed in 1978), so there is
no way to detect those conditions during runtime.
The JVM in Java 1.5 (aka 5.0 aka Tiger) 27 years

later does not improve this shortcoming

> Suggestlons for JDK 6.0:

~ To avoid burdening the (security unaware)
programmer, a bounded primitive integers (like in
Ada) is helpful
subtype Month_Type is Integer range 1..12;

~ If this is all too complex for the java compiler to
handle, it could at least list a potential overflow as
g8l cCompiler warning
W (maybe in Java 6.0?)

B-xrocusteam

2 Xon 2005
Antipattern 2: Serialisation side effects

» The normal way to create a java object is to use the
new instruction, which calls the constructor of a class

» But: The Java serialisation API (part of j ava. i o
package) allows to bypass constructors and create

new instances of an object type by simply sending
them to an j ava. i 0. Qoj ect | nput St r eam (OIS), which

IS bound to a socket, a file or a byte array

» OIS objects are commonly used by remote
communications such as RMI or persistency
frameworks to import pre-built objects into the JVM

» When an object is read from an OIS the most derived
readObj ect method of the class is called

B-xrocusteam

2 Xcon 2005
AP 2: Risk and Extent

Risk

<+ Reading serialized objects may force the JVM to
branch into complex or vulnerable code regions that
are called in the method

> methods may linger in in your own code,
the JDK classes and any 3rd party library you use

~ Attacker may prepare special handcrafted data
packets with serialized data

Extent

Triggers complex computation,

~JVM may become unresponsive® [Sun Alert
57707]

Causes JVM crash on Win32

Triggers an unexpected Cut Of Menor

which may kill the current listeningfthread
and disable the service (as an erro
bypasses most try/catch checks)

AP 2: Risk and Extent

http://classic.sunsolve.sun.com
/[pub-cqgi/retrieve.pl?doc=fsalert%2F57707

5TTOT Java Funtime Enwironment Femote Denial-of-Service [[oS) Yulner ability 20 Dec 200

Sun({sm) Alert Notification

= Sun Alert IO 57707

= Synopziz Java Runtime Environment Remote Denial-of-Service (DoS) Yulnerakiliy
« Category: Security

« Product: Java SDK and JRE

« BuglD=: 5037001

= Avoidance; Upgrade

= Ztate: Rezolved

alossard)

& vulnerakilty in the Java Rurtime Environmert (JEE) invaolving object deserialization could be exploted remately
to cauze the Java Vidual Machine to become unresponzive, which iz a type of Denial-of-Zervice (Do), This
izzue can affect the JRE if an application that runs on it accepts serialized data from an untrusted source.

Sun acknoveledyes with thanks, Marc Schoenefeld, for bringing thiz izsue to our attention.

? Contrihutina Factors

, Find Mesxk , Find Prewvious Highlight I Match case

http://classic.sunsolve.sun.com
http://classic.sunsolve.sun.com

58 2 Xcon 2005
B AP2: Serialisation side effects, a refactoring &
»

Befor Private void readQbject(java.io.ojectlnputStreams)throws.. { %
s. def aul t ReadObj ect () ; /1 Initialize counts R
€ groupCount = 1,
| ocal Count = 0; // Reconpile object tree
I f (pattern.length() > 0)
conpile();// so we conpile for the next 1600 years
el se
05 root = new Start (| astAccept);
}

After Pprivate void readOject(java.io.ObjectlnputStreams)throws.. {
s. def aul t ReadObj ect () ; // Initialize counts
groupCount = 1; [l if length > O,
IDK Ioca!Cbunt = 0; [/l the Pattern is lazily conpiled
1.4.2 ponplled = fal se;
=T I f (pattern.length() == 0) {
root = new Start (| astAccept);
mat chRoot = | ast Accept ;
conpiled = true;

B-xrocusteam

2 Xcon 2005
AP2: How to find during code audit ?

1. find candidate classes by detecting r eadCbj ect
definitions

2. For these classes determine if the control flow
branch into harmful code

I. Search for algorithmic complexity (does it compile a regex for
the next 800 years?)

Il. Search for endless loops (bytecode backward branches)

Does to code call into vulnerable native code and propagates the
total or some part of the payload ?

This process can be implemented by a Findbugs
bytecode detector

B-xrocusteam

2 Xcon 2005
AP2: Conclusion and Suggestions

The readObj ect method is designed primarily for
accepting and checking Seri al i zabl e data

Nested r eadn| ect invocations occur for nested
Seri al i zabl e classes, so the malicious payload
does not have to be in the root object

Try to defer complex operations from the time of
creation to the time of first usage
Similar considerations apply for the r eadExt er nal

method which implements the receiving part of the
Ext er nal | zabl e interface

B-xrocusteam

AP3: Privileged Code Side Effects

<+ The Basic Java Access Algorithm:

, and only if every protection
domain in the current execution context has been granted the
said permission, that is, if

» A permission is only granted when all
protection domain D; contain the
permission p

N

Vo N

|
Pl i

2\

| |

=1

B-xrocusteam

AP3: Privileged Code Side Effects

Privileged code (
stack inspection algorithm

Needed where the permissions on the application level (user
classes) do not match the needed permissions to perform
necessary operations on the middleware/system level

()

) is used to break out of the

araphics application initializeDocument
A graphics routing generateTmpFile /
Java.io File create TempFile 5
Java.io File checkAndCreate [
java lang.Security. Manager checkWrite &
java.lang.Security. Manager checkPermission
java security AccessGontroller checkPermission
java security AccessControlContext checkPermission

Graphics application initialize Document
Some graphics library generateSymbol Font
Java.awt Font reateF on
java.security. AccessController doPrivileged 5
Java. awt Font$1 i
Java.io File createTempFile
Java.io File checkAndCreate
java.lang. Security Manager checkiynte
LN e java.lang. Security Manager checkPermission
L java.security AccessController checkPermission
""""" java.security AccessControlContext checkPermission

AP3: Privileged Code Side Effects: Risk and

Extent
Risk
<= An attacker may misuse this condition to escalate

privileges and escape a limited protection domain
(such as the JNLP or applet sandbox)

- he knows the privileged code blocks in the JDK and the privileged
codesources of the application

- by a luring attack he tries to trick control into privileged code blocks and
force that block to use parts of his injected payload

Extent

escape the applet sandbox and test existence of
files on the client's machine

transport temporary files (such as executables)
to the client’s machine, which can be launched
later (http://www.derkeiler.com/Mailing-

Lists/Full-Disclosure/2004-07/0462.html)

fill up the remaining free space of file system of
the client machine with a large file containing
zero bytes

http://www.derkeiler.com/Mailing

» 2005

AP3: Privileged Code Side Effects: Risk an

2 Full-Disclosure: [Fu isclosure] IE sucks : sun java virtual machine insec _ Firel =10 ij

Datei Bearbeiten Ansicht Gehe Lesezeichen Extras Hilfe

¥ -~ ,—
<::| * [X L‘_Z"g ?"'_/;\!‘ | | htkp:fivaens, derkeiler . comfMailing-List s Full-Disclosuref2004-07 /0462, html ‘:J (@ {=ta] |GL

’ Getting Started (54 Latest Headlines

Date
= Mext message: I

Previous messagy

-Fertig
) & start] | 2} e GiBr@eds | va”@lZ- Sz~ Eee] G| S| B @se] @a] O] Dw| Lor | BEn _ B« @ 1409)

2 Xcon 2005

AP3: Refactorings

<~ No refactorings available

< The described bugs are still in the JDK
so unfortunately no refactorings
available

< Although most of those were reported to
Sun in Q272004 or earlier

— _ 2 Xcon 2005
AP3: Privileged Code Side Effects:

How to audit ?

1. find candidate classes by detecting
doPri vi | eged calls

2. For these classes determine if user-supplied data
IS propagated to the privileged code block that
causes to

I. Pass access to protected resources
Il. leak secret data

I1l. Perform unwanted modifications
to untrusted code

This process can be partially implemented by a
Findbugs bytecode detector

B-xrocusteam

2 Xcon 2005
AP3: Conclusion and Suggestions

Conclusion

Is a powerful but dangerous construct
to tweak protection domains

Suggestion
++ To Sun:

- Please fix bugs in privileged code JDK blocks

<+ To Component Users:

- Check 3" party libraries for vulnerable blocks before usage, as
they may break your security policy

++ To Middleware Developers:

- Keep privileged code in own code as short as possible
[http://java.sun.com/security/seccodeguide.html]

- Detaint user-supplied data before propagating it to privileged code

B-xrocusteam

http://java.sun.com/security/seccodeguide.html

2 Xcon 2005
AP4: Inappropriate Scope

> As a rule, reduce the scope of methods and fields

as much as possible. Check whether package-
private members could be made private, whether
protected members could be made package-

private/private, etc. [Sun Security Code Guidelines]

> This should be especially true when you design

trusted JDK extensions, such as the Java Media

Yamework (JMF)

B-xrocusteam

ZYxewn2005 B84
B AP4: Inappropriate Scope: Risk and Extent &8
~ An attacker can exploit the trusted protection domain

“‘AllPermissions” of a java extension in to

escalate privileges. For example the JMF

- installs extra trusted classes to
- accesses system memory via native routines

< The public JMF class exposes a public pointer to

physical memory [long value data]

- So untrusted applets may read your system memory

B-xrocusteam

Inappropriate Scope: Risk and Extent

http://classic.sunsolve.sun.com
/[pub-cqgi/retrieve.pl?doc=fsalert%2F54760

SRR DOCOTTTETTT Jomp 1o [PRRTES 10 7]
¥ Security Information Font Size[Increase | [Decrease |
-Latest Security

e smopsts__foate |

'SEC'-!"“}" Bulletin BT Java Virtual Machine (JYM) May Crash Due to Yulnerability in the Java Media Framework 14 May
Archive (JMF) 2003

-Security Sun Alerts
-Security T-Patches
Sigw T-Patches e .
License Sun(sm) Alert Notification
-Download T-Patches
-Solaris Fingerprints * Sun Alert 1D: 54760
-Security PGP Key * Synopsis: Java Virtual Machine (MWD May Crash Due to Wulnerability in the Java Media Framework (W)
* Sun System = Category: Security
Handbook = Product: Java Media Framewark
* Advanced Search = BuglDs: 4850093
* Japan-Only * Avoidance: Upgrade
" State: Resaolved
SunSolve Related: * Date Released: 14-hay-2003
- Sunsolve YWaorldvyide * Date Closed: 14-May-2003
- SupportForum * Date Modified:

- . Impact

A vulnerability in the Java(Thi) Media Framewark (IMF) may potentially allow an untrusted applet to exit
unexpectedly ("crash”) the Java “itual Machine (R or gain unauthaorized privileges..

Handoook S2anch The

= Java Media Framewark (JMF) 2.1.7 for Windows, Salaris, and Linux

“ = Llava Media Framewnrk CIMFY 21 Ta for Windnws Snlaris and Dinoy

http://classic.sunsolve.sun.com
http://classic.sunsolve.sun.com

AP4: Inappropriate Scope: Refactoring

Before (JMF 2.1.1¢c)

After (IMF 2.1.1e)

M public NBA {
public void finalize()
public Object getData()
public Object clone()
public void copyTo(NBA nba)
A public void copyTo(byte
ll javadata[])

public long data;
public int size;
public Class type;

B

public NBA {

protected final synchronized void
finalize()
public synchronized Object getData()
public synchronized Object clone()
bpt;blic synchronized void copyTo(NBA
nba
public synchronized void copyTo(byte
javadatal])
private long data;
private int size;
private Class type;

}

2) Scope of public finalize method degraded to protected, so no class can overwrite it
3) Data fields were moved to appropriate private (class local) scope

ING.CHINAR 2002-Z

ﬁ)(FOCUST EAM

U

00s

)

_ _ 2 Xcon 2005
AP4: Inappropriate Scope Side Effects:

How to audit ?
1. find candidate classes by detecting publ i c
classes
2. For these classes determine if
I. Data fields are declared as publ i c

Il. Methods are declared as public

I1l. Internal references to private, protected data are returned by a
publ i ¢ method

The candidate selection can be implemented by
using the predefined detectors of Findbugs

B-xrocusteam

2 Xcon 2005
AP4: Conclusion and Suggestions

> Conclusion

Inappropriate Scope on fields and methods may
allow to bypass access control mechanisms

~ Suggestion
[http://java.sun.com/security/seccodeguide

_htmi]

 Refrain from using public variables. Instead, let

the interface to your variables be through
accessor methods. In this way it is possible to
add centralized security checks, if required.

_~ Make sure that any public method that has _

P access to and/or modifies any sensitive internal

| states includes a security check.

http://java.sun.com/security/seccodeguide

2 Xcon 2005
AP5: Non-Final Static Fields

,Refrain from using non-final public static variables

» To the extent possible, refrain from using non-final public
static variables because there is no way to check whether the

code that changes such variables has appropriate
permissions.

In general, be careful with any mutable static states that can
cause unintended interactions between supposedly
iIndependent subsystems®

[Sun Security Code Guidelines]

» According to Sun Microsystems [
http://www.sun.com/software/security/glossary.htmli]
the term covert channel has the following definition:

A communication channel that is not normally intended for data communication. It allows a

process to transfer information indirectly in a manner that violates the intent of the security
policy.

a.x We will show that the Antipattern careless use of Static g

Y Variables allows malicious code to exploit covert chanffels
between protection domains

Fxpocus TEAM

http://www.sun.com/software/security/glossary.html

AP5: Non-Final Static Variables, Risk &

Extent

Risk
<+ Static Variables that are loaded by the boot

classloader (like the ones in rt.jar) or by the
extension classloader are singleton objects in a JVM

» Non-final static String fields may transport

Browser VM

Applet from site A Applet from site B

Serial obj. Serial obj.
A

Protection Domain A Protection Domain B

Y org.apache.xalan.processor.XSLProcessorVersion.LANGUAGE
org.apache.xalan.processor.XSLProcessorVersion.S_VERSION
javax.swing.JDesktopPane.LIVE_DRAG_MODE

Protection Domain
llib/rt.jar ,AllPermissions®

AP5: Non-Final Static Variables, Risk &
- Extent

heise online - ¢t - ¥ - Technology Review - Telepolis - mobil - Security - ¢%TY - Johs - [T-Mark

. G
O:r’ /] - :} . {ﬁ%var:l«ht nicht jeder.
: il .'_,JIJJJJ'J = Ist auch besser sal

| Suche .. = 23.10.2003 10:27

- << Yonge | Hichste »=]‘—
-Tage-News

News-Arcluy s : Hilf
- v I Insionierte . Iava- Annlets hrechen ans

http://www.heise.de/newsticker/meldung/41308
Unsigned Java-Applets jump out of Sandbox

[l Chat-Ewents Eessourcen des Systems und anderer Prozesses verbietet, P

English Pages |
[Louf Grundlage der Java-Elasse 21C3: Hacl

Abo & Heft org.apache.xalan.processor. sl Processar Version our

E ontalct Werarbettung von ZWI-Daten hat Schoenefeld eine Demonstration
|| Mediadaten des Fehlers programimert. Ein unsigriertes Applet hest dabet Daten
: aus emer Varablen eines sigmerten Applets emer anderen Doméne. A pple Klag
: :;::;ﬁ:z:ustemos Verandert das unsigmerte Applet den Inhalt der Vartablen, kann das Geheimnis
' ; sigrierte Applet sogar abstirzen. Getestet wurde das Verhalten it Organisch
Suns JDESSDE 1.4.2 01, eme Lésung fir das Problem gibt es Zoll fiw T
derzeit nicht. T

Besuchert

Betaversic

Thare mich vmat diacar Sicharhateliiclea Srrctarna lrnrmrearithiaran laccan

http://www.heise.de/newsticker/meldung/41308
http://www.heise.de/newsticker/meldung/41308

AP5: Non-Fina 3
Before (JDK1.42 04)

| |
) L D
. .
@, @, A @,

After (JDK1.42_05)

8 public class org.apache.xalan.processor.

8 XSLProcessorVersion {

3 public static final java.lang.String
8 PRODUCT;

g public static java.lang.String

8 LANGUAGE;

public static int VERSION;
public static int RELEASE;
public static int MAINTENANCE;
public static int DEVELOPMENT;
/ public static java.lang.String

8 S_VERSION;

a

public class org.apache.xalan.processor.
XSLProcessorVersion {

public static final java.lang.String
PRODUCT;

public static final java.lang.String
LANGUAGE;

public static final int VERSION;
public static final int RELEASE;
public static final int MAINTENANCE;
public static final int DEVELOPMENT;

public static final java.lang.String
S_VERSION;

+

The final modifier prohibits modification of a variable after initial value was set.
Initially they only used it to protect their product name J

B-xrocusteam

_ %eon 2005
AP5: Non-Final Static Variables:

How to audit ?

1. Via a built-in findbugs detector find candidate
classes by searching for publ i c classes

2. For these classes find

I. Primitive Data fields and Strings are declared as public stati c,
non-f i nal

II. Object Type Data fields, Arrays and Containers are declared as
public static

. Methods that allow access on non-public instances of (I + 1)

B-xrocusteam

2 Xcon 2005
AP5: Conclusion and Suggestions

Conclusion

 Non-final static final fields allow to establish
covert channels between protection domains and
bypass restrictions such as the applet sandbox .

Suggestion
[http://java.sun.com/security/seccodeqguide
.html]

<~ To the extent possible, refrain from using non-final
public static variables because there is no way to check
whether the code that changes such variables has
appropriate permissions.

@ In general, be careful with any mutable static stateg-=

yWthat can cause unintended interactions between

L supposedly independent subsystems.

B-xrocusteam

http://java.sun.com/security/seccodeguide

2 Xon 2005
Antipattern 6: Insecure component reuse

,Distributed component-structured applications can consist of '.ijij
software components which are supplied by different
vendors. Therefore one has to distinguish between application
owners and software component vendors and there is a needs

for corresponding protection“: [Hermann, Krumm}]

3rd — party components might be built with a functionality
based programmer intend, whereas the control of the
confined execution models of the JDK require a security
based programmer intend.

JDK as a component-structured middleware application uses
a lot of XML functionality from the Apache foundation. Is
there enough protection against vulnerabilities of these 3d-
party components embedded in JDK ?

B-xrocusteam

2 Xcon 2005

APG: Insecure component reuse, Risk &

Ri

Extent

sk

The XSLT parser embedded in JDK is directly taken
from a previous apache XALAN standalone version,
downloadable from http://xml.apache.org

~ It is highly configurable, especially it allows to

customize the functions that may be employed during
XSLT (extensible stylesheet language
transformations)

» Non-final static arrays in trusted libraries may

contain objects that are allowed to process data
throughout the entire JVM

> We will show that the Antipattern insecure

component reuse allows malicious code to exploit

""'1;315 visibilities granted to trusted code by inserting~
malicious callbacks '

B-xrocusteam

http://xml.apache.org

AP5: Non-Final Static Variables, Risk &
Extend

http://classic.sunsolve.sun.com
/[pub-cqgi/retrieve.pl?doc=fsalert%2F57613

Document Audience: PLUBLIC

Document I0: aveE13

Title: Document 10 57613

Synopsis: Java Runtime Environment bay Alow Urtrusted Applets to Ezcalste Privieges
Upiate Date: 2004-03-02

Sun{sm) Alert Hotification
= Sun Alert ID: 57613
= Synopsis: Java Runtime Environment May Allow Untrusted Spplets to Ezcalate Privileges

o Categary: Security
= Product Java JEESDK

1. Impact The X5LT processor included swith the Jawva Runtime Environment (JRE) may allowe an
B Lintrusted applet to read data from another applet that is processed using the XSLT processor and
B, may allow the urtrusted applet to escalate privieges.

the ®SLT proceszor and may allowy the untrusted applet io escalde priviieges.

o Sun acknoveledges | with thanks, Marc Schoenefeld for bringing these issues to our attertion.

http://classic.sunsolve.sun.com
http://classic.sunsolve.sun.com

wmzoos

APG: Insecure component reuse:

r

Before (JDK1.42 05)

After (JDK1.42_06)

8 public class
@l org.apache.xpath.compiler.FunctionTable

5 public static
W org.apache.xpath.compiler.FuncLoader[]
@ m_functions;

[...]

B

public class

org.apache.xpath.compiler.FunctionTable { S

private static
org.apache.xpath.compiler.FuncLoader[]
m_ functions;

[...]
b

This refactoring is adjusting the enhanced functionality of the component to
the level needed for running the component securely in confined
execution models. Technically the refactoring cures an antipattern 4 and an

antipattern 5.

The private modifier prohibits malicious code to modify the table consisting

1.

audit ?

3rd-party components may include all types of
antipatterns, from our experience check at least

for the antipatterns presented here

1. Check for Integer Overflow
2. Check for proper Serialisation, watch for side effects

3. Check for defensive use of privileged code, especially when
using privileged or “AllPermission” protection domains
Adjust inappropriate scope to the level needed and add security
checks to public available fields and functionality

Close covert channels in static non-final fields and static mutable
container types (also indirect uses)

B-xrocusteam

2 Xcon 2005
APG6: Conclusion and Suggestions

> Conclusion

~ Even if your own code is secure, 3" — party
components may ruin your security concept

~ Suggestion

 Ask the vendor of the components you reuse ,
whether they check their components with
findbugs or similar tools

 Ask for a findbugs report before buying, this may
Increase your trust to component

A lot of open source projects already include such
a report,

@Rbut some closed source guys still have to learpZ =, B
S xeon [

B-xrocusteam

Q&A

Send me an eMail

Contact
marc@marc-schoenefeld.com

Detectors Download at

presented www.illegalaccess.org

B-xrocusteam

http://www.illegalaccess.org
mailto:marc@marc-schoenefeld.com

