
1

Anti-Virus Heuristics
Drew Copley

2

3

Introduction: Speaker
My name is Drew Copley, and I am a Senior
Security Researcher at eEye Digital Security

My AV research is the result of doing
preliminary research for our products, at
the design phase, as well as carrying
through in prototyping models. Also, this
information is derived from working on
various “proof-of-concept” projects over the
years.

4

Introduction: Speech
The primary aim of this speech is to redefine the
way you look at anti-malware protection technology,
a bit.

For years now, malware researchers of all kinds
have been very aware of the fact that most
mainstream AV products have been failing their
users needlessly and extremely.

What is heuristics, why has it not been widely turned
on by default? Why does it generally fail, and can it
really work ever?

5

Why Anti-Virus Heuristics Should
Interest You

“Heuristics” means ‘investigative analysis’, as
everyone knows.

But, what “heuristics” really means in this context is
simply making more intelligent the process by which
defensive software examines potential malware.

Heuristics à dynamic – intelligent signatures…

Non-Heuristic à static – dumb/blind signatures…

6

The Heuristic Model Defined

Any heuristic module will have multiple modules
within it

All of these modules may be called heuristic modules,
but they are, in fact, separate modules such as:

a module which is designed to deal with
emulation
a module designed to utilize static analysis
a module designed to deal with
packed/encrypted files

7

Anti-Virus Pitfall: Heuristics
Missing

A primary fault of many modern Anti-Virus products
has been that they have relied almost exclusively on
static, binary signatures. They have literally taken
out the “intelligence” of “intelligent analysis”.

For years now, Anti-Virus solutions have been
trivially overcome by script kiddies because of this
flaw in their thinking.

$ = one software buy
$$$$ … = continual money income through sig

updates

8

Anti-Virus Pitfall: The Physical
Security Metaphor

Physical security and computer security go hand in hand.
The wall between the two is illusionary.

Important metaphor to use: AV product as airport security
checkpoint.
Code Byte Signature engines alone would be like if they
had pictures and were comparing them to people.

This means no:
X-Ray machines
No pat downs for weapons
No observation of profuse sweating or shaking
Infamous criminals could waltz in wearing a paper bag over their head
You could walk in carrying a bazooka
No DNA check
No bomb/drug sniffing dogs

9

Some simple, but
effective examples,
before continuing

10

Example: Generic Detection of
Morphine Encrypted Files

Morphine Stack and Heap Values:
Size of Stack Reserve: 00100000
Size of Stack Commit : 00010000
Size of Heap Reserve : 00100000
Size of Heap Commit : 00010000

It turns out they use Commit values which are entirely unique
here. This was blindly found and proven, by baseline scanning
against massive sets of non-malware binaries using an heuristic
diagnostic system.

Examples of typical PE Header Stack and Heap
values:
Size of Stack Reserve : 00100000 Size of Stack Reserve : 00100000

Size of Stack Commit : 00001000 Size of Stack Commit : 00004000
Size of Heap Reserve : 00100000 Size of Heap Reserve : 00100000
Size of Heap Commit : 00001000 Size of Heap Commit : 00001000

11

Example: Where Problem Is In
Morphine Code

As you can see, very simple problem for them to fix
This is how it goes… but, you can get past versions, when you
find a bug like this
There is always another bug, always another fix
Much better then slow processing, like KAV does
Commits not good… would guess, because of values not lined
up, maybe another reason

12

Example: Generic Detection of the
Family of Gator Spyware

Version Information checking – very simple,
information has to be unique

“Gain Publishing” is a popular spyware maker who
makes “Gator”.

This information is contained in the resource section
of a file.

“Gain” and “Publishing” in that order, in the version
information, with no other strings à unscientific,
human judgement to be unique, unlikely false
positive

13

Example: “EduBot”, Polymorphic “Gaobot”

Time Date Stamp : FFFFFFFF
(Image Section Name).edubot ç Very bad, this
alone makes an excellent signature
Import table open… example give away imports à
the combination really makes the file stand out:
psapi.dll=EnumProcesses,

shell32.dll=ShellExecuteA, ws2_32.dll=connect,
ws2_32.dll=send, netapi32.dll=NetUseAdd,
netapi32.dll=NetShareEnum,
mpr.dll=WNetAddConnection2W,
kernel32.dll=OpenProcess, and etc…

14

The Real Problems of Heuristic Agents
The primary, real problem of Heuristic Agents is incredibly
simple: obfuscated files.

Primarily, this has meant files which are packed/encrypted.

The initial Heuristic technology worked well against
malware, until packers/encryptors came into the scene. *

This also helped the move in the mainstream AV industry
away from Heuristics in their default product. *

* Peter Szor, “"The Art of Computer Virus Research and
Defense" , Symantec Press, 2005

15

Example: Detecting Malware by UPX
Packed Microsoft Files

As UPX is an opensource packer, it is highly unlikely that Microsoft
will ever choose to pack their files using it.

A very simple and generic UPX detection routine simply consists of
checking for the presence of a file section with the string “UPX” in it.

For instance:
(Image Section Name)UPX0 | (Virtual Size)00033000 | (Virtual Address)00001000 |
(Size of Raw Data)00000000 | (Pointer to Raw Data)00000400 |
(Characteristics)E0000080 | (Info) ERWU | (Percent)0.0%

There are ways to obscure the packer used, and there are
many edited versions of UPX out there, as much of the
source is open.
Example found live in wild, unknown to most Signature
only engines
Claimed to be “Microsoft” in the versioning information…
This kind of “generic” check is immediately good for
“classes” of malware – Subseven versions found which also
trigger this

16

Example: Detecting Malware by Borland
Forms in Microsoft Binaries

Microsoft and Borland do have various agreements

Cold day in Hell when a Microsoft compiled file
contains a Borland form

Borland forms are separate files added as a resource
section in the PE File, with the extension of .dfm,
generally.

Vast number of malware caught through this method
(Delphi just rocks)

17

The Irony of the Problem of Obfuscated Files
A primary problem with signature only based AV
solutions is also packers/encryptors.

This is the way it has worked in the underground for
years: à somebody releases some trojan code to
the underground. à AV companies make sig for code
à trojan code is obfuscated à AV companies make
sig for “new” code à … …

Nearly endless iteration of this… so nearly endless
iteration of trojan “versions”…

18

The World of Morphing Malware
These changing iterations of the malware bring us to
the problem of morphing malware. Morphic malware
means that the file itself is changing.

Most common form of morphic malware:
NOT poly/meta morphic designs (Likely to
become more popular – bugs, hard to do)
File changed through packers/encryptors
LESS common, but common, file changed
through binary editing
file changed through the open source/source

19

Spyware: Motives and the Future
“Spyware” today means any type of spying agent,
even including trojans and rootkits – not just
commercial spyware

Protection against Spyware – as opposed to other
types of malware - is first and foremost for any
proper anti-Malware agent.

Two growth criteria:
The increase of the market for this stolen data
The increase of the market for zombied machines,
in general. (Proxies, archives, DDoS botnets, etc)

20

Packed/Encrypted Malware: The PE File
Format

The Portable Executable File format is the format of
w32 executables.
For these purposes, the main things to be aware of
is that there are these sections of w32 files:

There is an import section, APIs used by the file
go here
There is an export section, APIs exported by the
file go here. Generally, this are found in DLLs, not
in executables.
There is the preliminary shell data, and then the
Entry Point (EP) of the code
There is a definition of the sections in which the
file is divided

21

Packed/Encrypted Malware: Fast and
Basic Look

There are a number of different ways to pack/encrypt files.

The basic idea is simply that you shell the binary, moving
the original binary, and cover it with a new shell

The contents of the data of the original file are encrypted
or packed or both encrypted and packed

The packer/encryptor runs instead of the original binary, it
decrypts/unpacks the contents of the original file in
memory, then the original file is loaded and run in
memory

22

The Basic Attack Against
Packed/Encrypted Malware

The most basic attack against packed/encrypted
malware is simply in finding when the original file is
made complete in memory, then dumping this
process from memory to file

Find the Original Entry Point (OEP) …

There are a wide range of tools which have been
developed to help in this activity out there

Ollydbg is often used for this, scriptable plug-in,
opensource database

23

Automating the Cracking of
Packed/Encrypted Binaries

“Why can this process not be automated and applied
to modern AV?”

Modern Heuristics is and will be working on this
problem

The foremost problem here: requiring the executable
to execute or pseudo-execute (more typical scenario)

24

The Emulator and Sandbox in AV
One way of doing this involves extensive API
hooking on the module (Sandbox)

A more complex, but safer way of dealing with the
problem is that you emulate the entire system
(Emulator)

Another advantage is easier flexibility to work
with a static heuristic module

Ultimately, you see similarities between the two
methods, and you often may end up with the same
work

25

“Static Heuristics” and Packed/Encrypted
Malware

“Static Heuristics” “VS” “Dynamic Heuristics”

The parallel here is between the debugger model
and the disassembler model.

In both cases you translate the OP codes of the ASM
correctly… Dynamic offers an edge against unknown
code

Static offers an edge for:
Anti-emulator tricks (mollasses code, fuse
functionality, improper OP handling)
speed

26

Static Heuristics and File Analysis, Part II
(Finding Packed/Encrypted Files)

One of the first state type heuristic checks any
heuristic engine needs to do is to check whether the
file is packed/encrypted

EP in first section of file
Section names
Existance of other packer/encryption code signature
Entropy checks came from manual inspection, good
usage of “Zero Order” entropy in PEiD

ØExpect attacks against every method

27

Example: Hex View of Encrypted Vs
Unencrypted File

28

Heuristics Works Best With Other Modules
The detection of network Scanning Code is a good
example of how heuristics can work best with other
modules, lowering false positives

Network Scanning detection is rather easily detected
by the very action of scanning (Molasses code,
however, is a good attack, but not perfect)

If the malware is unknown and undetected by other
protection agents, then it might still yet be caught
by the IPS system

29

Bypassing Detection by Bypassing APIs
A good example of more obscure file infection or
hiding techniques involves bypassing the available
APIs

Raw NTFS engine / Device Object tricks…
Detection of Object manipulation…

Presence of NTFS structures (for instance)
Call to Object manipulation routine
Disassembled code chunks found in other attack tools

Ø This also shows us the basics of heuristic analysis
against other types of attacks

30

Example: Bypassing APIs Give Other
Fingerprints (Quick Run-Through)

Bypassing the typical win32/NT APIs
for raw disk access is fun
This is an effective method for both
attack and defensive code…
Russinovich used this method for
accessing the raw disk to detect
rootkits that relied on hooking into the
win32/NT APIs in his tool
Though I have not wasted my time on
building it, I could use the engine to
create spyware which uses a redundant,
distributed storage system such as with
FEC (Forward Error Correction) across
the raw disk
There are many other potential attack
possibilities with such a system
Definitely, there are ways to obscure
structures… but such things are just
good examples for ways to generically
detect and attack classes of such attack
code and families of such malware

31

Example: Evidence Collection and Rule
Creation (Quick Run-Through)

Tag and classify a piece of potential malware code according to
The degree of likelihood is to be found in non-malware code… such as

hooking code, firewall attacking code, AV disabling code, or API obscuring tables

Found iteration of code Found Iteration of Code Potential Iteration of Code 1

Potential Iteration of Code 2Potential Iteration of Code 1

This kind of table shows the evolution of various types of malware
through the usage of various obscure and potential dangerous
functions or pieces of code
You may be able to predict some uses of this code before it is used
In other cases you simply are reacting from what iteration is found
in the wild – however this more dynamic method is useful for
finding a larger body of families of malware then mere bytecode
signature analysis

32

Classes and Families
Two concepts here to bear in mind: “Classes” and
“Families”

Heuristics provides generic protection against
classes of code attacks and families of malware

Malware tends to recycle code, like everything else

Ludicrously repeated examples:
Run on reboot methods
Scan code
Hooking code
System management code

33

Automating Human Wisdom
Wide range of “bad behaviors” which go beyond
mere API inspection

Teach the system to divide between good and evil,
operating on evidence, as human wisdom operates
on knowledge

Wrong to consider it as cybernetic style AI, rather
should be thought of as a living system of Law

Popular design error is to try to remove the human

34

Ambiguous Morality and Evidence
There are certain actions which an application should
never perform

“Subjectivity” is objectivity from a perspective

Actual cornerstone of Computer Security: Privileges

A good principle for Heuristic system evidence
collection:

Sheer weight system does not entirely work
Appearances can be deceiving
Suspicious evidence does have value for detection
Absolutary condemnatory code: smoking gun

35

Example: Redirection, Subtleness
In A Nutshell

Version of Reality -> Version of Reality -> Version of
Reality -> Reality

Obscuring API parameters -> Obscuring API
parameters -> Obscuring API parameters -> Actual
API Call with parameters

Obscuring Content -> … -> Raw Code

Example: encrypted API table -> Decryption of API
import from table -> Dynamic call of API import

Weakest links:
End result
Reused code

36

Sidenote: Morphic Protection Software
and System Integrity Solutions

Malware anti-anti-virus/protection modules
Signature database driven

Anti-Anti-Malware code is absolute condemnatory
evidence: smoking gun

Who is on the system first wins

Two good ways of protection:
Baselining/crossview/system integrity systems
Morphic/Stealth anti-malware

37

Example: Signs of Absolute Condemnation
Common example of
strings found in malware
(once it is
unpacked/decrypted,
usually)
At the simplest level,
these really mark a family
of malware
Having some kind of
unique string in you which
was first used in a piece of
malware is a great
example of ‘absolutely
condemnatory code’.
This is rather like
tattooing a gang sign on
your neck

38

Conclusions
Most of the conclusions here, you should have made
with me and not even noticed. Even if you did not
agree with some of my concepts, you should have
now become aware of such things as:

Smarter signature based AV systems are the
inevitable future
Morphic malware includes the process of hand
edited malware, and this is a genuine, but
surmountable malware problem (the term
“morphic malware” had to be coined for this)
Physical security models are extremely useful to
be applied to computer security models… but this
is generally overlooked

39

Conclusions, Part II
Conclusions

Packed/encrypted files is both a central problem of heuristics and a central
pitfall of malware in general, the future of malware creation is in ingrained
packed/encrypted techniques and generic evasion of packed/encrypted
techniques
“Heuristics” is an illusionary term, but what problems exist for heuristics also
exist for signature systems – an “heuristic” system, is, in fact, a signature
system… a more dynamic signature system
The basis of evidence and suspicion is crucial to any good heuristic system…
this is the difference between a system that is overcome with false positives
and a system which can operate without any false positives
We must be aware of illusionary boundaries in defining terms, for instance,
morphic malware must, by definition, include the problem of manually
changed malware... And the various modules of a heuristic system, such as
an emulation module or a static analysis module should not by necessity
define the entire heuristic system itself
The best heuristic system should not attempt to be all things, but should be
a piece of the whole in a complete security system… this is the way to avoid
false positives, by not putting too much stress on any single module or
system…
False positives are bugs in any system, and they degrade the complete
functionality in any system… they should not be accepted as necessary for
any system, but should be considered problems which are surmountable…

40

Conclusions, Part III
Conclusions

Most mainstream AV has not been keeping up with attacks from the wild,
when they have always had the capabilities to do far better
Even in such a new industry, as computer security, tradition can quickly be
created and kept and this must be fought against and avoided to produce
results
A solid evidence and suspicion based heuristics systems can operate, but it
must be programmed well by heuristic signature coders… and it must not
avoid basic dictates of the criminal justice world to operate, but must
embrace them
Defensive software must embrace offensive software and the reverse is true,
otherwise there is a dangerous disconnect
Many of the conclusions made in this paper have used common sense style
arguments with readily observable evidence supporting them for the
purposes of winning the ideas
Code which is absolutely malicious in nature means code which is more
provably “bad”, such as anti-anti-virus code, spying code, spreading code
Various other conclusions, understanding about current heuristics and future
heuristics… such as the usefulness of understanding “perspective” and
“subjectivity” within a “moral system”, and viewing the heuristic system as a
moral system… and the classification of heuristic protection possible, that
being against “classes of attack” and “families of malware”

41

Various Credits
Foremost, I must credit all of the malware writers out there who
have greatly aided the advance of the science of the defensive arts,
premier among these groups for full disclosure, open source type
projects have been 29a… also the various contributors to the
rootkit.com projects… it is, however, impossible to fully credit the
works of all of these people… further it is also impossible to credit
all of the malware researcher’s works out there whose work has
influenced this
Peter Szor’s book, mentioned in this speech, and his various other
writings have been extremely helpful as a coherent cataloguing of
the techniques used by malware authors -- I have marked out
where his work has been useful herein
Mark Russinovich’s paper on AV engines and general low level
papers have been extremely instrumental and educational in many
of these areas over the years (I did not, however, base my NTFS
system on his work, if anyone is wondering, but due credit goes
there to the Linux NTFS team for their extensive documenting of
the binary format of the NTFS file system.)

42

Credits, Continued
Credits further mentioned, “CrazyLord’s” paper in Phrack
on Physical Memory exploitation and PEiD’s Zero Order
entropy method – their exact method used was found in
their forums
Nico Brulez’s Honeynet challenge was referenced in this
work, especially regarding the usage of a virtual machine
in terms of AV systems
Thanks to Derek Soeder for his extensive help in
proofreading this document
Most of the conclusions I came to first through
experimentation and prototyping, through work in this
field, on both the offensive and defensive sides of things:
many conclusions I later found supported elsewhere. My
initial API analysis tool I wrote and released as shareware
three years ago. My initial interest in heuristics dates back
to some underground work some years ago.

