
New thoughts in ring3 NT rootkit

author : baiyuanfan
mail : baiyuanfan@163.com

August 7, 2005

mailto:baiyuanfan@163.com

Contents

The current development situation of NT rootkits
New thoughts in ring3 NT rootkit
Implenment TCP port reuse by hooking asynchronous I/O
call
Remote control through port of iis6 in ring3
Hide myself:self-delete and revive
Some other thoughts and discusses
Appendix

Chapter One The current development
situation of NT rootkits

As the development of backdoor and anti-backdoor
technology,normal sort of backdoors which are more or
less just like remote-control softwares became unproper
for complicated environments:firewalls,security
policies,IDS etc..Firewalls restrict the applications’ opening
ports or rebounding connections at will;Various kinds of
detectors list the suspectable processes,files and registry
keys to detect and kill backdoors. Rootkits were born in
this case.They are senior backdoors；They have abilities
to hide theirselves and bypass the security facilities like
firewall.

Chapter One The current development
situation of NT rootkits

Hide the registry keys
or other it need for

starting with system

Hide its own files or
infected system files

Hide its process
if it has

Supply a way to
bypass firewalls
Eg.port reuse

Rootkit’s
functions to
protect itself

Chapter One The current development
situation of NT rootkits

1. ring3 scope:
Representative product : Hacker Denfender
Hook native APIs in ntdll.dll to hide specific
processes, services,files and ports
Effecive upon common checks by administrators; But
upon the kernelmode driver level check,it is
useless,for the latter check donot go through the
hooked executive routine.
Port reuse is implemented through hooking win32
API WSARecv / ReadFile.
Port reuse donot work under new Microsoft IIS6
environment.

Chapter One The current development
situation of NT rootkits

2. ring0 scope, many well-known products are just of
tech-show kind. In this article I donot discuss rootkit
technology in ring0. Briefly, ring0 rootkits are more
powerful,more complicated and more noticed by HIDS and
anti-rootkit.
3. So we discover that how to design stable,effective
port reuse and how to resist anti-rootkit detect from
kernelmode are the two important questions to be solved
nowadays of ring3 NT rootkit.

Chapter Two New thoughts in ring3 NT
rootkit

Integral ideas
1．Implement synchronous and asynchronous port reuse
by hooking local system services
2．Specially deal with windows2003’s IIS6
3. Thoughts in self-hide:Prefering “NO exist” to “Hide” ,
resist the backdoor check
4． Multi-theads cooperating system
5． Complete most backdoor work by ourselves,do not
work with other backdoors carelessly
6. I implemented an in-test ring3 NT rootkit:byshell
v0.67 beta2,to demonstrate my thoughts.

An integral rootkit

Port reuse module Self-delete & revive Cmdshell

Hook
native API Special deal iis6 Self-delete

Intecept system
shutdown
& revive

Multi-thread
cooperate

Chapter Two New thoughts in ring3 NT
rootkit

•Model of a integral rootkit system

Chapter Three Implenment TCP port reuse
by hooking asynchronous I/O call

The way to reuse port by hooking network I/O is
comparing the received packets before the hooked TCP
receive function return to upper caller. If the packet
contains specific signal sent by backdoor controller, we
grab the socket for backdoor comunication and notice the
caller that this connection has been closed. So we can
implement port reuse that donnot affect normal service
already bound on that port.

Chapter Three Implenment TCP port reuse
by hooking asynchronous I/O call

Application
request
an I/O

Winsock
Native

System Service

Tcp/Ip
drivers

(AFD,TDI,NDIS)
ring0

Apply
request

Return
result

Native
System Service

Application
get result Winsock

Here we have several chances to intercept the result in ring3, so
we just do if(!strcmp(buff,”signal”))(dobackdoor();)

SPI

SPI

Chapter Three Implenment TCP port reuse
by hooking asynchronous I/O call

Hooking synchronous network I/O is simple that we can
directly compare the data after the real function returned
to us and before we return to caller.
But towards asynchronous I/O call, there are two
difficulties :

we cannot directly compare the data after the real
function returned to us and before we return to caller,
since when the real function returned to us, the data in
buffer was not updated. Later when the data updating
completed, the system will notice the caller through
other methods.
winsock library offer too many kinds of I/O models in
win32 level. This could confuse us and let we not know
how to hook.

Chapter Three Implenment TCP port reuse
by hooking asynchronous I/O call

1. Backgrounds: native API level I/O module
Through hooking native API level network I/O functions, we
can get rid of the mass of win32 level I/O models.
As I known all the windows native APIs dealing with I/O give
its caller 3 choices. Synchronous I/O, asynchronous I/O that
notice the operate completion by event object, and
asynchronous I/O that notice the completion by user APC
routine.
We can have a see on ZwReadFile, which invoked by win32
level well-known function ReadFile.
NTSYSAPI
NTSTATUS
NTAPI
ZwReadFile(
IN HANDLE FileHandle,
IN HANDLE Event OPTIONAL,
IN PIO_APC_ROUTINE ApcRoutine OPTIONAL,
IN PVOID ApcContext OPTIONAL,
OUT PIO_STATUS_BLOCK IoStatusBlock,
OUT PVOID Buffer,
IN ULONG Length,
IN PLARGE_INTEGER ByteOffset OPTIONAL,
IN PULONG Key OPTIONAL
);

Chapter Three Implenment TCP port reuse
by hooking asynchronous I/O call

If caller set up an APC routine, the system ignores the
event object parameter, deal this I/O as asynchronous
I/O that notice the completion by user APC routine,
and will callback its APC routine when the I/O was
complete. If caller donot give an APC routine but do
give an event object, it will be dealed as asynchronous
I/O that notice the completion by event object, when
the I/O was complete the system will signal the event
object. If caller set up neither, system deal it as
synchronous I/O and will block the caller until the
operate was complete.
no matter how complex we feel the various I/O models
in win32 level, like such “completion port” model, they
just depend on these 3 basic methods. Now we can
just process these three and need not to discuss
various complex win32 level I/O models. So we solved
the sencond difficulty refered above.

Chapter Three Implenment TCP port reuse
by hooking asynchronous I/O call

2． Four methods of hooking native level asychronous
I/O

Now we discuss the most troublesome first difficulty.
Towards asynchronous I/O how and when could we
compare the data in buffer? There are four methods
to be select.

Chapter Three Implenment TCP port reuse
by hooking asynchronous I/O call

Donot check
data unless
I/O return 0

Change
event

async I/O
to APC

async I/O

Directly
compare

data
nearby

Replace
original

event object
/apc routine

Hooking
asychronous

I/O

Chapter Three Implenment TCP port reuse
by hooking asynchronous I/O call

A. Replace the event object or APC supplied by caller to
ours

The way to replace APC is easy. When a call using
APC complete-notice comes we change the APC
routine parameter to ours and save original APC
routine and context in our APC context. When I/O
completed our APC routine was called by system.
Here we just compare the data in buffer, if it matches
the signal of controller we execute backdoor, else we
transmit the APC to caller through our saved original
APC routine and context.
Towards event complete-notice asynchronous I/O, we
cannot set up a single event to replace the caller’s
event and tranmit the signal. Since when many
concurrent requests comes, we cannot know which
original event is corresponding and should be
transmitted to. We can set up many new event
objects and matches them to original events one by
one, but it can obviously decrease the efficiency of
whole system .

Chapter Three Implenment TCP port reuse
by hooking asynchronous I/O call

B. Donot check data unless I/O return 0
If the packets from client arrive at the server’s
network driver faster than the applications on server
invoke a receive function, the I/O may return
success(0) instead of pending(0x103) .
This method need backdoor client’s cooperate to send
a lot of same packets in a short time. The hooked
function will not check the data in buffer unless the
asynchronous call directly returns success. If the call
directly returns success, the data in buffer was
updated already.
But unfortunately, experiments proved this method
has a low success rate, especially towards IIS.

Chapter Three Implenment TCP port reuse
by hooking asynchronous I/O call

C. Directly compare the data in buffer
No matter which returned status is, pending or success,
directly search the buffer or nearly memory for the
signal .
this method will not only cause error decisions but also
cause missing signals sometimes.
But we can design a part of error controlling code to
control the error or missing in a tolerable extent.
After we used error controlling code as above, some
missing of signals still can happen. I have designed an
network application model to bypass the directly
comparing method. Current network server
applications almost nerver use such way so the
rootkits’ purppose of reusing port can always succeed.
My demo rootkit used this method.

Chapter Three Implenment TCP port reuse
by hooking asynchronous I/O call

D. At the end of editing of this article I’ve got a new idea
to improve method A.

The oringinal method A can manage APC complete-
notice async I/O but cannot manage event complete-
notice async I/O. We can change the caller’s event
complete-notice async I/O to our APC complete-
notice async I/O. We can delete the caller’s
parameter event object, fill the APC routine
parameter with our APC routine. And we save original
event object in our APC context. Then we can execute
the function.
When our APC routine is called, the I/O operation has
complete. We just compare the data in buffer with
our specific signal. If not matching, we can transmit
the complete-notice to original caller by
SetEvent(APCContext->eventobject);

Chapter Three Implenment TCP port reuse
by hooking asynchronous I/O call

As above, this could be an excellent solution without
any error or missing, and also has a high efficiency.
This can be used not only in port reusing of rootkit, but
also in cases that need a high level of precision like
packet sniffers or loggers.
In the limit of time left, this new method lacks enough
test . I cannot confirm whether or not there will be
some side effect . For a rootkit that donot demand
precision, a simple method C is enough.

Chapter Four Remote control through
port of iis6 in ring3

Now IIS6 has been popular for winnt based network
server. Rootkits like Hacker Denfender is unable to control
its TCP port, for the connections in IIS6 is managed by a
device driver http.sys which is unable to be hooked by
ring3 code.
Then we need a procedure transfering our commands in
form of legal requests from ring0 to ring3 and intercepting
it in ring3 .

Chapter Four Remote control through
port of iis6 in ring3

user HTTP.SYS

Illegal requests are
dropped here,

like activative signal
of HackerDefender.

Simple requests
are managed

here,such as GET ring3

Complex
requests like

ASP.NET,
will come to
w3wp.exe

in ring3

Chapter Four Remote control through
port of iis6 in ring3

1．Basic knowledge: IIS6’s security mechanism
Connections in IIS6 is managed by a device driver,
not traditional ring3 application. The driver will
interpret the user’s request first. If it consider the
request illegal or simple as GET a file, it can manage
it itself.
If the request is complex like asp.net, it will transfer
the request to a ring3 low-privileged process
w3wp.exe. The latter deal with it and returns result
to driver to send to user.
we cannot grab the socket as we want. Even we
could intercept the signal and execute the command
from controller, we must find another method to
transfer the command’s result to controller.

Chapter Four Remote control through
port of iis6 in ring3

2．Solution
Use a complex protocol like soap to pass the
command through the kernel level to user level. Then
we can brutely search the stack memory of w3wp.exe
to find the command.
If we put the command in the soap target filename,
we can find it in stack. So we can construct such soap
target filename:
"/abc/12345678baiyuanfangff"//backdoor signal that
matches http and xml syntax
"1324"//repeating commands distinguishing code
"ABCABCABCABC"//encoded command
".asmx"//soap suffix
The max length of soap filename is about 256
characters. This is enough for execute commands,
but I think it not proper for transfering files, for a
soap request need a long time to be finished.

Chapter Four Remote control through
port of iis6 in ring3

3. How to send the result to controller
We should write the result in a specific temp file in web
directory. The controller could send a simple GET
request to fetch the result. Going on like this, we
implement an equivalent “connection”.
We must know the web directory to write temp file in it.
The web directory of IIS5 can be read from:
HKEY_LOCAL_MACHINE\\SYSTEM\\CurrentControlSet\\
Services\\W3SVC\\Parameters\\Virtual Roots\\ /

But for IIS6 this path become invalid.

Chapter Four Remote control through
port of iis6 in ring3

Interpret metabase.xml to get every virtual web
directory of IIS6 and decide a default one

There is such information in config file of IIS6,
metabase.xml:
<IIsWebVirtualDir Location
="/LM/W3SVC/1/ROOT" AccessFlags="AccessRead |
AccessScript" AppFriendlyName="default application"
AppIsolated="2" AppPoolId="DefaultAppPool"
AppRoot="/LM/W3SVC/1/ROOT" Path="g:\www" />
The 1 in the string "/LM/W3SVC/1/ROOT" can be any
number. And the number represent different virtual
web sites. We just need to find the minimum one,
which represents the default web site.

Chapter Five Hide myself:self-delete and
revive

Prefering “NO exist” to “Hide”
the backdoor just exist in memory in form of threads or
hooks, and delete all the files and registry keys to let
detectors from usermode or kernelmode discover nothing.
When the system is about to shut down, we just spawn
our files and registry keys.
If anti-rootkit starts earlier than us and begins to monitor
every action, we can be detected.

Chapter Five Hide myself:self-delete and
revive

Prefering “NO exist” to “Hide”

System
boot

Backdoor
starts Slef-delete In running when

faced detectors,
we just exist in

memorySystem shutdownIntercept
the action
and revive!

shutdown

Chapter Five Hide myself:self-delete and
revive

A similar thought started by nongmin in his cmdbind2
His main idea is to cooperate with a dll-injection
backdoor. The injector first inject a small function to
remote process. The function load the dll in remote
process’ address space. Next save the dll memory at
another place, unload the dll. Then allocate a block of
memory with the same address to the previous
loaded dll, copy the saved dll memory to this address.
Finally the dll can continue working, but the dll
disappear in the process’ loaded dll list. So he could
delete all the files, when system shutting down he
spawn his file.
His method is not proper for a rootkit. We need many
changes.

Chapter Five Hide myself:self-delete and
revive

His method just suits inject dll to one process onetime.
Rootkit must infect all processes and manipulate newly
created process in shortest time.

In order to infect new process immediately after it was
created, we must hook function about process creation.
Hooking ZwCreateprocess(Ex) is ineffective, for at that
time only a process object has been created, many
works concerned have not been completed. Functions
like ReadProcessMemory cannot work properly at that
time.
So we need to hook ZwResumeThread. In this function
we should decide whether the process is a new one
and do hooking if it is.

Chapter Five Hide myself:self-delete and
revive

Original dll has been deleted at time of new process’
creation, We cannot use LoadLibrary easily to load dll to
target process.

We can manually relocate all the dll codes. Manually
interpreting .reloc section and relocate all the things is
possible. But this cost a lot of time.
We can imitate Hacker Defender, which donot use dll,
all its codes are self-relocatable written by assembly.
But if we use assembly to write all codes self-
reloactable, the work will be too much to implement a
big backdoor function module.

Chapter Five Hide myself:self-delete and
revive

We can just copy all the dll image to the new process.
This demands the dll-base address has not been
occupied or there will be an error. We can use an
uncommon address as our dll’s base address.
Another question is that these kernel32 functions’
addesses we used have not been reloacted. If the new
process and its parent process have different kernel32
baseaddress, there will be a crash.
But this case just can seldom happen in some system-
supported process like csrss.exe, these system-
supported processes donot take part in the work of
new process creation.

Chapter Five Hide myself:self-delete and
revive

Intercepting the signal of shutting down
A common method is to use SetConsoleCtrlHandler() to
register a CTRL_SHUTDOWN_EVENT dealing routine in
a WIN32_OWN_PROCESS type service process to
receive shutdown signal.
Finding a proper and NT version independent service
process is not so easy. Spoolsv.exe maybe a in-
comparison good choice . But some systems that donot
use printer could have banned it.
Also we cannot choose a system-supported process
like winlogon.exe. Maybe there are something specially
in such processes, they can never receive any signal
said above.

Chapter Five Hide myself:self-delete and
revive

Intercepting the signal of shutting down
We should adopt hooking the function which should be
called when shutting down the system. There are two
of such functions to choose: kernel32!ExitWindowsEx
and ntdll!ZwShutdownSystem.
Since some virus or such kind of applications use the
latter to fast shutdown, obviously the latter is more
reliable.
But unfortunately, when the latter is called, some part
of subsystem seems to be unavailable, we cannot write
files and registry keys successfully. So we can only
hook kernel32!ExitWindowsEx to revive when shutting
down.

Chapter Six Some other thoughts and
discusses

Following are some my unripe ideas, just for discussion.
1．Anti-ring3rootkit method 1: monitor the creation of
remote thread
2．Anti-ring3rootkit method 2: hook
ZwWriteVirtualMemory
3．Anti-ring3rootkit method 3: check if important APIs
have been hooked by import/export
4．Is there any new idea on anti-ring3rootkit?
5．When the ideas about anti-ring3rootkit above have
been implemented, how could ring3 rootkits exist any
longer? Are we only have one single way to step into
ring0?

Appendix:

byshell v0.67 beta2
I implemented an in-test ring3 NT rootkit:byshell v0.67
beta2,to demonstrate my thoughts.This rootkit have
been tested successfully in my own computer under
windows2000 (sp4),XP (sp2) and 2003 (sp0).

Welcome to all for testing or improving it. Its
source is full opened.

Appendix:

References:
[1]Hacker Defender
Holy_Father(holy_father@phreaker.net)
http://rootkit.host.sk/

[2]cmdbind2
nongmin(nongmin.cn@yeah.net)
http://nongmin-cn.8u8.com

[3]ADE32
Z0mbie
http://z0mbie.host.sk/

mailto:Holy_Father(holy_father@phreaker.net)
http://rootkit.host.sk/
mailto:nongmin(nongmin.cn@yeah.net)
http://nongmin-cn.8u8.com
http://z0mbie.host.sk/

Appendix:

Thanks:
Thanks to friends in CVC(www.retcvc.com)
and xfocus(www.xfocus.net) for your
great help! Especially thanks to vxk in CVC.
Wish all friends happiness.
About author:

Yuanfang Bai,student of 2004 of Software
Engineering Academic,East China Normal
University, interest in system/ kernel develop
and security, like making friends with everyone.
Contact me: E-mail:baiyuanfan@163.com

Thanks!

http://www.retcvc.com
http://www.xfocus.net
mailto:E-mail:baiyuanfan@163.com

