Hunting down the HVCI bug in UEFI | Satoshi’s notes https://tandasat.github.io/blog/2024/01/15/CVE-2024-21305 .html

Satoshi's notes About

Hunting down the HVCI bug in UEFI

Jan 15, 2024

e Discovery to reporting
o Discovery

o

Exploitation

(@]

Partial root causing

o

Reporting
e Technical details and fixes
o Intel VT-x and its limitation
Intel VT-d
DMA remapping
DMAR ACPI table and RMRR structure
Interaction with Windows, and the bug

o

o

o

o

o Fixes
e Summary

This post was coauthored with Andrea Allievi (@aall86), a Windows Core OS engineer who
analyzed and fixed the issue.

This post details the story and technical details of the non-secure Hypervisor-Protected
Code Integrity (HVCI) configuration vulnerability disclosed and fixed with the January 9th
update on Windows. This vulnerability, CVE-2024-21305, allowed arbitrary kernel-mode
code execution, effectively bypassing HVCI within the root partition.

While analysis of the HVCI bypass bug alone can be interesting enough, | and Andrea found
that the process of root causing and fixing it would also be fun to detail and decided to
write this up together. The first half of this article was authored by me, and the second half
was by Andrea. Readers can expect a great deal of Windows internals and x64 architecture
details thanks to Andrea’s contribution!

Discovery to reporting
Discovery

1of 8 3/14/24, 6:43 AM

https://tandasat.github.io/blog/2024/01/15/CVE-2024-21305.html#discovery-to-reporting
https://tandasat.github.io/blog/2024/01/15/CVE-2024-21305.html#discovery-to-reporting
https://tandasat.github.io/blog/2024/01/15/CVE-2024-21305.html#discovery
https://tandasat.github.io/blog/2024/01/15/CVE-2024-21305.html#discovery
https://tandasat.github.io/blog/2024/01/15/CVE-2024-21305.html#exploitation
https://tandasat.github.io/blog/2024/01/15/CVE-2024-21305.html#exploitation
https://tandasat.github.io/blog/2024/01/15/CVE-2024-21305.html#partial-root-causing
https://tandasat.github.io/blog/2024/01/15/CVE-2024-21305.html#partial-root-causing
https://tandasat.github.io/blog/2024/01/15/CVE-2024-21305.html#reporting
https://tandasat.github.io/blog/2024/01/15/CVE-2024-21305.html#reporting
https://tandasat.github.io/blog/2024/01/15/CVE-2024-21305.html#technical-details-and-fixes
https://tandasat.github.io/blog/2024/01/15/CVE-2024-21305.html#technical-details-and-fixes
https://tandasat.github.io/blog/2024/01/15/CVE-2024-21305.html#intel-vt-x-and-its-limitation
https://tandasat.github.io/blog/2024/01/15/CVE-2024-21305.html#intel-vt-x-and-its-limitation
https://tandasat.github.io/blog/2024/01/15/CVE-2024-21305.html#intel-vt-d
https://tandasat.github.io/blog/2024/01/15/CVE-2024-21305.html#intel-vt-d
https://tandasat.github.io/blog/2024/01/15/CVE-2024-21305.html#dma-remapping
https://tandasat.github.io/blog/2024/01/15/CVE-2024-21305.html#dma-remapping
https://tandasat.github.io/blog/2024/01/15/CVE-2024-21305.html#dmar-acpi-table-and-rmrr-structure
https://tandasat.github.io/blog/2024/01/15/CVE-2024-21305.html#dmar-acpi-table-and-rmrr-structure
https://tandasat.github.io/blog/2024/01/15/CVE-2024-21305.html#interaction-with-windows-and-the-bug
https://tandasat.github.io/blog/2024/01/15/CVE-2024-21305.html#interaction-with-windows-and-the-bug
https://tandasat.github.io/blog/2024/01/15/CVE-2024-21305.html#fixes
https://tandasat.github.io/blog/2024/01/15/CVE-2024-21305.html#fixes
https://tandasat.github.io/blog/2024/01/15/CVE-2024-21305.html#summary
https://tandasat.github.io/blog/2024/01/15/CVE-2024-21305.html#summary
https://twitter.com/aall86
https://twitter.com/aall86
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2024-21305
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2024-21305
https://tandasat.github.io/blog/
https://tandasat.github.io/blog/about/
https://tandasat.github.io/blog/about/

Hunting down the HVCI bug in UEFI | Satoshi’s notes https://tandasat.github.io/blog/2024/01/15/CVE-2024-21305 .html

The discovery of the bug was one of the by-products of hvext.js, the Windbg extension for
studying the implementation of Hyper-V on Intel processors. With the extension, | dumped
EPT on a few devices to better understand the implementation of HVCI, and one of them
showed readable, writable, and kernel-mode executable (later referred to as RWX) guest
physical addresses (GPAs). When HVCI is enabled, such GPAs should not exist as it would
allow generation and execution of arbitrary code in kernel-mode. Eventually, out of 7 Intel
devices | had, | found 3 devices with this issue, ranging from 6th to 10th generation
processors.

Exploitation

Exploiting this issue for a verification purpose was trivial as the RWX GPAs did not change
across reboot or when test-signing was enabled. | wrote the driver that remapped a choice
of linear address onto one of RWX GPAs and placed shellcode there, and was able to
execute the shellcode as expected! If HVCI were working as intended, the PoC driver would
have failed to write shellcode and caused a bug check. For more details on the PoC, see
the report on GitHub.

Pl C\Temp\MEMORY.DMP - WinDbg 1.2306.12001.0
File

Breakpoints Time Travel

Command X

2: kd> db nt!HalpHvciEnabled 11
fffff8ee 1lbe5fd3e el

2: kd> r

Last set context:

3
(5]
Qo
@
D
"
=
1]
3
3
=
o
<
o

rax=4141414141414141
rdx=4141414141414141
rip=fffff80021271544

r8=4141414141414141
r11=4141414141414141
r14=4141414141414141

rbx=4141414141414141
rsi=4141414141414141
rsp=fffffc872c25f338

r9=4141414141414141
r12=4141414141414141
r15=4141414141414141

rcx=4141414141414141
rdi=4141414141414141
rbp=4141414141414141
r10=4141414141414141
r13=4141414141414141

iopl=0 nv up ei pl zr na po nc
cs=0010 ss=0018 ds=002b es=002b fs=0053

gs=002b

| asked Andrea about this and was told it could be a legit issue.

Partial root causing

| was curious why the issue was seen on only some devices and started to investigate what
the RWX GPAs were.

Contents of those GPAs all seemed zero during runtime, and RamMap indicated it was
outside NTOS-managed memory. | dumped memory during the Winload debug session,
but they were still vastly zero. It was the same even during the UEFI shell phase.

20of 8 3/14/24, 6:43 AM

https://github.com/tandasat/hvext
https://github.com/tandasat/hvext
https://github.com/tandasat/CVE-2024-21305
https://github.com/tandasat/CVE-2024-21305
https://learn.microsoft.com/en-us/sysinternals/downloads/rammap
https://learn.microsoft.com/en-us/sysinternals/downloads/rammap

Hunting down the HVCI bug in UEFI | Satoshi’s notes https://tandasat.github.io/blog/2024/01/15/CVE-2024-21305 .html

At this point, | thought it might be UEFI-reserved regions. First, | realized that the RWX
GPAs were parts of Reserved regions but did not exactly match, per the output of the
memmap UEFI shell command. Shortly after, | discovered the regions exactly corresponded
to the ranges reported by the Reserved Memory Region Reporting (RMRR) structure in the
DMAR ACPI table.

| spent more time trying to understand why they were marked as RWX and why it occurred
on only some machines. Eventually, | could not get the answers, but | was already
reasonably satisfied with my findings and decided to hand this over to MSFT.

Reporting

| sent an initial write-up to Andrea, then, an updated one to MSRC a few days later. Though,
it turned out that Andrea was the engineer in charge of this case. Such a small world.

Nothing much happened until mid-October when Andrea privately let me know he root
caused and fixed it, and also offered to write up technical details from his perspective.

So the following is his write-up with a lot of technical details!

Technical details and fixes

Intel VT-x and its limitation

So what is the DMAR table and why was important in this bug?

To understand it we should take a step back and briefly introduce one of the first
improvements of the Intel Virtualization Extension (Intel VT-x). Indeed, Intel VT-x was
introduced back around the year 2004 and, in its initial implementation, it misses some
parts of the technology that are currently used in modern Operating Systems (in 2023). In
particular:

1. The specifications did not include a hardware Stage-2 MMU able to perform the
translation of the Guest physical addresses (GPAs) to System physical addresses
(SPAs). First Hypervisors (like VmWare) were using a technique calling Memory
Shadowing

2. Similarly, the specification did not protect devices performing DMA to system memory
addresses.

As the reader can imagine, this was not compatible with the Security standard required
nowadays, so multiple "addendums” were added at the first implementation. While in this

30of8 3/14/24, 6:43 AM

Hunting down the HVCI bug in UEFI | Satoshi’s notes https://tandasat.github.io/blog/2024/01/15/CVE-2024-21305 .html

article we are not talking about #1 (plenty of articles are available online, like this one), we
will give a short introduction and description of the Intel VT-d technology, which aims at
protecting Device data transfer initiated via DMA.

Intel VT-d

Intel maintains the VT-d technology specifications at the following URL: https://
www.intel.com/content/wwwj/us/en/content-details/774206/intel-virtualization-technology-
for-directed-i-o-architecture-specification.html

The document is updated quite often (at the time of this writing, we are at revision 4.1) and
explains how an I/O memory management unit (IOMMU) can now protect devices to access
memory that belongs to another VM or is reserved for the the host Hypervisor or OS.

A device can be exposed by the Hypervisor in different ways:

e Emulated devices always cause a VMEXIT and they are emulated by a component in
the Virtualization stack.

e Paravirtualized devices are synthetic devices that communicate with the host device
through a technology implemented in the Host Hypervisor (VmBus in case of HyperV).

e Hardware accelerated devices are mapped directly in the VM. (readers who want to
know more can check Chapter 9 of the Windows Internals book).

All the hardware devices are directly mapped in the root partition by the HV. To correctly
support Hardware accelerated devices in a child VM the HV needs an IOMMU. But what
exactly is an IOMMU? To be able to isolate and restrict device accesses to just the resource
owned by the VM (or by the root partition), an IOMMU should provide the following
capabilities:

e |/O device assignment

e DMA remapping to support address translations for Direct Memory Accesses (DMA)
initiated by the devices

e Interrupt remapping and posting for supporting isolation and routing of interrupts to
the appropriate VM

DMA remapping

The DMA remapping capability is the feature related to the bug found in the Hypervisor.
Indeed, to properly isolate DMA requests coming from hardware devices, an IOMMU must
translate request coming from the endpoint device attached to the Root Complex (which, in
its simplest form, a DMA request is composed of a target DMA address/size and originating
device ID specified as Bus/Dev/Function - BDF) to its corresponding Host Physical Address

40of8 3/14/24, 6:43 AM

https://cseweb.ucsd.edu/~yiying/cse291j-winter20/reading/Virtualize-Memory.pdf
https://cseweb.ucsd.edu/~yiying/cse291j-winter20/reading/Virtualize-Memory.pdf
https://www.intel.com/content/www/us/en/content-details/774206/intel-virtualization-technology-for-directed-i-o-architecture-specification.html
https://www.intel.com/content/www/us/en/content-details/774206/intel-virtualization-technology-for-directed-i-o-architecture-specification.html
https://www.intel.com/content/www/us/en/content-details/774206/intel-virtualization-technology-for-directed-i-o-architecture-specification.html
https://www.intel.com/content/www/us/en/content-details/774206/intel-virtualization-technology-for-directed-i-o-architecture-specification.html
https://www.intel.com/content/www/us/en/content-details/774206/intel-virtualization-technology-for-directed-i-o-architecture-specification.html
https://www.intel.com/content/www/us/en/content-details/774206/intel-virtualization-technology-for-directed-i-o-architecture-specification.html
https://www.microsoftpressstore.com/store/windows-internals-part-2-9780135462331
https://www.microsoftpressstore.com/store/windows-internals-part-2-9780135462331

Hunting down the HVCI bug in UEFI | Satoshi’s notes https://tandasat.github.io/blog/2024/01/15/CVE-2024-21305 .html
(HPA).

Note that readers that do not know what a Root Complex is or how the PCI-Ex devices
interact with the system memory bus can read the excellent article by Gbps located here
(he told me that a part 2 is coming soon :-)).

The IOMMU defines the Domain concept, such an isolated environment in the platform for
which a subset of host physical memory is allocated (basically a bunch of isolated physical
memory pages). The isolation property of a domain is achieved by blocking access to its
physical memory from resources not assigned to it. Software creates and manages
domains, allocates the backing physical memory (SPAs), and sets up the DMA address
translation function using “Device-to-Domain Mapping” and "“Hierarchical Address
translation” structures.

Skipping a lot of details, both structures can be thought as “Special” page tables:

¢ Device-to-Domain Mapping structures are addressed by the BDF of the source device.
In the Intel manual this is called “Source ID" and yield backs the domain ID and the root
Address Translation structures for the domain (yes, entries in this table are 128 bits
indeed, and not 64).

e Hierarchical Address translation structures are addressed by the source DMA address,
which is treated as GPA, and outputs the final Host Physical address used as target for
the DMA transfer.

The concepts above are described by the following figure (source: Intel Manual):

Sof 8 3/14/24, 6:43 AM

https://ctf.re/windows/kernel/pcie/tutorial/2023/02/14/pcie-part-1/
https://ctf.re/windows/kernel/pcie/tutorial/2023/02/14/pcie-part-1/

Hunting down the HVCI bug in UEFI | Satoshi’s notes

6 of 8

Dev=31:Func=7

Second-Stage Page Table
Structures for Domain A

Dev=0:Func=0

Bus = 255 Context Table for
Bus N
Bus =N

Dev=31:Func=7

Root Table

Dev=0:Func=0

Context Table for >
Bus 0 Second-Stage Page Table

Structures for Domain B

»

DMAR ACPI table and RMRR structure

The architecture defines that any IOMMU present in the system must be detected by the
BIOS and announced via an ACPI table, called DMA Remapping Reporting (DMAR). The
DMAR is composed of multiple remapping structures. For example, an IOMMU is reported
with the DMA Remapping Unit Definition (DRHD) structure. Describing all of them is
beyond the scope of this article.

What if a device always needs to perform DMA transfer with specific memory regions?
Certain devices, like the Network controller, when used for debugging (for example in
KDNET), or the USB controller, when used for legacy Keyboard emulation in the BIOS,
should always be able to perform DMA both before and after setting up IOMMU. For these
kinds of devices, the Reserved Memory Region Reporting (RMRR) structure is used by the
BIOS to describe regions of memory where the DMA should always be possible.

Two important concepts described in the Intel manual regarding the RMRR structure:

1. The BIOS should report physical memory described in the RMRR as Reserved in the
UEFI memory map.

2. When the OS enables DMA remapping, it should set up the Second-stage address
translation structures for mapping the physical memory described by the RMRR using
the "identity mapping” with read and write (RW) permission (meaning that GPA X is

3/14/24, 6:43 AM

https://tandasat.github.io/blog/2024/01/15/CVE-2024-21305 .html

Hunting down the HVCI bug in UEFI | Satoshi’s notes https://tandasat.github.io/blog/2024/01/15/CVE-2024-21305 .html

mapped to HPA X).

Interaction with Windows, and the bug

In some buggy machines, consideration #1 was not happening, meaning that neither the
HV nor the Secure Kernel know about this memory range from the UEFI memory map.

When booting, the Hypervisor initializes its internal state, creates the Root partition (again,
details are in the Windows Internals book) and performs the IOMMU initialization in multiple
phases. On AMD64 machines, one of these phases requires parsing the RMRR. Note that
the HV still has no idea whether the system will enable VBS/HVCI or not, so it has no
options other than applying the full identity mapping to the range (which implies RWX
protection).

When the Secure Kernel later starts and determines that HVCI should be enabled, it will set
the new "default VTL permission” to be RW (but not Execute) and will inform the hypervisor
by setting the public HvRegisterVsmPartitionConfig synthetic MSR (documented in the
Hypervisor TLFS). When VTL 1 of the target partition sets the default VTL protection and
writes to the HvRegisterVsmPartitionConfig MSR, it causes a VMEXIT to the Hypervisor,
which cycles between each valid Guest physical frame described in the UEFI memory map
and mapped in the VTL 0 SLAT, removing the "Execute” permission bit (as dictated by the
"DefaultVtIProtectionMask” field of the synthetic register).

Mindful readers can already understand what is going wrong here. In buggy firmware,
where the RMRR is not set in the UEFI memory map, leaves the "Execute” protection of the
described region on, producing a HVCI violation (thanks Satoshi).

Fixes

MSFT has fixed (thanks Andrea) the issue working on two separate sides:

1. Fixing the firmware in all the commercial devices MSFT released, forcing the RMRR
memory region to be included in the UEFI memory map

2. Implementing a trick in the HV. Since the architecture requires that the RMRR memory
region must be mapped in the IOMMU (via the Hierarchical Address translation
structures as described above) using identity map with RW access permission (but no
X - Execute), we decided to perform some compatibility tests and see what happen if
the HV protects all the initial PFNs for RMRR memory regions in the SLAT by stripping
the X bit. Indeed, the OS always needs to read or write to those regions, so
programming the SLAT is needed.

Tests for fix 2 worked and produced almost 0 compatibility issue, so MSFT decided also to

7 of 8 3/14/24, 6:43 AM

https://learn.microsoft.com/en-us/virtualization/hyper-v-on-windows/tlfs/tlfs
https://learn.microsoft.com/en-us/virtualization/hyper-v-on-windows/tlfs/tlfs

Hunting down the HVCI bug in UEFI | Satoshi’s notes https://tandasat.github.io/blog/2024/01/15/CVE-2024-21305 .html

increase the protection and remove the X permission on all RMRR memory region by
default on ALL systems, also increasing the protection when the firmware is bugged.

Summary

Hope you enjoyed this jointly written post with both bug reporter’s and developer's
perspectives and a great deal of details on the interaction of VT-d and Hyper-V by Andrea.

To summarize, the combination of buggy UEFI that did not follow one of the requirements
by the Intel VT-d specification and permissive default EPT configuration caused
unintended RWX GPAs under HVCI. MSFT resolved the issue by correcting the default
permission and their UEFI and released the fix on January 9. Not all devices are vulnerable
to this issue. However, you may identify vulnerable devices by checking the memmap UEFI
shell command not showing the exact RMRR memory regions as Reserved.

Satoshi's notes

Satoshi's notes) tandasat Thoughts and notes about platform
tanda.sat@gmail.com W standa t security, reverse engineering, system
programming and other low-level stuff.

8 of 8 3/14/24, 6:43 AM

mailto:tanda.sat@gmail.com
mailto:tanda.sat@gmail.com
https://github.com/tandasat
https://github.com/tandasat
https://github.com/tandasat
https://github.com/tandasat
https://github.com/tandasat
https://github.com/tandasat
https://github.com/tandasat
https://www.twitter.com/standa_t
https://www.twitter.com/standa_t
https://www.twitter.com/standa_t
https://www.twitter.com/standa_t
https://www.twitter.com/standa_t
https://www.twitter.com/standa_t
https://www.twitter.com/standa_t

