
Race against the Sandbox. Root cause
analysis of a Tianfu Cup bug.
Aug 10, 2022

Introduction

On January 2022 Patch Tuesday Microsoft patched CVE-2022-21881, a Ntoskrnl bug used at
Tianfu Cup 2021 to escape the Google Chrome sandbox. In this article we will focus only on the
root cause of this bug, leaving any details for its further exploitation for a future blog post.

Understanding the patch

At least to my knowledge, there is no public information regarding this bug. The only information
we have is that it could be a race condition (according Microsoft CVE description the attack
complexity is set to High) and that the first vulnerable Windows version is Windows 8.1. For this
reason, the only way to understand the root cause of this bug is to do some patch diffing and
compare the ntoskrnl binaries before and after they have been patched. Time to fire up BinDiff to
analyze the Microsoft’s Patch!

As we can see from the picture above, it seems that after the patch two new functions have been
added: IopDecrementCompletionContextUsageCount and
IopIncrementCompletionContextUsageCountAndReadData.

The names of these functions look pretty suspicious! It is plausible to assume that the bug
consists in a Use After Free caused by a race condition because these functions’ names sound
like they are responsible for incrementing and decrementing an object’s usage count. Let’s check
if we are right!

The Abyss Labs - A light in the abyss of reverse engineering About

Race against the Sandbox. Root cause analysis of a Tianfu Cup bug. ... https://theabysslabs.github.io/patch-diffing/exploitation/windowskern...

1 of 10 8/16/22, 8:30 AM

https://theabysslabs.github.io/
https://theabysslabs.github.io/about/
https://theabysslabs.github.io/about/


In the next steps we will understand how to trigger the bug and get a crash on a vulnerable
system!

Identifying the bug class
We will now take a quick look at the IopDecrementCompletionContextUsageCount function.

In a nutshell, the function will dereference a pointer at offset 0xB0 of a non-identified structure
and then decrement the value stored at offset 0x10. What is stored at offset 0xB0? Let’s hit up
Vergilius Project and just search for the keyword “COMPLETION_CONTEXT”.

A positive result pops up: the IO_COMPLETION_CONTEXT structure, present also as field of the
structure FILE_OBJECT.

Race against the Sandbox. Root cause analysis of a Tianfu Cup bug. ... https://theabysslabs.github.io/patch-diffing/exploitation/windowskern...

2 of 10 8/16/22, 8:30 AM



Bingo! As we can see from the picture above, the CompletionContext is a member of the
FILE_OBJECT structure at offset 0xB0.

Let’s now have a look at which functions have been modified after the patch in the picture below:

Race against the Sandbox. Root cause analysis of a Tianfu Cup bug. ... https://theabysslabs.github.io/patch-diffing/exploitation/windowskern...

3 of 10 8/16/22, 8:30 AM



Since we suspect the bug being a Use After Free somehow related to a
IO_COMPLETION_CONTEXT object, we should first check if any of the patched functions is
responsible for freeing or replacing a CompletionContext object.

The IopReplaceCompletionPort function caught our attention! Let’s compare the vulnerable
function with the patched one!

As we can notice in the picture above, in the patched version the function will check whether the
value at offset 0x10 of the CompletionContext structure is zero before freeing the
CompletionContext object at offset 0xB0 of the FILE_OBJECT structure. At the same time, the

Race against the Sandbox. Root cause analysis of a Tianfu Cup bug. ... https://theabysslabs.github.io/patch-diffing/exploitation/windowskern...

4 of 10 8/16/22, 8:30 AM



vulnerable function does not carry out this check! Our suspect of this bug being a Use After Free
becomes more and more reasonable.

It’s time to make a quick recap of what we’ve learned so far:

• We suspect with a high degree of certainty that the bug is a Use After Free.
• Microsoft’s attack complexity assessment for this bug makes us think that it is a race

condition.
• We assume we have found a way to trigger the free of the CompletionContext object by

calling IopReplaceCompletionPort.

The next logical steps will be to understand how to allocate a CompletionContext for a
FILE_OBJECT and how to call the IopReplaceCompletionPort to free this object. Let’s start from
the latter!

The only function IopReplaceCompletionPort gets called from is the NtSetInformationFile syscall.
Before doing any reversing of this function, let’s simply read the Microsoft’s documentation about
this function to speed up our analysis.

The most interesting parameter of this function is the FILE_INFORMATION_CLASS: Microsoft
provides some examples of the possible values in its documentation.

The FileReplaceCompletionInformation value immediately caught our attention! The description of
this FILE_INFORMATION_CLASS value helps us significantly: it explains both how to trigger the
free of a CompletionContext object and how to create/assign it to a FILE_OBJECT!

More specifically, the API CreateIoCompletionPort is responsible for creating an I/O completion
port and associate it with a specified file handle, while the NtSetInformationFile function can be
used to free the associated COMPLETION_CONTEXT object by setting the port handle field of the
FILE_COMPLETION_INFORMATION structure to NULL and choosing the value
FileReplaceCompletionInformation as FILE_INFORMATION_CLASS.

We must keep in mind that this vulnerability is not a “simple” Use After Free, but a Use After Free
caused by a race condition. This implies that in order to cause a BSOD it is needed to create at
least two racing threads running concurrently, which will keep on attempting to trigger the

Race against the Sandbox. Root cause analysis of a Tianfu Cup bug. ... https://theabysslabs.github.io/patch-diffing/exploitation/windowskern...

5 of 10 8/16/22, 8:30 AM



vulnerability. One of these threads will be responsible for freeing the target
COMPLETION_CONTEXT object stored at offset 0xB0 of the FILE_OBJECT, while the other one
will have to trigger the usage of the COMPLETION_CONTEXT object freed by the other racing
thread.

We now know how to associate a COMPLETION_CONTEXT object to a file and how to free it.
Armed with this knowledge, it’s time to start planning our next steps. As a quick recap, we have
found a way to allocate, assign to FILE_OBJECT structure and free our vulnerable
COMPLETION_CONTEXT object. To put it simple, we have a solid understanding of how to free
the CompletionContext field of the FILE_OBJECT and how to assign it to a FILE_OBJECT. Since we
will keep trying to free the target object multiple times, we will have to trigger the creation of a
new COMPLETION_CONTEXT object after having freed the original one because we will carry out
multiple attempts to trigger the BSOD!

Our POC will rely on the creation of two concurring threads:

• Thread 1 will keep creating and freeing an I/O completion port for a file handle by calling
CreateIoCompletionPort (allocate ) and NtSetInformationFile (free) in an infinite loop

• Thread 2 will need to trigger the usage of an already freed COMPLETION_CONTEXT in an
infinite loop.

The last part of our journey will consist in triggering a BSOD. In other words, we now need to
understand where the “freed by another racing thread” COMPLETION_CONTEXT object is
actually used, understand how to trigger its usage and call the needed API from Thread 2!

Before starting tackling this problem, let’s have a look at the code for Thread 1.

void thread1()
{

while(true)
{
NTSTATUS status = ntSetInformationFile(hFile,(ULONG_PTR)&io_dummy,&fileInfo

if(status != 0)
{

CreateIoCompletionPort(hFile,0,0,0);

}

};

}

The thread will continuously free the COMPLETION_CONTEXT object of the target file handle
(defined as a global variable and initialized in the main function along with the initial
COMPLETION_CONTEXT) by calling the NtSetInformationFile with FILE_INFORMATION_CLASS

Race against the Sandbox. Root cause analysis of a Tianfu Cup bug. ... https://theabysslabs.github.io/patch-diffing/exploitation/windowskern...

6 of 10 8/16/22, 8:30 AM



set as FileReplaceCompletionInformation (0x3D or 61 in decimal) and associate a new
COMPLETION_CONTEXT object to the file handle by calling the CreateIoCompletionPort API. This
is needed because we will need multiple attempts to trigger the BSOD!

The “Use” after the “Free”
Let’s now have a look at the xrefs to the IopDecrementCompletionContextUsageCount and
IopIncrementCompletionContextUsageCountAndReadData functions:

• IopCompleteRequest
• IopXxxControlFile
• NtLockFile

Why should we look at this information? If we remember our quick analysis of the patched
IopReplaceCompletionPort function, the COMPLETION_CONTEXT object gets freed only if the
usage count of the object is set to zero. In order to understand where the “use” of freed object
happens, it is enough to look at the functions which will increase the usage count of the object to
avoid it being freed by another object while being used! As we can see, there are three functions
which increase the usage count of the target object. Which one should we choose? In this phase
of the learning process, our goal should be to trigger the crash as soon as possible in order to be
sure whether our assumptions regarding the root cause of this bug are correct or not. For this
reason, we will choose to trigger the bug by calling the NtLockFile syscall. Understanding the
optimal code path to successfully exploit this bug is a topic for another post, in which we will
focus on actually turning this bug into something more interesting than a mere BSOD.

Why did we choose the NtLockFile function?

• It is a syscall so we will not need to invest time into understanding how to trigger the code
path responsible for calling the vulnerable function

• It is the smallest function of the vulnerable ones!

We will now need to understand where and how the CompletionContext (stored at offset 0xB0 of
the FILE_OBJECT structure) is used by the NtLockFile function!

The NtLockFile will first verify whether the CompletionContext is set to null or not as we can see in
the picture below:

Race against the Sandbox. Root cause analysis of a Tianfu Cup bug. ... https://theabysslabs.github.io/patch-diffing/exploitation/windowskern...

7 of 10 8/16/22, 8:30 AM



If it is not set to NULL, it will dereference its Port and Key values and pass them as parameters to
the function IoSetIoCompletion.

Where is the vulnerability? There is no usage count being set in the vulnerable version of this
function. This implies that if a context switch happens after the pointer to the CompletionContext
has already been loaded into the RCX register and has passed the test rcx,rcx instruction check,
the CompletionContext object can be freed by another racing thread being executed after the
context switch! When the scheduler will resume the thread executing the NtLockFile function the
CompletionContext pointer loaded in the RCX will point to freed memory. In other words a Use
After Free!

This is the reason why the patched IopReplaceCompletionPort allows the CompletionContext to
be freed only when its usage count is set to zero! To cause a crash we will simply have to create a
racing thread which will run concurrently with Thread1 (responsible for freeing the
CompletionContext). The thread will keep calling the NtLockFile function (and NtUnlockFile, since
the file will be locked and we will need to keep locking and unlocking it until we hit the race
window and BSOD).

The code for Thread2 will look like this:

LARGE_INTEGER x = {0};

Race against the Sandbox. Root cause analysis of a Tianfu Cup bug. ... https://theabysslabs.github.io/patch-diffing/exploitation/windowskern...

8 of 10 8/16/22, 8:30 AM



LARGE_INTEGER y = {0};

void thread2()
{

while(true)
{

y.LowPart = 0x1;
NTSTATUS status = ntLockFile(hFile,0,(ULONG_PTR)1,(PVOID)2,(ULONG_PTR

if(status != 0){
ntUnlockFile(hFile,(ULONG_PTR)&io_dummy,&x,&y,0);

}

};

}

Let’s now enjoy our kernel BSOD in the picture below:

The NtLockFile function will pass the values from the freed dereferenced
COMPLETION_CONTEXT object to the IoSetIoCompletion function, which will then access an
invalid memory area and trigger a BSOD!

Conclusions

Congratulations to SorryMyBad for finding and exploiting this bug! As already stated before, the
goal of this blog post is to show the readers how to understand the root cause of a bug by just
looking at its patch. I do not think that calling NtLockFile is actually the right way to exploit this
bug: the race window is too tiny to be feasible to reclaim the freed memory in a meaningful way

The Abyss Labs - A light in the
abyss of reverse engineering
theabysslabs@protonmail.com

theabysslabs

theabysslabs

0-day and N-day exploitation on the Windows
platform. Original security research with a
focus on patch diffing, implant development
and variant analysis.

The Abyss Labs - A light in the abyss of reverse engineering

Race against the Sandbox. Root cause analysis of a Tianfu Cup bug. ... https://theabysslabs.github.io/patch-diffing/exploitation/windowskern...

9 of 10 8/16/22, 8:30 AM

https://twitter.com/S0rryMybad
https://twitter.com/S0rryMybad
mailto:theabysslabs@protonmail.com
mailto:theabysslabs@protonmail.com
https://github.com/theabysslabs
https://github.com/theabysslabs
https://github.com/theabysslabs
https://github.com/theabysslabs
https://github.com/theabysslabs
https://github.com/theabysslabs
https://github.com/theabysslabs
https://www.twitter.com/theabysslabs
https://www.twitter.com/theabysslabs
https://www.twitter.com/theabysslabs
https://www.twitter.com/theabysslabs
https://www.twitter.com/theabysslabs
https://www.twitter.com/theabysslabs
https://www.twitter.com/theabysslabs


before it will be used by the vulnerable function.

In my personal opinion, the only viable code path to trigger this bug is from the
IopCompleteRequest function: the race window is much wider and I have seen interesting locking
points which could make the exploitation of this bug easier.

I will try to exploit this bug in the next days and publish my findings in a new blog post. Stay
tuned!

Race against the Sandbox. Root cause analysis of a Tianfu Cup bug. ... https://theabysslabs.github.io/patch-diffing/exploitation/windowskern...

10 of 10 8/16/22, 8:30 AM


