

Security Vulnerability Notice

SE-2019-01-ORACLE

[Security vulnerabilities in Java Card, Issues 1-18]

DISCLAIMER

INFORMATION PROVIDED IN THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT

WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, AND TO THE MAXIMUM EXTENT

PERMITTED BY APPLICABLE LAW NEITHER SECURITY EXPLORATIONS, ITS LICENSORS OR

AFFILIATES, NOR THE COPYRIGHT HOLDERS MAKE ANY REPRESENTATIONS OR

WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR THAT THE

INFORMATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,

TRADEMARKS, OR OTHER RIGHTS. THERE IS NO WARRANTY BY SECURITY

EXPLORATIONS OR BY ANY OTHER PARTY THAT THE INFORMATION CONTAINED IN THE

THIS DOCUMENT WILL MEET YOUR REQUIREMENTS OR THAT IT WILL BE ERROR-FREE.

YOU ASSUME ALL RESPONSIBILITY AND RISK FOR THE SELECTION AND USE OF THE

INFORMATION TO ACHIEVE YOUR INTENDED RESULTS AND FOR THE INSTALLATION,

USE, AND RESULTS OBTAINED FROM IT.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL

SECURITY EXPLORATIONS, ITS EMPLOYEES OR LICENSORS OR AFFILIATES BE LIABLE FOR

ANY LOST PROFITS, REVENUE, SALES, DATA, OR COSTS OF PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES, PROPERTY DAMAGE, PERSONAL INJURY,

INTERRUPTION OF BUSINESS, LOSS OF BUSINESS INFORMATION, OR FOR ANY SPECIAL,

DIRECT, INDIRECT, INCIDENTAL, ECONOMIC, COVER, PUNITIVE, SPECIAL, OR

CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND WHETHER ARISING UNDER

CONTRACT, TORT, NEGLIGENCE, OR OTHER THEORY OF LIABILITY ARISING OUT OF THE

USE OF OR INABILITY TO USE THE INFORMATION CONTAINED IN THIS DOCUMENT, EVEN

IF SECURITY EXPLORATIONS OR ITS LICENSORS OR AFFILIATES ARE ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL

ERRORS.

Security Explorations discovered multiple security vulnerabilities in Java Card [1] technology
used in financial, government, transportation and telecommunication sectors among others.
A table below, presents their technical summary:

ISSUE

TECHNICAL DETAILS

1 origin baload bytecode instruction implementation

cause insufficient type check

impact compromise of memory safety / arbitrary read access to card memory

status verified

2 origin bastore bytecode instruction implementation

cause insufficient type check

impact compromise of memory safety / arbitrary write access to card memory

status verified

3 origin javacard.framework.Util class

cause insufficient type check in arrayCopy method implementation (src argument)

impact compromise of memory safety / arbitrary read access to card memory

status verified

4 origin javacard.framework.Util class

cause insufficient type check in arrayCopy method implementation (dst argument)

impact compromise of memory safety / arbitrary write access to card memory

status verified

5 origin javacard.framework.Util class

cause insufficient type check in arrayCopyNonAtomic method implementation (src

argument)

impact compromise of memory safety / arbitrary read access to card memory

status verified

6 origin javacard.framework.Util class

cause insufficient type check in arrayCopyNonAtomic method implementation (dst
argument)

impact compromise of memory safety / arbitrary write access to card memory

status verified

7 origin CAP file handing / verification

cause unchecked value of internal_ref offset of

CONSTANT_StaticFieldref_info structure

impact compromise of memory safety / arbitrary read and write access to card

memory

status verified

8 origin CAP file handing / verification

cause COMPONENT_ReferenceLocation content inconsistent with Constant Pool

impact incomplete linking of CONSTANT_InstanceFieldref entries

status verified

9 origin getfield_a bytecode instruction group implementation

cause unchecked value of token field

impact compromise of memory safety / arbitrary read access to card memory

status verified

10 origin getfield_b bytecode instruction group implementation

cause unchecked value of token field

impact compromise of memory safety / arbitrary read access to card memory

status verified

11 origin getfield_s bytecode instruction group implementation

cause unchecked value of token field

impact compromise of memory safety / arbitrary read access to card memory

status verified

12 origin getfield_i bytecode instruction group implementation

cause unchecked value of token field

impact compromise of memory safety / arbitrary read access to card memory

status verified

13 origin putfield_a bytecode instruction group implementation

cause unchecked value of token field

impact compromise of memory safety / arbitrary write access to card memory

status verified

14 origin putfield_b bytecode instruction group implementation

cause unchecked value of token field

impact compromise of memory safety / arbitrary write access to card memory

status verified

15 origin putfield_s bytecode instruction group implementation

cause unchecked value of token field

impact compromise of memory safety / arbitrary write access to card memory

status verified

16 origin putfield_i bytecode instruction group implementation

cause unchecked value of token field

impact compromise of memory safety / arbitrary write access to card memory

status verified

17 origin swap_x bytecode instruction implementation

cause unchecked instruction argument (N)

impact overwrite of JC runtime stack / potential native code execution

status verified

18 origin CAP file loader / verification

cause unchecked flags field of method_header_info structure of
COMPONENT_Method

impact direct invocation of inaccessibe / unexported native methods

status verified

Issues 1-18 were successfully verified in the environment of the most recent Oracle Java

Card 3.1 SDK from Jan 2019 incorporating reference implementation of Java Card VM [2].

Gen tool

Successful exploitation of the vulnerabilities found requires generation of specially crafted

CAP files (exploits). This is demonstrated by our Gen tool. This tool modifies legitimate

output CAP file produced by the compiler according to target vulnerability condition to

illustrate. During processing of the CAP file, the tool also processes the corresponding EXP

file in order to locate methods' bytecode data by the means of type and name descriptor. As

a result, the development of POC codes could be significantly facilitated (no need to seek for

method's bytecode data in raw Method component content).

The Gen tool takes 2 arguments that correspond to the following:

 arg0 - the index of a generation subroutine to use (target POC idx),

 arg1 - additional argument, occasionally used by the POC code.

Table below provides description of additional argument used by the Gen tool:

ARG0 ARG1

1 UNUSED
2 offset used for the internal reference of StaticFieldref

3 token value for the getfield_<T> and putfield_<T> instructions

4 UNUSED
5 UNUSED

Vulnerability details

Below, more details are provided with respect to the discovered vulnerabilities.

Issues 1-2

Issues 1 and 2 are due to the missing type check for the object provided as a byte array

argument to the baload and bastore bytecode instructions. This is illustrated upon the

example of the baload opcode (Fig. 1).

Fig. 1 Baload bytecode instruction implementation.

The code implementing baload instruction inspects the bits carrying information about the

type of an object provided to it as an argument. It throws Security Exception if a type of an

object encoded in the object header corresponds to an array of shorts (bits value 0xa000),

an array of integers (bits value 0xc000) or an array of objects (bits value 0xe000).

If the abovementioned checks are successfully passed, the code assumes that the object

argument is an array of bytes (the only array type left). It can be of an ordinary object type

though and this condition does not get detected.

As a result, ordinary Java object instances can mimic arrays of bytes (type confusion

vulnerability). There is however more to this. The first instance field of such an object will

perfectly match (in the context of a memory layout) the length of the array field stored in a

header of a legitimate array object. As a result, object instances that are a few bytes in size

can mimic byte arrays of a very large size (Fig. 2). Such objects will be treated as legitimate

arrays of arbitrary user provided size by both baload and bastore instructions.

Fig. 2 Type confusion condition between ordinary object instance and array of bytes.

In our Proof of Concept code, gen_exp1 method is responsible for generating a code

sequence for an illegal type cast. The code of a target method is modified in such a way, so

that instead of returning an array of bytes, it returns an object instance of a Cast class

(change from aload_0 to aload_1 instruction):

 .method public static cast2tab([BLjava/lang/Object;)[B 1 {

 .stack 1;

 .locals 0;

 .descriptor Ljava/lang/Object; 0.0;

 L0: aload_1 <--- CHANGE TO ALOAD_1 INSTRUCTION

 areturn;

 }

Issues 3-6

The implementation of various byte array copy methods is prone to similar vulnerability as

described above. More specifically, neither arrayCopy, nor arrayCopyNonAtomic

methods take into account the possibility to use an object instance as an input argument.

This concerns both byte array arguments used as a source and destination for the array

copy operation.

Again, object instances that are a few bytes in size can mimic byte arrays of a very large

size. Such objects will be treated as legitimate arrays by a target array copy method.

It's worth to note that some other array copy functionality defined in Oracle Java Card

environment implements proper type checks. This in particular include arrayCopyRepack

and arrayCopyRepackNonAtomic methods of

javacardx.framework.util.ArrayLogic class (Fig. 3).

Fig. 3 ArrayCopyRepack checks of input array arguments.

In our Proof of Concept code, gen_exp1 method is again responsible for generating a code

sequence for an illegal type cast required for vulnerable arrayCopy and

arrayCopyNonAtomic methods.

Issue 7

The offset item of a CONSTANT_StaticFieldref_info structure represents a 16-bit

offset into the static field image defined by CAP file's StaticField component for internal

static references.

This offset is not checked and can be set to arbitrary value. As a result, arbitrary accesses to

memory locations beyond the static field image can be done.

The issue affects 8 bytecode instructions1. It is treated as a single one due to the fact that

resolving of a static method reference is conducted by all of them with the use of the same

single subroutine (missing security check in a code of resolveReferenceAddress).

In our Proof of Concept code, gen_exp2 method is responsible for generating a code

sequence making use of an overlong 16-bit offset in CONSTANT_StaticFieldref_info

1 getstatic_b, getstatic_s, getstatic_i, getstatic_a, putstatic_b, putstatic_s,

putstatic_i and putstatic_a.

structure referenced by a target getstatic_s instruction (by the means of a Constant

Pool index):

 .constantPool {

 // 0

 staticMethodRef 0.0.0()V; // java/lang/Object.<init>()V

 // 1

 staticFieldRef short Test/dummy; <-- CHANGE TO OVERLONG OFFSET

 }

 ...

 .method public static get_static()S 1 {

 .stack 1;

 .locals 0;

 L0: getstatic_s 1; <-- INDEX OF A TARGET CP ENTRY

 sreturn;

 }

Issue 8

CAP file's ReferenceLocation component contains table of offsets to bytecode locations

containing indices to Constant Pool entries used by various field and method referencing

instructions.

This is illustrated by the following code:

 .constantPool {

 // 0

 instanceFieldRef short Test/dummy;

 // 1

 instanceFieldRef short Test/dummy2;

 // 2

 instanceFieldRef 0.0 Test/field_a;

 // 3

 instanceFieldRef byte Test/field_b;

 ...

 }

 .method public static getfield_a()Ljava/lang/Object; 3 {

 .stack 1;

 .locals 0;

 .descriptor Ljava/lang/Object; 0.0;

 L0: invokestatic 7; // com/se/vulns/Test.init()V

 getstatic_a 10; // reference com/se/vulns/Test.t

 getfield_a 2; // reference com/se/vulns/Test.field_a

 areturn;

 }

In the code above getfield_a instruction references Constant Pool entry at index 2, which

contains token for the accessed instance field (field_a of Test class).

Upon CAP file loading, internal representation of this token2 is directly stored in place of a

Constant Pool index. Bytecode locations where such a "linking" should take place are

2
 for Oracle Java Card reference implementation this is simply the index of a given field instance.

contained in ReferenceLocation component. What's important is that prior to the

described process, token value gets checked, so that it does not go beyond the size of a

given object instance. In such a case, the token value simply gets trimmed.

The vulnerability is about the possibility to skip the "linking". If a target bytecode instruction

referencing Constant Pool entry is omitted in the ReferenceLocation component, the

index used as its argument will not be a subject to any modification (and checking).

In our Proof of Concept code, gen_exp3 method is responsible for generating a CAP file

illustrating Issue 8. The indices of various getfield_<T> and putfield_<T> instructions

are modified to the given overlong value. The generating code also removes all references

to such instructions from the ReferenceLocation component.

There is a potential to exploit Issue 8 for arbitrary method invocation (inaccessible /

unexported to user code), but this requires a more throrough investigation of the linking

mechanism conducted with respect to method invocation instructions (an internal

representation of external references, whether references to unexported / native methods

are valid, etc.).

Issues 9-16

The implementation of all 24 instance field access instructions3 does not check the internal

token value used as their argument. As a result, overlong token values can be provided for

them and arbitrary memory content beyond target object size can be accessed.

As each triple of getfield_<T>, getfield_<T>_this, getfield_<T>_w instructions

rely on one vulnerable routine missing token value check (getfield_<T>_common, Fig. 4),

there are 4 vulnerabilities corresponding to getfield instructions (Issues 9-12). In a

similar fashion, missing security checks in putfield_<T>_common subroutines implicates 4

additional vulnerabilities associated with putield instructions (Issues 13-16).

3
 getfield_<T>, getfield_<T>_this, getfield_<T>_w.

Fig. 4 The implementation of getfield_a_common.

In our Proof of Concept code, gen_exp3 method is responsible for generating a CAP file

that illustrates both Issue 8 and Issues 9-16. Issue 8 provides a means for the use of

overlong token values by instance field access instructions. Issues 9-16 illustrate that such

overlong token values are not checked at runtime.

It should be also possible to trigger Issues 9-16 by simply directing bytecode execution to

the malicious instruction stream (through goto / jsr or conditional jump instruction).

Issue 17

Implementation of a swap_x bytecode instruction makes it possible to swap top M words on

the operand stack with the N words immediately below (Fig. 5).

Fig. 5 Operation of swap_x instruction.

The permissible values for N and M are 1 or 2 (the instruction goal is to swap top two

operand stack words). The latter value is allowed if integer types are supported in a target

Java Card environment.

For larger N, the values pushed onto the stack can overwrite the stack frame of the invoked

swap_x subroutine itself as stack temporary location is used for storing values popped off

the Java stack. Depending on a target processor architecture, this can lead to return address

/ instruction pointer overwrite and native code execution (Fig. 6).

In our Proof of Concept code, gen_exp4 method is responsible for generating a CAP file

illustrating Issue 17. It generates a trigger sequence composed of multiple push_s

bytecode instructions followed by the swap_x instruction. The sequence of values pushed

onto Java stack needs to take into account the fact that some local variables such as loop

counter, M and N themselves also get overwritten.

Fig. 6 Java Card process crash triggered by swap_x vulnerability.

Issue 18

A simple change of the flags field of method_header_info structure contained in CAP

file's Method component to 0x02 changes target method type to native. In such a case,

nargs and max_locals fields of method_header_info structure are not used. A one

byte index is used in their place, which denote the index of a target native method to call

(Fig. 7).

Fig. 7 Java vs. native method header.

Issue 18 can be used to call any (unexported or inaccessible to current class) native method

defined in a target Java Card environment. The indices for given methods can be found in

_nativeMethods table (Fig. 8).

Fig. 8 Native methods table.

In our Proof of Concept code, gen_exp5 method is responsible for generating a CAP file

illustrating Issue 18. It changes the type of several dummy placeholder methods to native.

When called, given unsafe methods are invoked that make it possible to read and write any

address of cards' memory. These are readByte, readShort, writeByte and

writeShort methods of the com.sun.javacard.impl.NativeMethods class.

Vulnerabilities impact

Discovered vulnerabilities make it possible to break memory safety of the underlying Java

Card VM. As a result, full access to smartcard memory could be achieved, applet firewall

could be broken or native code execution could be gained.

While none of the exploit codes can successfully pass off-card verification process, the

vulnerabilities should be still perceived in terms of a significant weak point of Oracle Java

Card VM implementation. The reasons are the following:

 the vulnerabilities could be used to compromise security of trusted chips used by

financial, government and telecommunication sectors, this paves the way for their in-

depth analysis, which can result in far more serious issues,

 Java Card thrives to provide secure environment for multiple applications (applets),

as such no malicious application should be able to compromise security of the other

one,

 split verification process is a known architectural / design weakness of Java Card, the

environment should at least provide memory safety if type safety cannot be

guaranteed (type safety is a direct consequence of memory safety),

 the nature of the issues undermine trust to Java Card as a secure environment and

software platform eligible to run security services on smart cards and secure

elements.

It should be emphasized that successful loading of a malicious applet into target card

requires either knowledge of the keys or existence of some other means facilitating it (a

vulnerability in card OS, installed applications, exposed interfaces, etc.). Such scenarios

cannot be excluded though.

Affected versions of a reference implementation

Our Proof of Concept code were successfully tested in the environment of various versions

of Oracle Java Card SDK. We verified that the following Oracle Java Card reference

implementations are affected by discovered vulnerabilities:

 Java Card 3.1.0

 Java Card 3.0.5U3

 Java Card 3.0.5GA

Proof of Concept Codes usage

Each Proof of Concept code has associated test.scr file that defines the APDU commands

illustrating vulnerabilities implemented by it. These commands are sent to the target Java

Card VM instance with the use of ApduTool included in the Oracle Java Card SDK.

In order to test a given set of vulnerabilities, Java Card reference implementation needs to

be run first:

c:_SOFTWARE\Java Card Development Kit Simulator 3.1.0\bin>cref_t1.exe

Java Card 3.1.0 C Reference Implementation Simulator

32-bit Address Space implementation - with cryptography support

T=1 Extended APDU protocol (ISO 7816-3)

Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved.

Memory configuration -

 Type Base Size Max Addr

 RAM 0x0 0x6000 0x5fff

 ROM 0x6000 0x1efe0 0x24fdf

 E2P 0x25000 0x1ffe0 0x44fdf

 ROM Mask size = 0x19bc2 = 105410 bytes

 Highest ROM address in mask = 0x1fbc1 = 129985 bytes

 Space available in ROM = 0x541e = 21534 bytes

Mask has now been initialized for use

Then, proper run.bat file should be executed to illustrate the operation of a given Proof of

Concept code. For baload_bastore variant, the following output will be produced as a

result of its execution:

c:_WORK\PROJECTS\SE-2019-01\codes\baload_bastore>run.bat

ApduTool [v3.0.5]

 Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.

Opening connection to localhost on port 9025.

Connected.

Received ATR = 0x3b 0xf0 0x11 0x00 0xff 0x01

CLA: 00, INS: a4, P1: 04, P2: 00, Lc: 09, a0, 00, 00, 00, 62, 03, 01, 08, 01, Le

: 00, SW1: 90, SW2: 00

CAP file download section. Output suppressed.

OUTPUT OFF;

OUTPUT ON;

CLA: 80, INS: b8, P1: 00, P2: 00, Lc: 0c, 0a, a0, 00, 00, 00, 62, 03, 01, 0c, 01

, 01, 00, Le: 0a, a0, 00, 00, 00, 62, 03, 01, 0c, 01, 01, SW1: 90, SW2: 00

CLA: 00, INS: a4, P1: 04, P2: 00, Lc: 0a, a0, 00, 00, 00, 62, 03, 01, 0c, 01, 01

, Le: 00, SW1: 6e, SW2: 00

CLA: 80, INS: 10, P1: 01, P2: 02, Lc: 02, 00, 00, Le: 02, 12, 34, SW1: 90, SW2:

00

CLA: 80, INS: 11, P1: 01, P2: 02, Lc: 02, 00, 00, Le: 40, 00, 00, c0, 00, 11, 00

, 28, 1b, 00, 02, 11, 22, 33, 44, 55, 66, 77, 88, 20, 00, 11, 00, 00, 1d, 00, 90

, 00, c2, 00, 00, 20, 00, 00, 00, 23, 18, 00, c0, 00, bd, 01, 00, 20, 00, 00, 00

, 3b, 18, 00, bd, 00, 0c, 00, 00, 80, 00, 00, 00, 00, 1b, 00, 0a, a0, 00, SW1: 9

0, SW2: 00

CLA: 80, INS: 12, P1: 01, P2: 02, Lc: 02, 00, 00, Le: 02, 7f, ff, SW1: 90, SW2:

00

CLA: 80, INS: 13, P1: 01, P2: 02, Lc: 03, 00, 00, c0, Le: 40, 11, 22, 33, 44, 55

, 66, 77, 88, 20, 00, 11, 00, 00, 1d, 00, 90, 00, c2, 00, c1, 20, 00, 00, 00, 23

, 18, 00, c0, 00, bd, 01, 00, 20, 00, 00, 00, 3b, 18, 00, bd, 00, 0c, 00, 00, 80

, 00, 00, 00, 00, 1b, 00, 0a, a0, 00, 00, 00, 62, 03, 01, 0c, 01, 01, 2c, 00, SW

1: 90, SW2: 00

CLA: 80, INS: 15, P1: 01, P2: 02, Lc: 02, 00, 00, Le: 02, 00, 02, SW1: 90, SW2:

00

For baload_bastore POC, the region marked with colors illustrates READ_MEM APDU

request, associated response and status bytes of APDU processing. The response data

contains the result of reading card's memory through arbitrary object instance provided as

an input to baload instruction.

By default, all APDU requests implemented by our code make use of the following APDU

class value:

 private final static byte SEApplet_CLA = (byte)0x80;

Additionally, each exploit applet instance has AID value of

0xa0:0x0:0x0:0x0:0x62:0x3:0x1:0xc:0x1.

Table below provides more details with respect to APDU commands implemented by each

POC. The table (along source codes) should be referenced for better understanding of Proof

of Concept codes' outputs.

POC INS TYPE DESCRIPTION

baload_bastore 0x10 PING Check if applet code was successfully
installed and is running
REQ APDU:
 00: ?? (unused)

 01: ?? (unused)

RESP APDU:
 00: 0x12

 01: 0x34

0x11 STATUS Check the status of the vulnerability (Issue
1)
REQ APDU:
 00: ?? (unused)

 01: ?? (unused)

RESP APDU:
 00-3f: bytes of data read from a Cast object
instance mimicing an array of bytes

0x12 SETUP Setup arbitrary memory reading condition by
the means of a table of ints, Issue 1 is used
to read card memory in a search for a
header corresponding to a given table of
ints, its header gets modified to indicate the
length of 0x7fff
REQ APDU:
 00: ?? (unused)

 01: ?? (unused)

RESP APDU:
 00-01: the result length of table of ints

0x13 READ_MEM Read memory through a table of ints
REQ APDU:
 00-01: offset to start reading data
 02: length of data to read
RESP APDU:
 00-len: bytes of data read from a table of
ints starting from given offset

0x14 WRITE_MEM Write memory through a table of ints
REQ APDU:
 00-01: offset to store val
 02-05: val to store
RESP APDU:
 00-03: stored val

0x15 CLEANUP Cleanup exploit condition exploiting table of
ints (store original table length to the
header)

REQ APDU:
 00: ?? (unused)

 01: ?? (unused)

RESP APDU:
 00-01: original length of table of ints

arraycopy 0x10 READ_MEM Read memory with the use of a given array
copy method
REQ APDU:
 00-01: offset to start reading data
 02: length of data to read
 03: type

 00 - arrayCopy method

 01 - arrayCopyNonAtomic method

RESP APDU:
 00-len: bytes of data copied from a Cast
object instance mimicing an array of bytes

0x11 WRITE_MEM Write memory with the use of a given array
copy method
REQ APDU:
 00-01: offset to start writing data
 02: length of data to write
 03: type

 00 - arrayCopy method

 01 - arrayCopyNonAtomic method

 04-len: data bytes to write
RESP APDU:
 00-len: bytes of data copied to a Cast object
instance mimicing an array of bytes

staticfield_ref 0x10 GET_STATIC Read memory through a custom offset of an
internal static field reference (provided at
build time)
REQ APDU:
 00: ?? (unused)

RESP APDU:
 00-01: the value read from a static field
image

referencelocation 0x10 GETFIELD_A Read memory through a custom token value

of a getfield_a instruction, the target

token value for all GETFIELD / PUTFIELD
requests is provided at build time, it is
chosen in such a way, so that it reflects
header field corresponding to the length of a
given array of ints
REQ APDU:
 00: ?? (unused)

RESP APDU:
 00-01: the value read (current length of
array of ints)

0x11 PUTFIELD_A Write memory through a custom token value

of a putfield_a instruction, as the target

reference value is checked, valid reference

needs to be provided, in our case, making
use of this is sufficient (its pointer value
representation is sufficient to increase the
length of a target array)
REQ APDU:
 00: ?? (unused)

RESP APDU:
 00-01: the length of array of ints (the value

of a field written by a putfield_a

instruction)

0x12 GETFIELD_B Read memory through a custom token value

of a getfield_a instruction (provided at

build time)
REQ APDU:
 00: ?? (unused)

RESP APDU:
 00-01: the value read

0x13 PUTFIELD_B Write memory through a custom token value

of a putfield_a instruction, the target

token value is chosen in such a way, so that
header field corresponding to the length of a
given array of ints gets overwritten by it
REQ APDU:
 00: ?? (unused)

RESP APDU:
 00-01: the length of array of ints (the value

of a field written by a putfield_a

instruction)

0x14 GETFIELD_S Read memory through a custom token value

of a getfield_a instruction (provided at

build time)
REQ APDU:
 00: ?? (unused)

RESP APDU:
 00-01: the value read

0x15 PUTFIELD_S Write memory through a custom token value

of a putfield_a instruction, the target

token value is chosen in such a way, so that
header field corresponding to the length of a
given array of ints gets overwritten by it4
REQ APDU:
 00: ?? (unused)

RESP APDU:
 00-01: the length of array of ints (the value

of a field written by a putfield_a

instruction)

swap_x 0x10 TRIGGER_SWAPX Trigger the invocation of a malformed

4
 the value to write needs to be a valid reference in order to avoid an exception, this pointer is used in

our case as it sufficiently illustrates the flaw and still allows to increase the target array length

(observed reference value for this was 0xc0 > original array length).

swap_x instruction

REQ APDU:
 00: ?? (unused)

RESP APDU:
 00-01: 0x1234 value, but it is never
received (JCRE crash is signaled with IP

value set to 0x33445566)

nativemethod 0x10 NREAD_SHORT Invoke native readShort method of

NativeMethods class

REQ APDU:
 00-03: addr to read data from
 04-05: off to read data from
RESP APDU:
 00-01: value returned by readShort

method invoked for specific arguments

0x11 NWRITE_SHORT Invoke native writeShort method of

NativeMethods class

REQ APDU:
 00-03: addr to write data to
 04-05: off to write data to
 06-07: val to write
RESP APDU:
 00-01: value stored to designated address -

the result returned by readShort method

invoked same arguments as write operation

During build, test.scr script is merged with generated applet installation scripts

(install1.scr and install2.scr corresponding to package and applet install). The

output of this process is stored as scripts\test.scr file. This is the file used as input to

ApduTool.

REFERENCES

[1] JAVA CARD TECHNOLOGY

https://www.oracle.com/technetwork/java/embedded/javacard/overview/i

ndex.html

[2] JAVA CARD CLASSIC PLATFORM SPECIFICATION 3.0.5

https://www.oracle.com/technetwork/java/embedded/javacard/downloads/

index.html

About Security Explorations

Security Explorations (http://www.security-explorations.com) is a security

company from Poland, providing various services in the area of security and vulnerability

research. The company came to life as a result of a true passion of its founder for breaking

security of things and analyzing software for security defects. Adam Gowdiak is the

company's founder and its CEO. Adam is an experienced Java Virtual Machine hacker, with

over 100 security issues uncovered in the Java technology over the recent years. He is also

the Argus Hacking Contest co-winner and the man who has put Microsoft Windows to its

knees (the original discoverer of MS03-026 / MS Blaster worm bug). He was also the first

expert to present a successful and widespread attack against mobile Java platform in 2004.

