VDOO Discovers Significant Vulnerabilities in Axis Cameras — VDOO https://blog.vdoo.com/2018/06/18/vdoo-discovers-significant-vulnera...

JUNE 18, 2018 BY OR PELES
VDOO Discovers Significant Vulnerabilities in
Axis Cameras

For the past several months, VDOOQ's security research teams have been undertaking
broad-scale security research of leading loT products, from the fields of safety and
security. In most cases, the research was carried out together with the device vendors

for the sake of efficiency and transparency.

As part of this research, VDOO researchers found zero-day vulnerabilities in devices
of several vendors. These vulnerabilities were disclosed to the vendors, in accordance
with responsible disclosure best practices, and will be shared gradually after the

disclosure periods are concluded.

One of the vendors for which we found vulnerable devices was Axis Communications.

Our team discovered a critical chain of vulnerabilities in Axis security cameras. The

1 of 20 7/2/18,11:11 AM

VDOO Discovers Significant Vulnerabilities in Axis Cameras — VDOO https://blog.vdoo.com/2018/06/18/vdoo-discovers-significant-vulnera...

vulnerabilities allow an adversary that obtained the camera’s IP address to remotely
take over the cameras (via LAN or internet). In total, VDOO has responsibly disclosed
seven vulnerabilities to Axis security team.

The vulnerabilities’ IDs in Mitre
are: CVE-2018-10658, CVE-2018-10659, CVE-2018-10660, CVE-2018-10661, CVE-2
018-10662, CVE-2018-10663 and CVE-2018-10664.

Chaining three of the reported vulnerabilities together, allows an unauthenticated
remote attacker that has access to the camera login page through the network

(without any previous access to the camera or credentials to the camera) to fully
control the affected camera. An attacker with such control could do the following:

o Access to camera’s video stream

e Freeze the camera’s video stream

e Control the camera — move the lens to a desired point, turn motion detection on/off

o Add the camera to a botnet

e Alter the camera’s software

o Use the camera as an infiltration point for network (performing lateral movement)

o Render the camera useless

o Use the camera to perform other nefarious tasks (DDoS attacks, Bitcoin mining,
others)

The vulnerable products include 390 models of Axis IP Cameras. The full list of
affected products can be found here. Axis uses the ACV-128401 identifier for relating
to the issues we discovered.

To the best of our knowledge, these vulnerabilities were not exploited in the field,
and therefore, did not lead to any concrete privacy violation or security threat to Axis’s
customers.

We strongly recommend Axis customers who did not update their camera’s firmware

to do so immediately or mitigate the risks in alternative ways. See instructions in FAQ
section below.

2 0of 20 7/2/18,11:11 AM

VDOO Discovers Significant Vulnerabilities in Axis Cameras — VDOO https://blog.vdoo.com/2018/06/18/vdoo-discovers-sig

3 0f 20

We also recommend that other camera vendors follow our recommendations at the

end of this report to avoid and mitigate similar threats.

About VDOO

VDOO is a technology driven company that strives to change the reality of
unprotected connected devices. VDOO is building a line of products to support device
manufacturers in embedding security into their connected devices at the development
stage and enable post-development security.

In addition to developing products and services, VDOO invests significant efforts in a
wide scope research of connected devices. Security cameras is one focus area of this
research.

VDOO research goal is to contribute knowledge and tools to mitigate risks, as well as
encourage the devices’ manufacturers to implement the right security for their
products. We at VDOO believe that an appropriate implementation of the security
essentials will dramatically decrease the chances of exploiting vulnerabilities on the
device.

This is the second report from our series of researches focused on video surveillance

equipment.

The first report, focusing on Foscam equipment, is available here. For more details

about our research approach, click here.

Technical Overview

The camera runs a Linux operating system and the camera’s web-interface is based
on the Apache httpd web server with proprietary modules developed by Axis. Access
to files in the web-server’s root directory is governed by Axis’s custom authorization

nificant-vulnera...

7/2/18,11:11 AM

VDOO Discovers Significant Vulnerabilities in Axis Cameras — VDOO https://blog.vdoo.com/2018/06/18/vdoo-discovers-significant-vulnera...

code inside the mod_authz_axisgroupfile.so module. By using a proprietary
module, mod_trax.so, the web-server forwards certain requests to be handled by
other processes using special directives (such as TransferMime) in Apache
configuration files. For example, requests for files ending with .shtm, .shtml or .srv
extension are forwarded to the /bin/ssid process. The ssid process runs as root,
serving different functionalities for .srv requests than for .shtm or .shtml. Requests
for a .srv file are only allowed for privileged users. Some of the system’s daemons
communicate by using the dbus Inter-Process Communication mechanism.
Additionally, the camera has a proprietary system for managing internal parameters.
The /bin/parhand process (parameter handler) is responsible for storing, fetching and
updating parameters and their values. For example, when a user sets a parameter
through the web interface, the relevant CGl script (param.cgi) forwards the set-
parameter request to the parhand process, which verifies access-rights, and stores
the parameter’s value in the relevant configuration file. Some of the parameters (those
that are “Shell-mounted”) end up in configuration files in shell variable assignment
format (e.g., FOO=Bar), that are later imported (executed) in some services’ startup-
scripts. Another process of interest is the /usr/sbin/policykit_parhand, which offers
the PolicyKitParhand dbus-interface that also includes functions for setting the values
of parhand-parameters.

Camera’s Process Layout

hnpd “ p°IiCYkit-parhand Y
root¥| . root# rootd#

~——» D-Bus Client Functionality D-Bus Interface Functions

e GetParameter

» SynchParameters

By exploiting three of the seven newly discovered vulnerabilities in a specific
sequence, an attacker with network access to the camera can remotely execute shell

commands with root privileges.

The attack sequence is as follows:

4 of 20 7/2/18,11:11 AM

VDOO Discovers Significant Vulnerabilities in Axis Cameras — VDOO https://blog.vdoo.com/2018/06/18/vdoo-discovers-sig

50f20

o Step 1: The attacker uses an authorization bypass vulnerability

(CVE-2018-10661). This vulnerability allows the attacker the ability to send
unauthenticated HTTP requests that reach the .srv functionality (that handles .srv
requests) inside /bin/ssid. Normally, this functionality should only be accessible to
administrative users.

Step 2: The attacker then utilizes an interface that allows sending any dbus
message to the device’s bus, without restriction (CVE-2018-10662), that is reachable
from /bin/ssid’s .srv. Due to the fact that /bin/ssid runs as root, these dbus messages
are authorized to invoke most of the system’s dbus-services’ interfaces (that were
otherwise subject to a strict authorization policy). The attacker chooses to send dbus
messages to one such dbus-service’s interface — PolicyKitParhand, which offers
functions for setting parhand parameters. The attacker now has control over any of
the device’s parhand parameter values. (See the next vulnerability).

Step 3: A shell command injection vulnerability (CVE-2018-10660) is then exploited.
Some parhand parameters (of type “Shell-Mounted”) end up in configuration files in
shell variable assignment format, which are later, included in a service’s init-script that
runs as root. Due to step-2, the attacker is able to send unauthenticated requests to
set parhand parmeter values. By doing so, the attacker can now exploit this
vulnerability by setting one parameter’s value with special characters which will cause
command injection, in order to execute commands as the root user.

Technical Deep-Dive

This section provides details for each of the vulnerabilities used in the full attack

seqguence.

CVE-2018-10661 — Authorization bypass
vulnerability

nificant-vulnera...

7/2/18,11:11 AM

VDOO Discovers Significant Vulnerabilities in Axis Cameras — VDOO

6 of 20

This vulnerability allows an attacker to bypass the web-server’s authorization
mechanism by sending unauthenticated requests that reach the /bin/ssid‘s .srv

functionality; no user credentials are required.

This vulnerability resides in mod_authz_axisgroupfile.so: a custom authorization
module for Apache httpd that was written by the vendor.

As previously stated, the device runs an Apache httpd server and requests to paths
inside the document-root folder must be granted by mod_authz_axisgroupfile.so

authorization module in order to proceed.

The only .srv file inside the document-root folder is /sm/sm.srv (relative path), and
the authorization code verifies that the authenticated user has sufficient privileges in
order to pass. Upon granting authorization, the web-server is configured to handle
requests with a specific handler to paths ending with the .srv extension (the ‘.srv
handler code’).

To summarize the problem, requests to a world-readable file that are followed by a
backslash and end with the .srv extension (e.g. http://CAMERA _|P/index.html/a.srv)
are treated by the authorization code as standard requests to the index.html and thus

granted access, while the requests are also treated as legitimate requests to an .srv
path, and are thus handled by the .srv handler, simultaneously.

This happens due to a feature of the web-servers that deals with trailing pathname
strings that follow an actual filename, called PATH_INFO (see https://tools.ietf.org
/ntml/rfc3875#section-4.1.5)

The following (abstracted) logic occurs on receipt of an HTTP request to
http://CAMERA_IP/index.html/a.srv:

. When Apache httpd parses the request URI, it sets the following member fields in the

request’s request_rec struct:

uri = “/index.html/a.srv”
filename = “/usr/html/index.html” # Assuming the server’s Document Root is
“/usr/ntml”

https://blog.vdoo.com/2018/06/18/vdoo-discovers-significant-vulnera...

7/2/18,11:11 AM

VDOO Discovers Significant Vulnerabilities in Axis Cameras — VDOO https://blog.vdoo.com/2018/06/18/vdoo-discovers-significant-vulnera...

7 of 20

e path_info = “/a.srv”

2. Access to files in the Document Root directory is governed by Axis’s custom

authorization code by so module (due to the Require axis-group-file directive in the
/usr/html Directory directive in the httpd configuration file).

The custom authorization code performs authorization checks based on the
request.filename only (see IDA screenshot with explanation below), ignoring the
existence of the path_info feature, and thus grants access to our request to

/index.html/a.srv, because the request is perceived as intended for the /usr/html
/index.html file that is world-readable (and does not require any authentication).

. Now that the request is authorized, the configuration’s <LocationMatch

“.+\.(shtmllshtmlsrv)($1&)"> directive, matches its regex pattern against uri (our
request’s full uri, see above), and, because it ends with “.srv”, the regular expression
matches and it proceeds to execute the ‘.srv handler code’: — “TransferMime /var/run
/ssid/ssidsocket” — which transfers the request to the /var/run/ssid/ssidsocket unix
socket for handling by the /bin/ssid process.

. Later, the /bin/ssid process receives the request, checks its (full) URI, and treats the

request as a legitimate request to an .srv file — allowing the request to reach the .srv
functionality.

; Authorization provider for paths subject
to 'Require axis-group-file' directive

axis_group_file_provider

STMFD sP!, {R4-R6,LR}
MOV R4, RO
LDR R1, [R@,#request_rec.filename] ; request.filename
LDR RS, =(_GLOBAL_OFFSET_TABLE_ - @x26D8)
LDOR Re, [RO)]
BL is_file_world_readable
(e 2 R®, #1 ; request.filename is world-readable
ADD RS, PC, RS
MOVEQ R1, #0 ; if world-readable: group_name = NULL
BEQ loc_278C
- Y
i =
LDR R2, =(al27001+8 - @x26F0)
LDR R1, =(aHandleRedirect - @x26F4)
LDR Re, [R4,#]
ADD R2, PC, R2
ADO R1, PC, R1
Bl apr_table_setn
LDR R3, =(authz_owner_get_file_group_ptr - @x13Fe4)
MOV RO, R4
LDR R3, [RS,R3)
LDR R3, [R3)
BLX R3 ; authz_owner_get file group - returns the file's owner group name
MOV R1, R@ ; group name
\
. Yy
ll) =
if request.filename is world readable:
oroun nams « NI / Ry

7/2/18,11:11 AM

VDOO Discovers Significant Vulnerabilities in Axis Cameras — VDOO https://blog.vdoo.com/2018/06/18/vdoo-discovers-significant-vulnera...

This IDA screenshot from mod_authz_axisgroupfile.so shows the
axis_group_file_provider function, that is registered (by apache’s
ap_register_auth_provider function) as an authorization provider for paths that are
subject to ‘Require axis-group-file’ directives. One can observe (in the upper part of
the screenshot) that the request.filename component is used for checking whether
the file is world-readable. In our example above, request.filename is the path of the
world-readable /usr/html/index.html file, and thus the flow proceeds to calling the
check_user_authz_by_file_owner_gid function, with the group_name param as
NULL. When invoked with group_name as NULL, the latter function skips all
authorization checks and Grants Access to the request.

Thus — the attacker is given an unauthenticated access to the /bin/ssid’s .srv
functionality

PoC

In order to show we have the ability to reach the /bin/ssid’s .srv functionality, we send
a request with the ‘return_page’ query-string parameter. This is a special parameter
used for HTTP redirection. We know we have reached the /bin/ssid’s .srv functionality
as it returns a redirect with the parameter’s value (the string “it_worked”) back in the

response.

8 of 20 7/2/18,11:11 AM

VDOO Discovers Significant Vulnerabilities in Axis Cameras — VDOO https://blog.vdoo.com/2018/06/18/vdoo-discovers-significant-vulnera...

CVE-2018-10662 — Unrestricted dbus
access for users of the .srv
functionality

Legitimate requests that reach /bin/ssid’s .srv functionality can choose one of
several actions by setting the action parameter in the request’s query-string. One
possible action is dbus, which allows the user to invoke any dbus request as root (the
uid and gid of the /bin/ssid process), without any restriction on the destination or
content. Due to the dbus request originating from a root process — unrestricted access
is granted to many dbus-services’ interfaces. This happens because the authorization
mechanism that is intended to limit such requests, PolicyKit, is configured to
automatically grant access to requests originating from the root user.

<config version="0.1">
<match user="root">
<return result="yes"/>
</match>

The beginning of /etc/PolicyKit/PolicyKit.conf. “yes” means
authorization is granted. See PolicyKit.conf’s manual page.

While the dbus interface in /bin/ssid only serves the purpose of fetching specific
values from some specific dbus-enabled services, it exposes a much broader
functionality, which has security consequences without justification.

For example, this interface gives users the ability to control any of the device parhand
parameters’ values. Control can be achieved by sending dbus-requests to invoke
policykit_parhand process’ dbus-interface (PolicyKitParhand) functions. This
interface offers the SetParameter and SynchParameter methods that are evocable
by root dbus-clients. By executing SetParameter followed by SynchParameter, a

9 of 20 7/2/18,11:11 AM

VDOO Discovers Significant Vulnerabilities in Axis Cameras — VDOO

10 of 20

user can set the value of any parhand parameter and apply the changes.

PoC

The camera’s parhand parameter Image.l0.Overlay.Enabled controls whether to
show an image on top of the camera’s video output. As an example, we use the

vulnerability to toggle its value from ‘no’ to ‘yes’.

As a result of running these commands on a vulnerable camera, the overlay image
(by default — a small Axis Logo) will appear in the top left corner of the video stream.

One can log into the web-interface to see it:

=

CVE-2018-10660 — Shell command

https://blog.vdoo.com/2018/06/18/vdoo-discovers-significant-vulnera...

7/2/18,11:11 AM

VDOO Discovers Significant Vulnerabilities in Axis Cameras — VDOO https://blog.vdoo.com/2018/06/18/vdoo-discovers-significant-vulnera...

11 of 20

injection vulnerability

To take advantage of this vulnerability you must have permissions to change certain
parhand parameters. This can be achieved by one of:

1. Achieving/having administrator privileges (by using the cgi interface)
. Executing code inside the upnp daemon
3. Finding other ways to control certain parhand parameters — as was achieved by

CVE-2018-10662 in the example of directly invoking the functions of
policykit_parhand (see above).

The parhand parameter handler is responsible for fetching, storing, and changing
many of the device’s internal parameters. When a user sets a parameter through the
web interface, the relevant CGl script (param.cgi) forwards the set-parameter request
to the parhand binary, which checks access-rights, and stores the parameter’s value
in the relevant configuration file.

Some of the parameters are used for feeding shell-scripts, and are defined as Shell
mounted (mount = “Shell{...}” in the parhand configuration file). The parameters’
values are parsed by the parhand ShellParser, which does not sanitize special shell
characters and also does not quote the parameters’ values. Some of these
parameters (for example, the Time.DST.Enabled parameter we exploited) end up in
configuration files (for example, /etc/sysconfig/openntpd.conf) in shell variable
assignment format (e.g., FOO=Bar). These parameters are later used by shell init-
scripts (for example, parhand-systemctl restart time-source.service) which run as
a result of the setter command, that is executed when applying a new value for a
parameter — by running the sync command.

The shell scripts directly execute the configuration file (for the purpose of including the
configuration parameters), and by setting the parameter’s value with a semicolon (*;”),
we were able to inject arbitrary shell commands with root privileges.

The key factors in this vulnerability are:

o Lack of input sanitization when parsing values that end up in a shell environment

7/2/18,11:11 AM

VDOO Discovers Significant Vulnerabilities in Axis Cameras — VDOO https://blog.vdoo.com/2018/06/18/vdoo-discovers-significant-vulnera...

¢ An outdated method is employed by the device, using shell scripts to set parameters

by storing them in files as shell-assignment expressions and then executing the files.

Please also note that the parameters that can be set by the camera’s upnp daemon
can also be used to exploit this vulnerability to escalate privileges, in case the attacker
happens to have the ability to execute code inside the UPnP daemon.

PoC

Out of the possible options, we chose to trigger this vulnerability by using the
param.cgi interface, which requires administrator credentials. We inject the id
command, which prints user and group information of the current user to standard

output. In our case, the standard output is redirected to the system log.

As a proof that the PoC worked — after executing the commands, we logged as an
admin to the camera’s management interface to view the system log
http://CAMERA_IP/axis-cgi/admin/systemlog.cgi, and were able to see the id
command’s output (see uid and gid at the bottom line):

[INFO] parhand[867]: Updated configuration file /etc/sysconfig/openntpd.conf.
[INFO] systemd[1]: Stopping Time zone configuration...

[INFO] systemd[1]: Starting Time zone configuration...

[INFO] timezone-set[2781]: Setting time zone configuration

[INFO] timezone-set[2781]: uid=@(root) gid=e(root)

Additional Vulnerabillities

12 of 20 7/2/18,11:11 AM

VDOO Discovers Significant Vulnerabilities in Axis Cameras — VDOO

13 of 20

This section provides details for four more vulnerabilities, that were not used in the

attack sequence described above.

CVE-2018-10664 — Crashing the httpd
process

This vulnerability allows an unauthenticated adversary to crash the httpd process —
causing (at least) a black screen for viewers that were already logged to the camera
using the web interface with default settings. This vulnerability does not require any

user credentials.

The following line (followed by a crash dump) is appended to the system log after

triggering the vulnerability:

[ERR]kernel: [2819.017996] httpd: httpd: potentially unexpected fatal signal 11.

PoC

This vulnerability is triggered by issuing an HTTP request to a .cgi script URL, with a
PATH_INFO that ends with the .srv extension.

CVE-2018-10663 Information Leakage
vulnerability in the /bin/ssid process

This vulnerability does not require any user credentials. The ‘return_page’ and
‘servermanager_return_page’ query-string parameters in /bin/ssid’s .srv

https://blog.vdoo.com/2018/06/18/vdoo-discovers-significant-vulnera...

7/2/18,11:11 AM

VDOO Discovers Significant Vulnerabilities in Axis Cameras — VDOO https://blog.vdoo.com/2018/06/18/vdoo-discovers-significant-vulnera...

functionality are controlled by the user, and returned back to her in the response to the
user’s request. When dealt with in the response-building code — these fields’ values
are trimmed to a size of 0x200 bytes and copied to a malloced 0x200-bytes space by
using the safe __snprintf_chk function. Then the return value of the __snprintf_chk
function (supposedly their length) is saved in a struct member variable for later
calculating the response’s content length.

MOV R1, #0x200 ; Rd = Op2
BL __snprintf_chk ; Branch with Link
STR RO, [R7,#8] ; Store to Memor

A (partial) IDA Screenshot showing that the return value of __snprintf_chk is saved into a struct
member.

The problem is that the return value of the __snprintf_chk function is the “The
number of characters that would have been written if n had been sufficiently large...”
(taken from sprintf’s manual). This makes the calculated content-length larger than
the actual data buffer, and as a result — extra bytes from memory are leaked in the
response.

PoC

14 of 20 7/2/18,11:11 AM

VDOO Discovers Significant Vulnerabilities in Axis Cameras — VDOO https://blog.vdoo.com/2018/06/18/vdoo-discovers-significant-vulnera...

Watch how the end of the response returned changes. The extra symbols and
characters are leaked bytes that are adjacent to the response’s buffer in memory.

CVE-2018-10658 Crashing the /bin/ssid
Process

This vulnerability does not require any user credentials. The unauthenticated user can
send (by /bin/ssid .srv interface) dbus-request with a specially crafted string to crash
the ssid service. This crash arises from code inside libdbus-send.so shared object
or similar, as it produces the following log message:

[INFO] ssid[2334]: process 2334: arguments to
dbus_message_new_method_call() were incorrect, assertion “iface == NULL I
_dbus_check_is_valid_interface (iface)” failed in file ../../dbus-1.10.14/dbus/dbus-
message.c line 1373.

As the crashes also occur by directly invoking “/usr/bin/dbus-send” with a similar
string, this may affect other processes that include this code. Note that the /bin/ssid
process will be respawned.

PoC

15 of 20 7/2/18,11:11 AM

VDOO Discovers Significant Vulnerabilities in Axis Cameras — VDOO https://blog.vdoo.com/2018/06/18/vdoo-discovers-significant-vulnera...

CVE-2018-10659 Crashing of the /bin/ssid
Process.

An unauthenticated user can send (by /bin/ssid .srv interface) a specially crafted
command that will result in a code path that calls the UND undefined ARM instruction
(and possibly a similar scenario in MIPS or other architecture’s’ cameras) that causes
the process to crash. Note that the /bin/ssid process will be respawned.

The following log line (followed by the crash-dump) appears after triggering it:
[ERR]kernel: [2390.374778] ssid: ssid: potentially unexpected fatal signal 11.

This vulnerability does not require any user credentials.

PoC

Recommendations for Device Makers

We would like to relate to some bad architectural practices that were found in the
cameras analyzed in this research, that make it easier for an attacker to discover and
exploit vulnerabilities. We encourage device makers to take the below
recommendations into consideration.

16 of 20 7/2/18,11:11 AM

VDOO Discovers Significant Vulnerabilities in Axis Cameras — VDOO https://blog.vdoo.com/2018/06/18/vdoo-discovers-significant-vulnera...

o Lack of privilege separation: This violates the concept of privilege separation
(https://en.wikipedia.org/wiki/Privilege_separation), which states that a program

should be divided into parts — each part limited to its own needed privileges. While
every process in the system runs as root — a code-execution bug in any of the
system’s processes will allow the attacker to escalate to root privileges. On the other
hand, if less processes were running with high privileges — an attacker would have to
discover vulnerabilities in a more restricted set of processes in order to escalate
privileges, which is a harder task.

e As an example, in CVE-2018-10662, /bin/ssid had an unrestricted dbus interface —
that allowed an attacker to call dbus service’s functions. If the process wasn’t
running as root, the dbus authorization policy wouldn’t allow many privileged dbus
services’ functions to be invoked. But because the /bin/ssid process does run as
root, all the dbus functions are exposed to the attacker without permission barriers.

o Lack of proper input sanitization: When getting input from an external interface, the
input should be sanitized from characters that have damage potential. This could have
prevented CVE-2018-10660 — in which shell special characters were not escaped.

o Minimize Use of Shell Scripts: The extended use of shell scripts that take user input
as parameters is discouraged. This approach enabled CVE-2018-10660. In another
note — instead of directly executing dbus commands — the parhand infrastructure
could be used (together with dbus and getters command).

o Lack of Binary Firmware Encryption: Firmware encryption will raise the bar and
make it harder for adversaries to analyze the firmware for bugs, and specifically use
binary diffing methods between the latest and previous firmware in order to find and
analyze the patches and in this way — uncover the vulnerabilities that still exist in the
previous version. Moreover, the device contained unstripped binaries with symbols
like function names. This aided us in understanding how the code works. On the other
hand, it is worth noting that the security by obscurity approach for firmware content
may contribute to a situation in which issues exists but are not being discovered and
remediated since the firmware is encrypted properly. Vendors should consider this
tradeoff carefully.

Acknowledgment

17 of 20 7/2/18,11:11 AM

VDOO Discovers Significant Vulnerabilities in Axis Cameras — VDOO

18 of 20

A WO N =

We would like to thank Axis Communications’ security team for efficiently and
promptly handling this security issue, and for their professional conduct of
communication.

Credit

Or Peles (@peles_o), VDOO

FAQ Section

Q1. How do | know if my device is vulnerable?

In order to verify if your device is vulnerable or not — you need to check the the

ACV-128401 affected product list. If your camera’s firmware is an earlier version or

the version that appears in the ACV-128401 affected product list, your device is
vulnerable, and we highly recommend on upgrading the device firmware. To check
which firmware version your camera uses, you can do the following:

. Using a web browser, access your camera.

. Enter your username and password

. Click “System” — “Options” —> “Support” — “System Overview”.
. Look for the firmware version

If you have multiple devices it may be worthwhile to retrieve the firmware using either
the Axis Device Manager software or programmatically via the Axis VAPIX API (see

section 2.2 in the official VAPIX documentation).

Q2. How can | tell if my device was breached?

https://blog.vdoo.com/2018/06/18/vdoo-discovers-significant-vulnera...

7/2/18,11:11 AM

VDOO Discovers Significant Vulnerabilities in Axis Cameras — VDOO https://blog.vdoo.com/2018/06/18/vdoo-discovers-significant-vulnera...

The chances that your device was breached are very low as there are no known
malware utilizing these vulnerabilities at the time of publication.

As loT malware is normally crafted to go undetected, there’s no easy way to know for
sure. Any suspicious change to the device may indicate the existence of a botnet
malware on your device.

A few ways to check:

1. Your password is not working anymore (and not because you simply forgot it) —
this is a strong indication for a device that has been taken over.

2. Your device settings were modified — for example, videos are now sent to a
different server.

3. Spike in network traffic — if possible, examine your router network statistics. A
botnet could increase the amount of network traffic originated from the camera. Any
spikes should alert you since unless you are streaming video from the camera, this
number should be relatively low.

Q3. Is there a way to remediate my device if it was breached?

At the time of publication, we are not aware of any malware abusing this issue. If you
suspect your camera is breached, restore the camera to its factory settings. Doing so
will restore the configuration to default settings, allowing you to connect and upgrade
the firmware. Keep in mind that if you’re using a firmware susceptible to the
vulnerabilities detected by VDOO, the device might be targeted and can become
infected again shortly. So, after resetting the device, make sure to immediately
perform the firmware upgrade, prior to connecting the camera directly to the internet.

Q4. How to mitigate the risk if | can’t update the camera’s firmware?

In order to reduce the camera’s exposure and the ability to manage it remotely, it is
recommended to place the device behind a firewall blocking port 80 and 443 (or the
ports specified in the camera’s configuration) and consider not allowing the camera to
initiate any outbound connections. Another option is to put the device behind a
reverse proxy that blocks the URLs we are using for the exploit (see above for
additional details). Please contact security@vdoo.com if additional help is necessary.

19 of 20 7/2/18,11:11 AM

VDOO Discovers Significant Vulnerabilities in Axis Cameras — VDOO

20 of 20

Q5. How to upgrade the firmware in the camera?

To upgrade to the latest firmware, you can use Axis Device Manager, the camera’s

web interface or FTP. https://www.axis.com/en-in/support/tecnical-notes/how-to-

upgrade to find the vendor’s instructions for firmware update.

Share this:

) Twitter] Facebook

Like

Be the first to like this.

Related

Major Vulnerabilities in
Foscam Cameras
In "Technical"

= TECHNICAL

G+ Google

Behind the research glass -
an insight into our approach
In "About Us"

Why good security
foundations are better than
the best security mitigation
In "About Us"

https://blog.vdoo.com/2018/06/18/vdoo-discovers-significant-vulnera...

7/2/18,11:11 AM

